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a risk management model,
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and lots of common sense...
Model risk in interest rate modelling
Evidence of model risk in interest rate literature
Towards a Bayesian view on finance modelling
Option pricing under uncertainty
A new measure of parameter uncertainty model risk
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Model risk for credit models
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Why MLE can be wrong
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Why Model Risk

1987 Merrill Lynch reported losses of 300 million USD on stripped
mortgage-backed securities because of an incorrect pricing model
1992 J.P. Morgan lost about 200 million USD in the mortgage-backed
securities market because of inadequate modelling of prepayments.
1997 Bank of Tokyo/Mitsubishi, its New York-subsidiary $83 million loss
because of their internal pricing model overvalued a portfolio of swaps
and options on USD interest rates.

Dowd (2002) pointed out that the loss was caused by wrongly using a
one-factor Black-Derman-Toy (BDT) model to trade swaptions.
The model was calibrated to ATM swaptions but used to trade
out-of-the-money (OTM) Bermudan swaptions, which was not appropriate.
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1997, NatWest Capital Markets reported a $50 million loss because of a
mispriced portfolio of German and U.K. interest rate derivatives on the
book of a single derivatives trader in London who fed his own estimates
of volatility into a model pricing OTC interest rate options with long
maturities.
Williams (1999) remarked that model risk was not included in standard
risk management software and in 1999 about 5 billion USD losses were
caused by model risk.
A Deutsche Bank subsidiary in Japan used some smart models to trade
electronically that went wild in June 2010, going into an infinite loop and
taking out a $183 billion stock position.

Model risk has also been identified to some extent by the Basel Committee on
Banking Supervision in the Basel II framework, see Basel (2006) and Basel
(2011). Financial institutions ought to gauge their model risk. Furthermore,
model validation is one component of the Pillar 1 Minimum Capital
Requirements and Pillar 2 Supervisory Review Process.
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A Definition of Model Risk

Gibson et al. (1999) state
“Model risk results from the inappropriate specification of a
theoretical model or the use of an appropriate model but in an
inadequate framework or for the wrong purpose.”

while for McNeil et al. (2005) model risk can be defined as
“the risk that a financial institution incurs losses because its
risk-management models are misspecified or because some of the
assumptions underlying these models are not met in practice.”

For Barrieu and Scandolo (2013)
“The hazard of working with a potentially not well-suited model is
referred to as model risk”

and Boucher et al. (2014) define model risk as
“the uncertainty in risk forecasting arising from estimation error and
the use of an incorrect model”.
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What model risk is not

It is not operational risk: Example: The Vancouver stock exchange
started a new index initialized at the level of 1000.000 in 1982. However,
less than two years later it was observed that the index was constantly
decreasing to about 520 despite the exchange setting records in value
and volume as described in the Wall Street Journal in 1983. Upon further
investigations it was revealed that the index, which was updated after
every transaction, was recalculated by removing the decimals after the
third decimal instead of rounding off. Hence, the correct value of
1098.892 became the published value of 520.
fiscal-legal updating. Sudden changes in law may expose a bank to great
losses. Example: In the UK a law on lower dividend tax credit was
exploited by UBS in the 1990s. The law was changed in 1997 and
caused many banks to suffer immediate losses with UBS incurring huge
losses. In general, see Gibson (2000), models used by banks simply
ignore the impact of sudden fiscal change.
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RND Qphysical measure P

Figure: Two worlds of Finance through a mathematical eye
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Bernardo and Smith (1994) and Draper (1995) enumerate the main sources
of uncertainty related to the quantity under study:

1 uncertainty caused by the stochastic specification of the model;
deterministic models as used in mechanics for example do not carry any
degree of uncertainty.

2 uncertainty in the estimated values of the parameters underpinning the
model; from a finite set of data we may not be sure about the true
population value of the parameters.

3 uncertainty in the model used; it is difficult to know with certainty that a
given model is the correct one. This category can be classified further:

1 the true model belongs to a known class of models;
2 the class of models used are known to be approximations to a more complex

model that is cumbersome to work with;
3 the class of models may provide a proxy for a more complex true model

about which the modeller has no prior knowledge.

Derman (1996) three main reasons for model risk:
1 the model parameters may not be estimated correctly;
2 it may be mis-specified;
3 it may be incorrectly implemented.
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1 parameter estimation risk
2 model selection risk within a given family of models
3 model identification risk. This category is more related to Knightian

uncertainty than to model risk per se.
4 computational implementation risk which is generated by overlooking

technical conditions under which particular computational mathematical
techniques work.

5 model protocol risk.
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Short rate Models I

Vasicek (1977) developed a model for the risk-free rate of interest
{rt})t≥0, given by the following continuous-time SDE

drt = k(b− rt )dt + σdWt (1)

where k ,b,σ > 0.

b is interpreted as the long-run mean rate; limt→∞E[rt ] = b, k represents
the speed of mean reversion to b and σ is the local volatility parameter.

E[rt+u|rt ] = b + (rt −b)e−ku, var[rt+u|rt ] = σ
2 1−e−2ku

2k
the long-term standard deviation of rt is σ√

2k
.
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Short rate Models II

zero-coupon bond prices at time t for maturity T

p(t ,T ) = exp[A(t ,T )−B(t ,T )rt ]

where B(t ,T ) = 1−e−k(T−t)

k and

A(t ,T ) =

[
B(t ,T )− (T − t)

(
b− σ2

2k2

)]
− σ2

4k
B(t ,T )2.

under the Vasicek model the price of European call is

Callt = p(t ,T ∗)Φ(d1)−Kp(t ,T )Φ(d2) (2)

where

d1 =
1

σ∗
ln

(
p(t ,T ∗)
Kp(t ,T )

)
+

σ∗

2
, d2 = d1−σ

∗

and where we denote by σ∗ = σ

k [1−e−k(T ∗−T )]

√
1−e−2k(T−t)

2k
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Short rate Models III
One major “shortcoming” of the Vasicek model is that the rate rt can
become negative and depending on the parameters’ values, with quite
significant probabilities.
The Cox, Ingersoll and Ross (CIR) model given by

drt = k(b− rt )dt + σ
√

rtdWt (3)

where k ,b,σ > 0.
the zero-coupon bond prices

p(t ,T ) = exp[a(T − t)−b(T − t)rt ] (4)

where b(u) = 2(eγu−1)
(γ+k)(eγu−1)+2γ

, γ =
√

k2 + 2σ2 and

a(u) = 2kb
σ2 ln

[
2γe(γ+k)u/2

(γ+k)(eγu−1)+2γ

]
.

If q = σ2(1−e−kT

4k it can be proved that conditional on r0 the distribution of rt
q

is a non-central chi-squared distribution with d = 4kb
σ2 degrees of freedom

and non-centrality parameter α = 4kr0
σ2(ekT−1)

.
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Short rate Models IV

the European call options on zero-coupon bonds with maturity T ∗,
exercise date T and strike price K

Callt = p(0,T ∗)χ
2(d ,α1;v1)−Kp(0,T )χ

2(d ,α2;v2) (5)

where χ2(d ,α;v) is the cumulative distribution function of the non-central
chi-squared distribution with d degrees of freedom and non-centrality
parameter α, and d = 4kb

σ2 , γ =
√

k2 + 2σ2
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Short rate Models V

α1 =
8γ2eγT rt

σ2(eγT −1)(2γ + (γ + k + σ2b(T ∗−T ))(eγT −1))

α2 =
8γ2eγT rt

σ2(eγT −1)(2γ + (γ + k)(eγT −1))

δ =
a(T ∗− t)− lnK

b(T ∗−T )

v1 =
2δ [2γ + (γ + k + σ2b(T ∗−T ))(eγT −1)]

σ2(eγT −1)

v2 =
2δ [2γ + (γ + k)(eγT −1)]

σ2(eγT −1)

if r0 > 0 and 2kb ≥ σ2 then rt > 0 almost surely.
when 2kb < σ2 then there is a time t such that rt ≤ 0 almost surely.
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Short rate Models VI

looking at the zero-coupon bond prices

p(T ,T ∗) < exp{a(T ∗−T )}

and if it also happens that a(T ∗−T ) < 0 at the maturity T of the option
then, for exercise price K close enough to 1,

p(T ,T ∗) < exp{a(T ∗−T )}< K < 1

which is impossible and will automatically give a call option price equal to
zero!
The Vasicek model does not behave well in the proximity of exercise price
1 either since it will provide a positive call option price for K = 1. This
option price inflation is caused by the fact that rt can be occasionally
negative under the Vasicek model.
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Figure: Comparison of probability density functions under the Vasicek and CIR models
for the value rate r at T = 10.

the probability densities of r under each model at some horizon T = 10, the
parameters of the two models calibrated over the same set of data. This point
and an ad-hoc solution to get equivalent sets of parameters for the two short
rate models has been discussed in Cairns (2004).
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Figure: Comparison of probability density functions under the Vasicek and CIR models
for the value rate r at T = 5.
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Figure: Comparison of probability density functions under the Vasicek and CIR models
for the value rate r at T = 20.
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Path Simulation

for Vasicek is
∆rt = k(b− rt )∆t + σεt

√
∆t (6)

for the CIR model the corresponding equation is

∆rt = k(b− rt )∆t + σ
√

rt εt
√

∆t (7)

where εt ∼ N(0,1) for all t .
r0 = 3%, T = 1, ∆t = 0.004, k = 0.07, b = 2.50% and σ = 2.25%

simulate paths from both data generating processes.
Standard Paths Non-Standard Paths
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Buraschi and Corielli (2005) describe the time inconsistencies that may
appear when using models from the HJM family. This is a very important
question for the risk manager. Is the model selected by a bank or
financial institution complex enough to generate curves that cover the
observed or realised term structure curves from the past? On the other
hand, is the model too complex and is generating curves that have never
been observed in practice?
Filipovic (2009) discusses the nonexistence of HJM models with
proportional volatility which apparently was one of the major reasons for
the introduction of LIBOR market models in fixed income markets.
Jarrow (2009), multi-factor models with more than three factors are
actually required in practice, particularly when exotic interest rate
derivatives are traded.
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Proposition (Nelson-Siegel vs Hull-White)
The Hull-White extended Vasicek model is inconsistent with the Nelson-Siegel
family of forward curves.

Hence the NS manifold is not large enough for the HW model. If the initial
forward rate curve is on the manifold, then the HW dynamics will force the
term structure off the manifold within an arbitrarily short period of time!

Proposition (Nelson-Siegel vs Ho-Lee)
The full Nelson-Siegel family is inconsistent with the Ho-Lee model. The
degenerate family G(z;x) = z1 + z3x is in fact consistent with Ho-Lee.

Filipovic (1998) proved the following important result.

Proposition
There is no non-trivial Wiener driven model that is consistent with the
Nelson-Siegel family of forward curves.
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Option Pricing with Uncertainty

For option pricing the most important quantity driving the prices is the
volatility, various classes of models emerged for the estimation of the same
quantity, volatility σ . Bunnin et al. (2002) classified them:

1 Implied volatility. A pointwise estimate of σ is derived as an inverse
problem; the option price is given and the Black-Scholes formula is used
to retrieve the σ̂ that makes the formula match the market option price.

2 Discrete time GARCH models. GARCH models were primarily developed
for the evolution of variance but calculating the value of σ is
straightforward.

3 Frequentist econometric pointwise estimation of σ . One can use the
historical series and some error specification obtained after discretizing a
continuous-time model, and then use OLS, or MLE or GMM to estimate
σ̂ .

4 Bayesian pointwise estimation. One could use solely the pointwise
posterior estimators such as posterior mean or posterior median.
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1 An important step in the evolution of modelling for financial markets was
marked by the introduction of stochastic volatility models, in discrete time
and continuous time.

2 Semi-parametric models. Not that many are available but they allow a
very high degree of uncertainty since σ is constrained to a finite interval
but no other specification of volatility is made. One important paper in this
class is Avellaneda et al. (1995).

3 Volatility surfaces. There is great research in this area recognizing that at
one time the option maturity spectrum is defined by a term structure.
Combine that with assets requiring modelling of a term structure of
prices, such as bonds, and the cross combination leads to a volatility
surface that needs to be estimated.

the pricing equation should be rewritten as

u(St , t) = B(t ,T )
∫

∞

0
ψ(ST )p(ST ,T |St , t ,θ)dST (8)

making explicit the conditioning on θ .
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The transition probability density for the case when parameters “are known”
should be replaced with the predictive density

p(ST ,T |St , t) =
∫

p(ST ,T |St , t ,θ)p(θ |Yt )dθ (9)

where p(θ |Yt ) is the posterior density of θ given the occurrence of Yt , which is
all observed data such as returns or changes or level prices of S, up to time t .
Then (8) can be rewritten as

u(St , t) = B(t ,T )
∫

∞

0
ψ(ST )

[∫
Θ

p(ST ,T |St , t ,θ)p(θ |Yt )dθ

]
dST (10)
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For some options payoffs it may be possible to derive closed-form
solutions, for a given value of parameter θ .
denoting by u∗(St , t ,θ) = B(t ,T )EQ

t [ψ(ST )|θ ])

u(St , t) = B(t ,T )
∫

Θ

[∫
∞

0
ψ(ST )p(ST ,T |St , tθ)dST

]
p(θ |Yt )dθ

=
∫

Θ
B(t ,T )EQ

t [ψ(ST )|θ ]p(θ |Yt )dθ

=
∫

Θ
u∗(St , t ,θ)p(θ |Yt )dθ

≈ 1
M

M

∑
i=1

u∗(St , t ,θi )

where the last approximation formula is calculated by drawing parameter
values for their posterior distribution

θi ∼ p(θ |Yt ). (11)
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generate samples of possible parameter values from the posterior
distribution of the parameter θ given the observed data, p(θ |Yt ).
assume that Yt = {St ,St−1, . . . ,S0},∀t ≥ 0 and denote by Y[s,t ] = Yt \Ys
for any s < t .
Since Itô diffusions are Markov processes, applying Bayes’ formula gives

p(θ |Yt ) =
p(Y[s,t ]|θ ,Ss)p(θ |Ys)∫
Θ p(Y[s,t ]|θ ,Ss)p(θ |Ys)

(12)

Bunnin et al. (2002) present two distinct algorithms for sampling from
p(θ |Yt ), which is needed in order to compute the sample option prices.
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knowing how to simulate from p(Yt |θ), we need only to be able to draw
samples from p(θ |Yt ) in order to calculate the predictive density.
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suggest applying for this important step the sampling importance
resampling (SIR) algorithm that will go through the following procedure
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wi =
p(Y[s,t]|θi ,Ss)

∑i p(Y[s,t]|θi ,Ss)

Step 4 Resample from the θi obtained, using the importance
weighting given by wi . This will result in M < n samples
from p(θ |Yt ). The resampling is done through the following
subroutine:

1 Split the interval (0,1] into n subintervals (ai ,bi ], where the
end of values are ai = ∑

j=i−1
j=1 wj and bi = ∑

i
j=1 wj .

2 Draw M i.i.d. Uniform(0,1) random numbers {Uk}k∈{1,...,M}
3 If Uk ∈ (ai ,bi ] then θi becomes the k -th sample value.

option price sampling from the predictive density of ST .
when the SDE of the Itô diffusion has a closed form solution
WT ∼ N(0,T ) and S(i)

T = g(WT ,S0,θi )
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When the SDE does not have a closed form solution, the
Euler-Maruyama discretization seems to be the only feasible route. The
procedure is the following.

First discretize the SDE.

Stj+1 −Stj = a(Stj , tj )∆t + b(Stj , tj )(Wtj+1 −Wtj )

where t1 = t , tm = T , so the simulation will be pathwise of length m between
current valuation time t and maturity T .
Then

1 Take a sample of size M with θi ∼ p(θ |Yt ),
2 Generate m standard Gaussian random draws that will help create the path to

maturity,
3 For each θi , generate an entire path of S values, leading to the final one, S(i)

T
which will be drawn from the predictive density p(ST ,T |St , t).

Then, the value of the option under parameter estimation uncertainty, is
given by

u(St , t) = B(t ,T )EQ
t [ψ(ST )]

= B(t ,T )
∫

∞

0
ψ(ST )p(ST ,T |St , t)dST

≈ B(t ,T )
1
M

M

∑
i=1

ψ(S(i)
T )

where the last relationship reflects the Monte Carlo integration.
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Bayesian model averaging is a technique that accounts for lacking the
precise knowledge of which model is best.
Consider now that the market agent has a finite suite of models
{Mi}i=1,...,k at her disposal A priori the trader does not know which model
will perform best so, ceteris paribus, the only reasonable thing she could
do is to derive an option price that is averaging across the uncertainty
regarding model selection.

u(St , t |{Mi}i=1,...,k ) = B(t ,T )EQ
t [ψ(ST )|{Mi}i=1,...,k ]

= B(t ,T )
∫

∞

0
ψ(ST )

k

∑
i=1

p(ST ,T |St , t ,Mi )p(Mi |Yt )dST

= B(t ,T )
k

∑
i=1

∫
∞

0
ψ(ST )p(ST ,T |St , t ,Mi )dST p(Mi |Dt )

= B(t ,T )
k

∑
i=1

EQ
t [ψ(ST )|Mi ]p(Mi |Yt ) (13)
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where p(Mi |Yt ) is the posterior probability associated with model Mi , so
when this probability is high then the option price received from this
model receives a larger weight in the final valuation.
Bayes’ formula gives the recursive calculation of the model posterior
probabilities in the light of new data.

p(Mi |Yt ) =
p(Y[s,t ]|Mi ,Ss)p(Mi |Ys)

∑
k
i=1 p(Y[s,t ]|Mi ,Ss)p(Mi |Ys)

(14)

each model is given some informative or non-informative prior
probabilities and then the calculation of posterior model probabilities

θi ∼ p(θ |Ys), p(Y[s,t ]|{Mi}i=1,...,k ,Ss)≈ 1
n

k

∑
i=1

p(Y[s,t ]|θi ,Ss)
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The GBM model is described by the following equations in
continuous-time

dSt = µStdt + σBSStdZt (15)
= rStdt + σBSStdWt (16)

where Wt = Zt + λ t , where λ = µ−r
σBS

is the market price of risk, and r is
the constant riskfree rate. Evidently W is the Wiener process associated
with the risk-neutral pricing measure while Z is the Wiener process
associated with the physical probability measure.
the CEV model is given by

dSt = µStdt + σCEV Sγ

t dZt (17)
= rStdt + σCEV Sγ

t dWt (18)

and for this model one can prove that the elasticity of the instantaneous
return variance with respect to price is equal to 2(γ−1).
In order to avoid technical problems related to arbitrage it is usually
assumed that γ ∈ [0,1).
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Bayesian analysis and Markov Chain Monte Carlo (MCMC) are going to
be used, first to extract inference on the parameters of the two models
and secondly to calculate no-arbitrage European call and put prices for
options contingent on the FTSE100 index.
Following Bunnin et al. (2002) we use historical data covering 50 weekly
levels of the FTSE100 from 30 December 1997 to 9 December 1998.
The dividend yield is initially ignored and the data for the options is as
follows: the strike price is K = 5500, the initial index value is St0 = 5669.1,
the risk-free rate is r = 0.075 and time to maturity is T = 1 year.
However, as opposed to Bunnin et al. (2002) who assumed µ = 0, I have
allowed this parameter to be Gaussian distributed with a very large,
10000, variance and zero mean.
the prior distribution for the volatility parameter, is taken by Bunnin et al.
(2002) as σBS ∼ Uniform(0.1,0.3).
I have used an inverse-gamma distribution that is very flat and covers a
wide range. In other words, I will let the data decide on the most likely
values for the volatility parameter.
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WinBUGS 1.4, simulating two chains. The convergence is very rapid and
after a burn-in period of 50000 simulations I run another set of 50000
simulations from which I extract the summary inferential results in Table

BS Bayesian model .
The posterior mean and median are about 0.20, confirming the analysis
detailed in Bunnin et al. (2002).
The posterior mean and median for µ is 0.11 but the credibility interval
constructed from the 2.5% and the 97.5% quantiles includes the zero
value and therefore, the idea of inferring therefore that this value could
equal zero is not wrong.
Secondly the credibility interval for σBS is [0.1659,0.249].
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The uncertainty in the parameter estimation is captured and depicted
beautifully by the posterior densities in the graphs in BS Bayesian model .

the posterior mean of the call is 774.9,
the posterior median is 771.1,
and the credibility interval for the European call price is [708.5,863.6], which
covers the value provided by Bunnin et al. (2002).
for the European put, the posterior mean is 208.4,
the posterior median is 204.6
and the credibility interval is [142.0,297.1].

the market price of risk has the credibility interval [−1.833,2.196] and
therefore we cannot reject the hypothesis that this might be equal to zero.
Looking at its posterior density one can observe that zero is also the
most likely value.
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BS Bayesian Figures .
the posterior density of the market price of risk defined as λ = µ−r

σBS
.

the dividend yield equal to zero and the risk-free rate r = 0.075.
The possible values for µ and σBS will generate a sample of values for λ .
The MCMC output can be utilised to calculate the posterior densities of
the Greek parameters such as Delta.
the most likely value for the Delta parameter is 0.735 but values such as
0.7 or 0.77 are also possible.
Likewise, for the put the most likely Delta is -0.265 but values like -0.3 or
-0.22 are also feasible, albeit less likely.
the Delta for European call and put with the Black-Scholes model
assuming the estimate of volatility as σBS = 0.20 we get that
∆(call) = 0.7345 and ∆(put) =−0.26552.
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We now proceed with the parameter estimation for the CEV model
The prior distributions that I found to work well from all points of view
were a very flat uniform distribution for σCEV , take (0,100) as an example;
a uniform distribution covering (0,0.30) for the dividend yield q and a beta
distribution for the parameter γ that is constrained to be between 0 and 1
in order to avoid technical problems related to absorption at zero or
explosion if other values were allowed.
The same routine as described above for the Black-Scholes model is
followed to obtain a
a sample of 20000 values is used for posterior inference
One cannot reject the hypothesis that the drift parameter µ is zero.
The diffusion parameter σCEV has a posterior mean of 2 and posterior
median of 1.8. The CEV elasticity parameter γ is also significant and its
posterior mean is 0.29 while its posterior median is 0.2573.

BS Bayesian model
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The power of the MCMC approach is that we can visualise the entire
posterior distribution for each parameter. CEV Bayesian model

the most likely values γ = 0.2 and σCEV = 0.25. Remark that this is far
away from both posterior mean and posterior median.
In Figures Bayesian call CEV the surface of option prices, calls and puts,
respectively, that are obtained by combining a sample of 500 values for γ

and 500 values for σCEV from the stationary part of the MCMC
distribution. The dividend yield is taken as zero, for comparison with the
results in Bunnin et al. (2002).
For European calls, the maximum obtained value was 5583.7 and the
smallest was 566.51, while for the puts the maximum obtained value was
5017.2 and the minimum was zero.
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Our empirical analysis shows that the risk associated with parameter
uncertainty can be

substantial even for vanilla products such as European call and put options,
asymmetric for the buyer and the seller in the contract, even when the same
parametric model class is used by both.

I propose a new measure of model risk related to parameter uncertainty,
by analogy with the way value-at-risk was introduced for quantifying
market risk.

Definition

Given a model defined unambiguously by a vector of parameters ϑ , for any
contingent claim price function Π(H;ϑ) with payoff H, we define the parameter
uncertainty model risk (PUMR) measure corresponding to Π(H;ϑ), at the
100(1−α%) level of confidence, as the α% quantile in the direction of risk.

To focus the discussion, consider the European call option with posterior
densities of the fair price as represented in Fig. 17. In addition, suppose
that α% = 2.5%.
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For the seller of the derivative, the risk is represented by the right tail of
the posterior distribution since if trading for a contract is done outside this
area when the true price is actually in this area then the seller will incur a
loss.
In other words, the seller is exposed to feasible higher prices that he/she
is not taking into consideration when choosing a point estimate of the fair
price.
Hence the PUMR for the seller is the 100(1−α%) quantile, or the α%
right quantile.
Similarly, for the buyer of the derivative, the parameter uncertainty risk is
represented by the left tail of the posterior distribution. If the real fair
value of the contract is exactly equal to the α% quantile level, then any
trading done at a value higher than this benchmark will result in a loss.
the 97.5% quantile quantifies the PUMR for the seller while the 2.5%
quantile measures the PUMR for the buyer of the derivative.
Under the Black-Scholes model,

the PUMR for the call is 863.6 for the seller and 708.5 for the buyer,
the PUMR for the put is 297.1 for the seller and 142.0 for the buyer.
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Under the CEV model,
the PUMR for the call is 716.45 for the seller and 566.51 for the buyer,
whereas the PUMR for the put is 149.95 for the seller and 0.0000 for the
buyer.

One way to compare different models with respect to the parameter
estimation risk embedded in derivatives pricing is to consider as a
discrepancy measure the PUMR for the seller and the buyer.
Models with a smaller PUMR should be preferred because that is
equivalent with posterior distributions that are narrowly spread.
I shall call this discrepancy measure the PUMR distance.
For the Black-Scholes model this distance is equal to 155 roughly for both
put and call, and for the CEV model this distance is equal to 149.95.
The two models come quite close in this particular case.
Based on these results the CEV model shows a slight superiority despite
having one extra parameter.
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The inference presented reveals that model risk due to parameter
uncertainty can be quite large.
given the skewness of the posterior densities, the two parties in the
financial contract do not have the same magnitude of exposure to model
risk.
For the European call option in discussion the seller takes on more model
risk of the parameter estimation type.
This is correct since call option contracts have no downside and variation
comes from the upside and also because the process used for modeling
the underlying index cannot become non-positive.
This point is very important for investment banks and financial institutions
where both long and short positions may be simultaneously present on
the balance sheet due to multiple counterparties.
Model risk will not cancel out over the same contract for opposite
positions. This answers a question posed by Gibson et al. (1999) as to
whether model risk is symmetric. My answer is that it is not.
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MCMC Estimation of Credit Risk Measures I

The relationship between default frequencies and rating categories has
been explored in Blume et al. (1998) and Zhou (2001)) and it has been
put again under scrutiny in the aftermath of the subprime crisis, with
misleading ratings being blamed for inducing false investor’s expectations
of probabilities of default.
Carey and Hrycay (2001) discussed an empirical examination of the
major mapping methods used to estimate average default probabilities by
grade. They found evidence of potential bias, instability and gaming.
Stefanescu et al. (2009) developed a conceptual statistical calibration
methodology for credit transition matrices, including probabilities of
default, using a hierarchical Bayesian approach that takes into account
ordinal explanatory variables.
Bluhm et al. (2003) used Moody’s ratings data to show how corporate
default probabilities may be calibrated to external ratings. Their analysis
is based on a log-linear model linking the observed mean default
frequency (MD) over the period 1993 to 2000 to the credit ratings
category (Rating) modelled as an ordinal variable.
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MCMC Estimation of Credit Risk Measures II

Default probabilities are inferred for all credit rating categories.

use the observed mean default frequencies (MD) over the period 1993 to
2000.

Some categories had no observed defaults and therefore there is no data
available.

The model discussed in Bluhm et al. (2003) for observed mean default
frequencies (MD) of corporate companies rated by Moody’s over the
period 1993 to 2000, is given by the log-linear relationship

ln(MD) =−5 ln(30) + 0.5075Rating (19)
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Table: Corporate default probabilities implied by the log-linear regression model for
corporates rated by Moody’s over the period 1993 to 2000.

Rating MD s.d. Estimated default probability
Aaa NA NA 0.005%
Aa1 NA NA 0.008%
Aa2 NA NA 0.014%
Aa3 0.08% 0.33% 0.023%
A1 NA NA 0.038%
A2 NA NA 0.063%
A3 NA NA 0.105%
Baa1 0.06% 0.19% 0.174%
Baa2 0.06% 0.20% 0.289%
Baa3 0.46% 1.16% 0.480%
Ba1 0.69% 1.03% 0.797%
Ba2 0.63% 0.86% 1.324%
Ba3 2.39% 2.35% 2.200%
B1 3.79% 2.49% 3.654%
B2 7.96% 6.08% 6.070%
B3 12.89% 8.14% 10.083%
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From an econometric point of view the main problems that the analyst is
facing are:

Limited sample size; the number of observations used by the regression
models is in one-to-one correspondence to the rating categories.
The data is incomplete in the sense that the data sample used for
calibration may not contain any observed defaults for obligors with some
given ratings such as Aaa.
The response variable has support in the interval [0,1]. The model de-
scribed in the previous section does not satisfy this requirement and it
may lead to default probabilities greater than 100%.
Last but not least, the explanatory variable employed for calibration is
ordinal with 16 categories. This issue may prove quite thorny to deal with.
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I propose a corrected model for calibration obtained by transform- ing the
response variable MD on a different scale.

logit(MD)≡ ln

(
MD

1−MD

)
= α + β ×Rating (20)

This is a logistic regression model that can be fitted easily to data.
The goodness-of-fit of this model looks very good, with an adjusted R2 of
82.3%.
The regression coefficients are highly significant so that for prediction
purposes one may use their estimates α̂ =−15.1673 and β̂ = 0.5058,
respectively.
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Table: Corporate default probabilities implied by the logistic linear regression model for
corporates rated by Moody’s over the period 1993 to 2000.

Rating MD s.d. Estimated default probability
Aaa NA NA 0.004%
Aa1 NA NA 0.007%
Aa2 NA NA 0.012%
Aa3 0.08% 0.33% 0.020%
A1 NA NA 0.032%
A2 NA NA 0.054%
A3 NA NA 0.089%
Baa1 0.06% 0.19% 0.148%
Baa2 0.06% 0.20% 0.245%
Baa3 0.46% 1.16% 0.407%
Ba1 0.69% 1.03% 0.675%
Ba2 0.63% 0.86% 1.119%
Ba3 2.39% 2.35% 1.855%
B1 3.79% 2.49% 3.075%
B2 7.96% 6.08% 5.098%
B3 12.89% 8.14% 8.451%
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all default probabilities implied by the log-linear model are larger than the
corresponding ones produced with the logistic model.
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Figure: Comparison of mean default probabilities: observed versus log-linear and
logistic models for corporates rated by Moody’s over the period 1993 to 2000.
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Figure: Comparison of calibration results for default probabilities: log-linear and logistic
models versus observed. All credit ratings are used for corporates rated by Moody’s
over the period 1993 to 2000.
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Further Analysis I

What can an analyst do when data for calibration is sparse and he cannot
increase the number of observations as desired?

In addition the analyst may wish to consider some subjective information
that may prove to be important and this is very difficult, if not impossible,
within maximum likelihood or generalised least squares estimation and
testing frameworks.

An answer to both problems is to develop models under a Bayesian
framework.

consider the logistic regression model. Y denotes the mean default
frequency between 1983 and 2000 while X represents the credit ratings,
taking values from 1 to 16 in a one-to-one correspondence to the credit
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Further Analysis II

ratings Aaa to B3 as used by Moody’s. The Bayesian logistic model is
specified here hierarchically:

ln

(
Yi

1−Yi

)
|α,β ,τ ∼ N(µi ,τ), i = 1,2, . . . ,16.

µi = α + βXi

α ∼ N(0,0.001), β ∼ N(0,0.001)

τ ∼ Gamma(3,1).

σ =
√

1/τ

Expert opinion can be incorporated into this type of modelling by
imposing more concentrated priors. For example, a downturn in the
economy that may lead to a general increase in the defaults for all rating
categories is equivalent to an upward shift of the intercept and maybe
also of the slope of the logistic curve. These changes can be inserted
into the model by changing the priors for α and β to plausible ranges.
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Further Analysis III

The inference is extracted here based on a sample of 10000 iterations
after convergence criteria are passed.

mean s.d. MC error 2.5% median 97.5%
α -16.48 1.138 0.008015 -18.7 -16.49 -14.2
β 0.9419 0.117 8.29E-4 0.7065 0.9428 1.168
σ 2.143 0.3604 0.002773 1.576 2.097 2.968

the next Bayesian model investigated here is based on a log(−log)
transformation. This model is again specified hierarchically as

log(−log(Yi ))|α,β ,τ ∼ N(µi ,τ), i = 1,2, . . . ,16. (21)
µi = α + βXi (22)
α ∼ N(0,0.001), β ∼ N(0,0.001) (23)
τ ∼ lognormal(0,0.001) (24)

σ =
√

1/τ. (25)

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 52 / 98



Further Analysis IV

mean s.d. MC error 2.5% median 97.5%
α 3.067 0.156 8.03E-4 2.754 3.068 3.379
β -0.1323 0.017 7.69E-5 -0.164 -0.1323 -0.1001
σ 0.2897 0.059 3.47E-4 0.2013 0.2808 0.4312

the two models can be compared using the Deviance Information
Criterion (DIC) developed by Spiegelhalter et al. (2002) as a yardstick.
This measure takes into consideration the model complexity and is based
on the posterior of the deviance, that is −2×likelihood, plus the effective
number of parameters (pD), defined as the posterior mean of the
deviance D minus the deviance of the posterior means D̂. The model
with the smallest Deviance Information Criterion is estimated to be the
model that would best predict a replicate dataset of the same structure as

that currently observed.
Model D D̂ pD DIC
logistic 74.835 72.054 2.781 77.617

log(-log) 5.146 1.988 3.158 8.304

it seems that the log(−log) regression model provides a better fit.
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Further Analysis V
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Figure: Comparison of calibration results for default probabilities: Bayesian
log-log and Bayesian logistic models versus observed. All credit ratings used are
for corporates rated by Moody’s over the period 1993 to 2000.
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Hierarchical Bayesian Models for Credit Risk

The hierarchical Bayesian models presented below continue the line of
the non–Bayesian specifications from Kao and Wu (1990), Terza (1987)
and Hsiao (1983).
The ordered probit model has been used, among others, by Nickell et al.
(2000) to explore the dependence of rating transition probabilities on
business cycles and on other characteristics of the borrowers, and by
Cheung (1996) to explain rating levels based on indebtedness.
Gossl (2005) proposed an extension of Merton’s model for credit default
fitted in a Bayesian framework, being able to capture correlations
between default probabilities of obligors from different rating classes.
Bayesian models,while offering similar benefits by estimating the entire
joint posterior distribution of default probabilities, are different in that they
model explicitly the impact of rating on default probabilities.
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Consider a population of B borrowers indexed by j = 1, . . . ,B. Let Zj be a
binary variable taking the value 0 if borrower j defaulted, and 1 otherwise.
Let B(X )j ∈ Rd be a covariate vector for borrower j .
The covariate information is usually borrower specific (for example,
ratings), but it could also consist of general economic indicators.
the first component of each B(X ) will typically be one, denoting the
presence of an intercept term. We shall denote the probability of default
by p(B(X )) = Pr(Z = 0;B(X )).

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 56 / 98



Consider a population of B borrowers indexed by j = 1, . . . ,B. Let Zj be a
binary variable taking the value 0 if borrower j defaulted, and 1 otherwise.
Let B(X )j ∈ Rd be a covariate vector for borrower j .
The covariate information is usually borrower specific (for example,
ratings), but it could also consist of general economic indicators.
the first component of each B(X ) will typically be one, denoting the
presence of an intercept term. We shall denote the probability of default
by p(B(X )) = Pr(Z = 0;B(X )).

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 56 / 98



Consider a population of B borrowers indexed by j = 1, . . . ,B. Let Zj be a
binary variable taking the value 0 if borrower j defaulted, and 1 otherwise.
Let B(X )j ∈ Rd be a covariate vector for borrower j .
The covariate information is usually borrower specific (for example,
ratings), but it could also consist of general economic indicators.
the first component of each B(X ) will typically be one, denoting the
presence of an intercept term. We shall denote the probability of default
by p(B(X )) = Pr(Z = 0;B(X )).

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 56 / 98



A common approach is to assume the existence of an underlying (or
latent) continuous variable for the ordinal indicator — for example, this
gives rise to the probit model when the ordinal indicator is the dependent
variable.
In the case when the ordinal indicator is the explanatory variable, this is
often either replaced by a set of dummy variables, or used itself as a
regressor.
Kukuk (2002) shows that both approaches could lead to wrong answers
when assessing whether the corresponding continuous latent variable
has a significant influence on the dependent variable or not.
Hsiao and Mountain (1985) proposed a linear model with ordinal
covariates based on latent variables with known thresholds, such as is
the case, for example, with grouped income data.
Ronning and Kukuk (1996) relaxed this strong assumption and further
discussed a model where both dependent and explanatory variables are
ordinal, where the unknown thresholds are estimated jointly with the
structural parameters in a two–stage procedure.
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This approach relies on a set of distributional assumptions for the
variables, and estimates can be biased if these assumptions are not met.
Here latent variables with unknown thresholds are used for modelling the
ordinal covariate indicators in a hierarchical Bayesian framework.
Without loss of generality it is assumed that the covariate information is
solely given by the rating category.
Let n be the number of rating categories, and let Cj be the rating category
for borrower j , with j = 1, . . . ,B. The random variables Cj are ordinal and
observable for each borrower, so that the covariate vector for j is given by
B(X )j = (1,Cj ). Our goal is to model the probability of default in each
rating category i , defined by pi = Pr(Z = 0|C = i), for i = 1, . . . ,n.
The main assumption is that the category variable C is an indicator of the
event that some unobservable continuous variable, say R, lies between
certain thresholds. Specifically, let γ1,γ2, . . . ,γn+1 be a set of unknown
thresholds.

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 58 / 98



This approach relies on a set of distributional assumptions for the
variables, and estimates can be biased if these assumptions are not met.
Here latent variables with unknown thresholds are used for modelling the
ordinal covariate indicators in a hierarchical Bayesian framework.
Without loss of generality it is assumed that the covariate information is
solely given by the rating category.
Let n be the number of rating categories, and let Cj be the rating category
for borrower j , with j = 1, . . . ,B. The random variables Cj are ordinal and
observable for each borrower, so that the covariate vector for j is given by
B(X )j = (1,Cj ). Our goal is to model the probability of default in each
rating category i , defined by pi = Pr(Z = 0|C = i), for i = 1, . . . ,n.
The main assumption is that the category variable C is an indicator of the
event that some unobservable continuous variable, say R, lies between
certain thresholds. Specifically, let γ1,γ2, . . . ,γn+1 be a set of unknown
thresholds.

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 58 / 98



This approach relies on a set of distributional assumptions for the
variables, and estimates can be biased if these assumptions are not met.
Here latent variables with unknown thresholds are used for modelling the
ordinal covariate indicators in a hierarchical Bayesian framework.
Without loss of generality it is assumed that the covariate information is
solely given by the rating category.
Let n be the number of rating categories, and let Cj be the rating category
for borrower j , with j = 1, . . . ,B. The random variables Cj are ordinal and
observable for each borrower, so that the covariate vector for j is given by
B(X )j = (1,Cj ). Our goal is to model the probability of default in each
rating category i , defined by pi = Pr(Z = 0|C = i), for i = 1, . . . ,n.
The main assumption is that the category variable C is an indicator of the
event that some unobservable continuous variable, say R, lies between
certain thresholds. Specifically, let γ1,γ2, . . . ,γn+1 be a set of unknown
thresholds.

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 58 / 98



This approach relies on a set of distributional assumptions for the
variables, and estimates can be biased if these assumptions are not met.
Here latent variables with unknown thresholds are used for modelling the
ordinal covariate indicators in a hierarchical Bayesian framework.
Without loss of generality it is assumed that the covariate information is
solely given by the rating category.
Let n be the number of rating categories, and let Cj be the rating category
for borrower j , with j = 1, . . . ,B. The random variables Cj are ordinal and
observable for each borrower, so that the covariate vector for j is given by
B(X )j = (1,Cj ). Our goal is to model the probability of default in each
rating category i , defined by pi = Pr(Z = 0|C = i), for i = 1, . . . ,n.
The main assumption is that the category variable C is an indicator of the
event that some unobservable continuous variable, say R, lies between
certain thresholds. Specifically, let γ1,γ2, . . . ,γn+1 be a set of unknown
thresholds.

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 58 / 98



This approach relies on a set of distributional assumptions for the
variables, and estimates can be biased if these assumptions are not met.
Here latent variables with unknown thresholds are used for modelling the
ordinal covariate indicators in a hierarchical Bayesian framework.
Without loss of generality it is assumed that the covariate information is
solely given by the rating category.
Let n be the number of rating categories, and let Cj be the rating category
for borrower j , with j = 1, . . . ,B. The random variables Cj are ordinal and
observable for each borrower, so that the covariate vector for j is given by
B(X )j = (1,Cj ). Our goal is to model the probability of default in each
rating category i , defined by pi = Pr(Z = 0|C = i), for i = 1, . . . ,n.
The main assumption is that the category variable C is an indicator of the
event that some unobservable continuous variable, say R, lies between
certain thresholds. Specifically, let γ1,γ2, . . . ,γn+1 be a set of unknown
thresholds.

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 58 / 98



A corporate bond issue belongs to a certain risk category, say C = i , if
the latent variable R falls in the interval (γi ,γi+1).
It is expected that the issuers in a given risk category i will exhibit roughly
the same expected default risk. The widths of the risk category intervals
need not be equal, and in practice the interval for Aaa bonds may have a
different length than the interval for Bb bonds.
For i = 1, . . . ,n, let mi be the number of issuers and Yi the number of
defaults in rating category i . We shall consider the following model:

Yi |mi ,pi ∼ Binomial(mi ,pi ), i = 1, . . . ,n (26)
logit(pi ) = β0 + β1Ri + bi

Ri |γi ,γi+1 ∼ U(γi ,γi+1)

bi |σ2 ∼ N(0,σ2)

γi+1 = γi + zi
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different length than the interval for Bb bonds.
For i = 1, . . . ,n, let mi be the number of issuers and Yi the number of
defaults in rating category i . We shall consider the following model:

Yi |mi ,pi ∼ Binomial(mi ,pi ), i = 1, . . . ,n (26)
logit(pi ) = β0 + β1Ri + bi

Ri |γi ,γi+1 ∼ U(γi ,γi+1)

bi |σ2 ∼ N(0,σ2)

γi+1 = γi + zi
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The random variables Ri have a uniform distribution on (γi ,γi+1) and
represent the latent effect of category ratings.
The uniform is a special case of the generalized beta distribution;
The random effects bi are assumed to have a Gaussian distribution with
mean zero and standard deviation σ .
The increments zi between the unknown thresholds must be positive, and
in practice they will be given a gamma prior distribution as described in
the following section.
for the probit link we replace logit(pi ) = β0 + β1Ri + bi in (26) with

pi = Φ(β0 + β1Ri + bi ), (27)

for the log(-log) link,

log(− log(pi )) = β0 + β1Ri + bi . (28)

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 60 / 98



The random variables Ri have a uniform distribution on (γi ,γi+1) and
represent the latent effect of category ratings.
The uniform is a special case of the generalized beta distribution;
The random effects bi are assumed to have a Gaussian distribution with
mean zero and standard deviation σ .
The increments zi between the unknown thresholds must be positive, and
in practice they will be given a gamma prior distribution as described in
the following section.
for the probit link we replace logit(pi ) = β0 + β1Ri + bi in (26) with

pi = Φ(β0 + β1Ri + bi ), (27)

for the log(-log) link,

log(− log(pi )) = β0 + β1Ri + bi . (28)

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 60 / 98



The random variables Ri have a uniform distribution on (γi ,γi+1) and
represent the latent effect of category ratings.
The uniform is a special case of the generalized beta distribution;
The random effects bi are assumed to have a Gaussian distribution with
mean zero and standard deviation σ .
The increments zi between the unknown thresholds must be positive, and
in practice they will be given a gamma prior distribution as described in
the following section.
for the probit link we replace logit(pi ) = β0 + β1Ri + bi in (26) with

pi = Φ(β0 + β1Ri + bi ), (27)

for the log(-log) link,

log(− log(pi )) = β0 + β1Ri + bi . (28)

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 60 / 98



The random variables Ri have a uniform distribution on (γi ,γi+1) and
represent the latent effect of category ratings.
The uniform is a special case of the generalized beta distribution;
The random effects bi are assumed to have a Gaussian distribution with
mean zero and standard deviation σ .
The increments zi between the unknown thresholds must be positive, and
in practice they will be given a gamma prior distribution as described in
the following section.
for the probit link we replace logit(pi ) = β0 + β1Ri + bi in (26) with

pi = Φ(β0 + β1Ri + bi ), (27)

for the log(-log) link,

log(− log(pi )) = β0 + β1Ri + bi . (28)

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 60 / 98



The random variables Ri have a uniform distribution on (γi ,γi+1) and
represent the latent effect of category ratings.
The uniform is a special case of the generalized beta distribution;
The random effects bi are assumed to have a Gaussian distribution with
mean zero and standard deviation σ .
The increments zi between the unknown thresholds must be positive, and
in practice they will be given a gamma prior distribution as described in
the following section.
for the probit link we replace logit(pi ) = β0 + β1Ri + bi in (26) with

pi = Φ(β0 + β1Ri + bi ), (27)

for the log(-log) link,

log(− log(pi )) = β0 + β1Ri + bi . (28)

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 60 / 98



The random variables Ri have a uniform distribution on (γi ,γi+1) and
represent the latent effect of category ratings.
The uniform is a special case of the generalized beta distribution;
The random effects bi are assumed to have a Gaussian distribution with
mean zero and standard deviation σ .
The increments zi between the unknown thresholds must be positive, and
in practice they will be given a gamma prior distribution as described in
the following section.
for the probit link we replace logit(pi ) = β0 + β1Ri + bi in (26) with

pi = Φ(β0 + β1Ri + bi ), (27)

for the log(-log) link,

log(− log(pi )) = β0 + β1Ri + bi . (28)

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 60 / 98



The hierarchical model may be estimated from sample data in a MCMC
framework.
Let us denote by θ the vector of parameters and hyperparameters of the
model, given by θ = (γ1,z1, . . . ,zn,β0,β1,σ

2).

p(θ |Y ) ∝ p(Y |θ) ·p(θ) (29)

The first model with a logistic link function is described by the following
general system of equations. For all i = 1,2, . . . ,n

Yi ∼ Binomial(mi ,pi ) (30)
logit(pi ) = β0 + β1Ri + bi

bi ∼ N(0,σ2), σ
2 = 1/τ

Ri = γi + ziUi , γi+1 = γi + zi

zi ∼ Gamma(δ ,δ ), Ui ∼ U(0,1)

γ1 ∼ Gamma(α,α), τ ∼ Gamma(u,v)

β0 ∼ N(0,τ0), β1 ∼ N(0,τ1)

For all parameters, 95% credible intervals can be computed from the
samples of observations generated from the posterior densities, and
these can be then used in testing specific hypotheses about the
parameters.
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Hierarchical model for aggregated data

The first analysis of the Standard& Poor’s data considers the aggregate
number of defaults over the horizon 1981–2004.
The credit risk industry is divided on the issue whether ratings are
cross–sectionally independent. While this can be a matter for debate,
here the view of Credit Suisse Financial Products (1997), Wilson (1997)
and Nickell et al. (2000) is taken that independence can be assumed, at
least in the first instance.
Using standard Bayesian applied statistical modelling I utilise diffuse but
proper priors for all parameters. Hence, N(0,103) priors are taken for the
regression parameters β0 and β1. I also specified a gamma prior with
large variance Gamma(1,0.1) for zi , i = 1, . . . ,7, and a diffuse inverse
gamma prior Inv −Gamma(1,0.1) for the random effects variance σ2.
For each model two parallel chains were started with different sets of
initial values, and the Gibbs sampler was run for 50,000 iterations with
the first 20,000 iterations discarded as a burn–in period. Gelman and
Rubin’s diagnostic ( Gelman et al. (1995) ) indicated satisfactory
convergence of the chains.
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Figure: Posterior kernel density estimates for investment grade default probabilities
using the logistic link model and the S&P data for the aggregate number of defaults
over the horizon 1981–2004.
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Figure: Posterior kernel density estimates for non-investment grade default
probabilities using the logistic link model and the S&P data for the aggregate number
of defaults over the horizon 1981–2004.
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Table: Comparison of different models after Bayesian fitting

Mean standard Median Credibility intervals
deviation (2.5%−−97.5%)

Logit link
(DIC = 42.607) β0 -11.930 0.640 -11.930 (-13.060, -10.770)

β1 1.630 0.128 1.617 (1.391, 1.877)
σ2 0.389 0.195 0.3395 (0.164, 0.899)

Probit link
(DIC = 42.974) β0 -5.031 0.375 -5.103 (-5.622, -4.261)

β1 0.654 0.051 0.647 (0.573, 0.759)
σ2 0.275 0.107 0.251 (0.140, 0.544)

Log–log link
(DIC = 39.913) β0 -11.560 0.720 -11.61 (-13.140, -10.130)

β1 2.118 0.199 2.079 (1.809, 2.499)
σ2 0.373 0.177 0.330 (0.162, 0.819)
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Default Mean Standard Median Credibility intervals
prob deviation (2.5%−−97.5%)

Logit link p1 5.453e-5 5.419e-5 3.974e-5 (4.22e-6, 1.85e-4)
p2 1.295e-4 8.628e-5 1.091e-4 (2.42e-5, 3.42e-4)
p3 4.295e-4 1.452e-4 4.113e-4 (1.93e-4, 7.46e-4)
p4 0.002888 4.327e-4 0.002868 (0.0021, 0.0038)
p5 0.01197 0.001034 0.01194 (0.0100, 0.0140)
p6 0.05708 0.002281 0.05704 (0.0528, 0.0616)
p7 0.2879 0.01258 0.2876 (0.2637, 0.3122)

Probit link p1 2.118e-5 4.185e-5 6.174e-6 (5.77e-8, 1.34e-4)
p2 1.135e-4 9.24e-5 9.023e-5 (9.76e-6, 3.45e-4)
p3 4.212e-4 1.428e-4 4.029e-4 (1.92e-4, 7.48e-4)
p4 0.002932 4.374e-4 0.002912 (0.0021, 0.0038)
p5 0.01202 0.001055 0.01196 (0.0100, 0.0142)
p6 0.05706 0.002284 0.05702 (0.0526, 0.0617)
p7 0.2876 0.01287 0.2874 (0.2625, 0.313)

Log–log link p1 4.161e-5 3.393e-5 3.225e-5 (6.46e-6, 1.31e-4)
p2 1.226e-4 7.706e-5 1.041e-4 (2.73e-5, 3.22e-4)
p3 4.67e-4 1.535e-4 4.508e-4 (2.156e-4, 8.13e-4)
p4 0.002871 4.253e-4 0.002854 (0.0021, 0.0037)
p5 0.01197 0.001038 0.01195 (0.0099, 0.0141)
p6 0.05708 0.002223 0.05705 (0.0528, 0.0615)
p7 0.2878 0.01263 0.2877 (0.2634, 0.3126)
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Figure: Posterior kernel density estimate for the ratio between the cumulative default
probability in the speculative grade categories and the cumulative default probability in
the investment grade categories. Aggregated 1981–2004 data, logistic model.

@Radu Tunaru,2015 Model Risk in Financial Markets Nov 2018 67 / 98



Hierarchical time-series model I

Since the yearly frequency of defaults in each rating category are
available in the S&P ratings data, it is relevant to attempt an analysis that
can take into account any serial correlation over consecutive years.
Let T be the length of the time horizon (here T = 24), and let t = 1, ...,T
be the yearly observation times. I extend the notation to let Yit , mit and pit
denote respectively the number of defaults, number of issuers, and
probability of default in rating category i at time t .

Yit |mit ,pit ∼ Binomial(mit ,pit ), i = 1, . . . ,n, t = 1, . . . ,T
logit(pit ) = β0 + β1Ri + bit

bit = abi(t−1) + εit (31)

Ri |γi ,γi+1 ∼ U(γi ,γi+1)

γi+1 = γi + zi

εit |σ2 ∼ N(0,σ2)
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Hierarchical time-series model II

This model uses the parameter a ∈ R to account for a possible
autoregressive correlation structure of the random terms bit .

The rating variables Ri do not depend on time and, as previously, have a
uniform distribution on (γi ,γi+1).

The model was fit to the yearly data using non–informative prior
distributions N(0,103) for β0, β1, and a, and inverse Gamma(0.1,0.1) for
σ .
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Table: Bayesian estimates for S&P yearly rating data on all corporates between
1981–2004; parameters of the time series model.

Parameter Mean SD Median 95% Credibility Interval

β0 -13.020 0.781 -13.000 (-14.42, -11.21)

β1 1.834 0.120 1.829 (1.619, 2.085)

a 0.159 0.147 0.160 (-0.111, 0.452)

σ2 0.697 0.077 0.694 (0.557, 0.857)
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Hierarchical model for disaggregated data

Figure: Observed values and posterior means with credible intervals for investment
grade default probabilities, Standard & Poor’s yearly rating data on all corporates
between 1981–2004.
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Figure: Observed values and posterior means with credible intervals for
non-investment grade default probabilities, Standard & Poor’s yearly rating data on all
corporates between 1981–2004.
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Table: Bayesian MCMC posterior estimates of correlations of probabilities of default,
based on the logistic link model, Standard& Poor’s yearly rating data on all corporates
between 1981–2004.

p1 p2 p3 p4 p5 p6 p7

p1 1.000 0.968 0.939 0.584 0.673 0.316 0.152

p2 – 1.000 0.942 0.576 0.669 0.398 0.241

p3 – – 1.000 0.679 0.779 0.488 0.363

p4 – – – 1.000 0.766 0.579 0.583

p5 – – – – 1.000 0.598 0.482

p6 – – – – – 1.000 0.647

p7 – – – – – – 1.000
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Further Credit Modelling with MCMC Callibration

the Bayesian Credit Portfolio Model developed by Gossl (2005).
Let Xi be the generic one-year asset return. For a portfolio of N credit
risky instruments

Xi =
√

ρY +
√

1−ρZi , i = 1, . . . ,N

ρ ∈ [0,1], Y ∼ N(0,1), Zi
i.i.d.∼ N(0,1)

ρ accounts for the intra-portfolio dependencies within the portfolio.

P(Xi < ki ) = pi =⇒ ki = Φ−1(pi )

P(Xi < ki |Y = y) = pi |y =⇒ pi |y = Φ

(
Φ−1(pi )−

√
ρ×y√

1−ρ

)
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For K rating classes and T years of data define
Lt = (Lt ,1, . . . ,Lt ,K ) is the vector of defaults at the end of year t
nt = (nt ,1, . . . ,nt ,K ) is the vector of rated issuers at the beginning of year t
p = (p1, . . . ,pK ) is the vector of the probability of defaults from each rating
category

p(Lt = lt |nt ,p,ρ,yt ) =
K

∏
j=1

Binomial(nt ,j ,pj |yt , lt ,j ) (32)

p(p,ρ,y|n, l) ∝

T

∏
t=1

p(Lt = lt |nt ,p|y,ρ,yt )p(p)p(ρ)p(y)

pj
i.i.d.∼ U(0,1), ρ ∼ U(0,1), yt

i.i.d.∼ N(0,1) (33)
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Another model is a Bayesian Panel Count Data model

Lt ,j |n,pt,j ∼ Binomial(nt ,j ,pt ,j ) (34)

pt ,j = Φ

(
Φ−1(pj )−

√
ρ×yt√

1−ρ

)
(35)

pj = Φ(α + β × j), yt ∼ N(0,1) (36)
ρ ∼ U(0,1), α ∼ N(0,0.0001), β ∼ N(0,0.0001) (37)
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Table: Bayesian MCMC posterior inference for the Bayesian Panel Count Data model
using S&P yearly rating data on all corporates between 1981–2004.

node mean s.d. 2.50% median 97.50%
α -5.727 0.1383 -5.996 -5.73 -5.451
β 0.6989 0.02067 0.6581 0.6989 0.7395
p[1] 2.99E-07 2.00E-07 7.18E-08 2.44E-07 8.40E-07
p[2] 8.30E-06 4.05E-06 3.00E-06 7.37E-06 1.86E-05
p[3] 1.49E-04 5.17E-05 7.38E-05 1.40E-04 2.74E-04
p[4] 0.0017 4.17E-04 0.001072 0.0017 0.0027
p[5] 0.0129 0.002154 0.009276 0.0127 0.0178
p[6] 0.0629 0.00745 0.04949 0.0623 0.0792
p[7] 0.2024 0.01778 0.1687 0.2018 0.2393
ρ 0.07335 0.02403 0.03841 0.06918 0.1328
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The evolution of the yearly factor yt between 1981 and 2004, negative
values of the yearly factor are associated with an overall increase of
credit risk whereas positive values of the yearly factor correspond to a
view less risky credit environment.
as of 2004 the increasing positive local trend between 2002 and 2004
may increase for few more years but history shows that there will be a
mean reversion not far away.

-3
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2.50% post mean 97.50%

Figure: The posterior mean and credible interval for the yearly factor yt of the Bayesian
Panel Count Data model and Standard&Poor’s data between 1981 and 2004.
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the posterior correlation across the estimated probabilities of default.
there is strong correlation between the adjacent parameters as indicated
by the dark region around the main diagonal.
There is also stronger correlation between superior ratings, that is
between probabilities of default p1,p2,p3.
There is also very weak correlation of estimates of probabilities of default
across the second diagonal.

Figure: Correlation matrix of probabilities of default p1,p2, . . . ,p7 corresponding to the
Standard&Poor’s seven rating categories: AAA, AA, A, BBB, BB, B, and CCC/C. The
data used is on all corporates between 1981–2004.
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Estimating the Transition Matrix

Estimating the rating transition matrix is important in credit markets and it is
notoriously difficult, see Nickell et al. (2000), Berd (2005) and Engelman and
Ermakov (2011). Denoting by

Lt ,i = (Lt ,i ,1, . . . ,Lt ,i ,K ) the vector of the number of assets that moved over
year t from rating i , and
pt ,i = (pt ,i ,1, . . . ,pt ,i ,K ) the vector of the probability of defaults from each
rating category:

p(Lt ,i = lt ,i |nt ,i ,pt ,i ) = Multi(nt ,i ,pt ,i ) (38)

pt ,i ,j =
αt ,i ,j

∑
K
j=1 αt ,i ,j

, αt ,i ,j = eat ,i ,j (39)

at ,i ,j = bi ,j
δi ,j

(1 + |i− j |)
, at ,i ,i = 0 (40)

bi ,j ∼ N(0,0.001) (41)
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Table: Posterior means of parameters b. Their value on the main diagonal is not
relevant because of the identifiability constraint.

bi ,j AAA AA A BBB BB B CCC D
AAA -4.952 -15.82 -28.23 -37.35 -62.25 -68.68 -74.78
AA -9.979 -4.821 -15.06 -29.52 -33.69 -50.97 -63.77
A -22.69 -7.494 -5.523 -15.97 -25.29 -39.82 -45.95
BBB -34 -18.04 -6.171 -5.905 -14.08 -24.47 -28.34
BB -38.4 -27.83 -16.35 -5.332 -4.664 -13.17 -16.6
B -66.94 -35.29 -23.74 -16.72 -5.28 -5.694 -7.646
CCC -45.65 -54.2 -25.56 -19.55 -10.8 -3.145 -0.9696
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Table: Posterior medians of transition probabilities using data from S&P between
1981-2004.

pi ,j AAA AA A BBB BB B CCC
AAA 0.9160 0.0771 0.0047 8.3E-04 5.6E-04 4.4E-05 6.9E-05
AA 0.0062 0.9045 0.0812 0.0059 5.8E-04 0.0011 1.9E-04
A 4.8E-04 0.0216 0.9133 0.0577 0.0045 0.0016 3.2E-04
BBB 1.9E-04 0.0022 0.0409 0.8964 0.0468 0.0082 0.0019
BB 4.0E-04 8.1E-04 0.0036 0.0579 0.8327 0.0809 0.0103
B 1.7E-05 7.2E-04 0.0022 0.0031 0.0587 0.8229 0.0477
CCC 9.1E-04 9.8E-05 0.0034 0.0042 0.0148 0.1111 0.5348
Default 1.0E-04 1.1E-04 4.4E-04 0.0031 0.0131 0.0644 0.3292
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MLE estimation
Bangia et al. (2002) and Hu et al. (2002) describe the derivation of the MLE
for the credit transition matrix leading to the following formulae:

p̂i ,j =
T

∑
t=1

wi (t)
lt ,i ,j
ni ,t

=
∑

T
t=1 lt ,i ,j

∑
T
t=1 ni ,t

(42)

wi (t) =
nt ,i

∑
T
t=1 nt ,i

6= 1
T
, p̂i ,j =

1
T

T

∑
t=1

lt ,i ,j
nt ,i

(43)

Table: MLE of transition probabilities on all corporates between 1981-2004.

pi ,j AAA AA A BBB BB B CCC
AAA 0.91646 0.07721 0.00484 0.00091 0.00060 0 0
AA 0.00621 0.90460 0.08117 0.00600 0.00060 0.00110 0.0002
A 0.00049 0.02156 0.91330 0.05775 0.00448 0.00167 0.00034
BBB 0.00021 0.00223 0.04101 0.89638 0.04682 0.00824 0.00200
BB 0.00041 0.00083 0.00363 0.05794 0.83268 0.08096 0.01036
B 0 0.00074 0.00223 0.00317 0.05876 0.82296 0.04775
CCC 0.00088 0 0.00353 0.00441 0.01501 0.11132 0.53534
Default 0 0.00010 0.00044 0.00311 0.01316 0.06437 0.32950
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MCMC Analysis of Bayesian option pricing under the Black-Scholes GBM
model. Posterior inference statistics for mean, standard deviation, median and
2.5% and 95% quantiles from a sample of 50000 values.

Variable mean s.d. MC error 2.5% median 97.5%
µ 0.1108 0.2094 6.648E-4 -0.3001 0.1107 0.5237
σBS 0.2023 0.02119 7.036E-5 0.1659 0.2006 0.249
call 774.9 39.63 0.1315 708.5 771.1 863.6
put 208.4 39.63 0.1315 142.0 204.6 297.1
λ 0.1783 1.029 0.003299 -1.833 0.1788 2.196
Return From
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Figure: Posterior densities of the Black-Scholes parameters and the European call and
put option price for the FTSE100 index. The strike price is K = 5500, initial index value
is St0 = 5669.1, risk-free rate is r = 0.075 and time to maturity is T = 1 year.
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Posterior estimates of the parameters of the CEV model from the FTSE100
data. Inference is obtained with MCMC from a sample of 20000 values.

Variable mean s.d. MC error 2.5% median 97.5%
γ 0.2904 0.1801 0.002925 0.03987 0.2573 0.7229
µ 0.2441 0.2216 0.001651 -0.1903 0.2431 0.6824
q 0.1503 0.08642 6.688E-4 0.007853 0.1502 0.2919
σCEV 2.0 1.241 0.01737 0.2403 1.801 4.71
Return From
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Figure: The posterior densities for the parameters of the CEV model calculated using
data on FTSE100 index with MCMC from a sample of 20000 values. The strike price is
K = 5500, initial index value is St0 = 5669.1, risk-free rate is r = 0.075 and time to
maturity is T = 1 year.
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Figure: Posterior surface for the European call price on the FTSE100 generated by the
parameter uncertainty on γ and σCEV . The strike price is K = 5500, initial index value
is St0 = 5669.1, risk-free rate is r = 0.075 and time to maturity is T = 1 year.

Show put CEV
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Figure: Posterior surface for the European put price on the FTSE100 generated by the
parameter uncertainty on γ and σCEV . The strike price is K = 5500, initial index value
is St0 = 5669.1, risk-free rate is r = 0.075 and time to maturity is T = 1 year.
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Approximation formulae for implied volatility
Brenner and Subrahmanyam (1988) derived a formula based on the assumption that

S0 = Ke−rT . σ̂ ≈
√

2π

T
Cmkt

S0

Bharadia and Salkin (1996) used a general strike price,

σ̂ ≈
√

2πT
Cmkt − (S0−Ke−rT )/2

(S0 + Ke−rT )/2
(44)

Corrado and Miller (1996) derived the following approximation

σ̂ ≈
√

2π

T
1

S0 + Ke−rT

[
Cmkt − S0−Ke−rT

2

]
(45)

+

√
2π

T
1

S0 + Ke−rT

√
(Cmkt −S0 + Ke−rT )2

4
− (S0−Ke−rT )2

π

Li (2005) provided an approximation formula that is valid regardless of the market option
moneyness. If η = Ke−rT

S0
, α =

√
2π

1+η

[
2Cmkt

S0
+ η−1

]

σ̂ ≈


2
√

2√
T

z− 1√
T

√
8z2− 6α

z
√

2
, if S0 |Ke−rT−S0 |

(Cmkt )2 ≤ 1.4

α+

√
α2− 4(η−1)2

1+η

2
√

T
, otherwise.

(46)

where z = cos
[

1
3 cos−1

(
3α√
32

)]
.
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, if S0 |Ke−rT−S0 |

(Cmkt )2 ≤ 1.4

α+

√
α2− 4(η−1)2

1+η

2
√

T
, otherwise.

(46)

where z = cos
[

1
3 cos−1

(
3α√
32

)]
.
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Figure: Calculating the implied volatility for a stock with current value $34.14 from the
market price $4.7 of a European call option with maturity T = 0.45 years and a strike
price of K = $30.00, assuming that the risk-free rate is 2.75%.
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Figure: Calculating the implied volatility for a stock with current value $34.14 from the
market price $4.7 of a European call option with maturity T = 0.45 years and a strike
price of K = $30.00, assuming that the risk-free rate is 5%.
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