

ISMA CENTRE	Hedge	Fund Re	turns	
		Skewness	Excess Kurtosis	
	RISK ARBITRAGE			_
	ZURICH	-3.21	19.77	
	HENNESSEE	-3.02	18.46	
	TUNA	-2.25	11.28	
	ALTVEST	-2.74	14.67	
	HFR	-3.78	22.53	
	DISTRESSED			
	ZURICH	-2.59	14.05	
	HENNESSEE	-2.12	9.53	
	TUNA	-2.02	12.26	
	ALTVEST	-1.23	4.66	
	VAN	-0.09	3.52	
	HFR	-2.18	10.57	
	EMERGING MARKETS			_
	ZURICH	-2.41	12.92	
	HENNESSEE	-0.91	4.70	
	HFR	-0.81	3.86	
	CSFB/TREMONT	-0.84	3.09	
	ALTVEST	-0.70	1.87	
	VAN	-0.06	1.96	
	Source: Broo	oks and Kat (20	01)	4

NA Re	ſ				amet, σ_1^2 ,		
A mixture o mean is a f most types	our par	amete	r dens	ity wh			
	p	μ	σ_1^2	σ_2^2	τ _n	κ _{eη}	
Scenario A	<i>p</i> 0.8	μ 0.5	σ ₁ ² 0.02	σ ₂ ² 0.1	τ _η 1.4891	κ _{eη} 2.5956	$\tau_{\eta} > 0; \kappa_{e_{\eta}} > 0$
Scenario A Scenario B			0.02	0.1	1.4891	2.5956	en seen s
	0.8	0.5	0.02 0.02	0.1 0.1	1.4891 0.1649	2.5956 -0.5234	$\tau_{\eta} > 0; \kappa_{e \eta} < 0$
Scenario B	0.8 0.2	0.5 0.5	0.02 0.02 0.1	0.1 0.1 0.02	1.4891 0.1649 -1.4891	2.5956 -0.5234 2.5956	$ au_{\eta} > 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} > 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0; \ \kappa_{e \eta} < 0 \\ au_{\eta} < 0$

ISMA CENTRE	W	/hich E	stimate	?	
Date	3m	6m	1yr	ewma(0.9)	ewma(0.95)
31-Dec-01	19.02%	22.20%	21.35%	12.41%	15.85%
const • There paran	e are all esti ant volatility e is no 'optin neter values e use is just	in the GBI nal' way to – which o	M price pro choose the f these est	ocess e best imates you	I
					34

		E	xample	
🖾 Microsof	ft Excel - normal mixture Va®	.xls [Read-Only]		_ 8 ×
	it <u>V</u> iew Insert F <u>o</u> rmat <u>T</u> ools <u>D</u> ata			_ & ×
	🔒 🖨 🖪 🖤 👗 🖻 🛍 🛇		∑ 🔊 ĝi ĝi ∭i 40% → 12 .	
Arial			※, 認識 傳售 田・◇・▲・	
P	▼ 10 ▼ B Z U		20 ; .0 +0 ₽ ₽ □ • ⁰ • ▲ • .	
A	B C	DE	F G H I J	K L 🗖
5 6 7 8 9 10	Holding Period (days) P Significance	10 <u>0.99</u> 1%	recalculate	
11 12 13			see input data	
14	Results for:			1
15	Holding Period (days) P	10 0.99	change input data	
17	Significance	1%		
18	Vol 1 (Annual)	20.00%		
20	Vol 2 (Annual)	80.00%		
21	Mixture Vol (Annual)	21.45%		
22 23	Normal VaR Normal Mixture VaR	0.4989 \$ 0.4878 \$		
24		0.4010 \$		
25				-
	Help Normal_Mixture_VaR			
Drawn - 🕞	🕝 🛛 AutoShapes 🗸 🔌 🗔 🤇	기 🛛 🚚 🔝 🛛 🙅	· <u> </u>	
Ready				

ISMA CENTRE	Ex	ample	è			
	Excel - normal mixture option pricing.xls					- 8 ×
Eile <u>E</u> dit	<u>View Insert Format Tools Data Window MBRM</u>	<u>H</u> elp				_ & ×
] 🗅 😅 🖬 🔒	🖹 🖨 🖪 🖤 👗 🖻 🛍 ダ 🗠 - ce - (11	, 100% 👻 🕄 🗸		
Arial	▼ 10 ▼ B Z U = = = m	🗣 % , 👯 👯	信報	- 🖂 • 🕭 • 🔼		
G1	× =					
	B C D E	F	G	Н		J
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	help 100 Beginning Strike 80 Step between Strikes 2 Maturity (days) 25 Interest Rate 4.00% P for normal mixture 0.6 Vol 1 29.15% Expected Vol 17.66%	run	K 80 82 84 86 88 90 92 94 96 98 100 102 104 106 108 112	Call Price (Expected Vol) 20.22 16.23 14.24 12.24 10.26 8.31 6.42 4.68 3.318 1.98 0.11 0.58 0.27 0.27 0.11 0.04	Call Price (Mixture Vol) 20.22 18.23 16.24 14.26 12.29 10.35 8.44 6.69 4.82 3.23 1.98 1.16 0.70 0.44 0.28 0.17 0.11	0.0095 0.0227 0.0478 0.0878 0.1357 0.1651 0.1384 0.0576 0.0008 0.0348
	p Normal_Mixture / Difference_Chart /		114	0.00	an n	0.0581
Draw - 🕞 🔇		≫ - 🟒 - 📐 - ≡	= =	: 🗖 🖉 .		
Ready			Sum=2	2099.618837		

Comparison with BS Prices						
к	t	Call Price (BS)	Call Price (Mixture)	Difference		
90.00	0.08	10.055	10.107	-0.052		
92.00	0.08	8.148	8.215	-0.067		
94.00	0.08	6.347	6.412	-0.065		
96.00	0.08	4.714	4.757	-0.043		
98.00	0.08	3.314	3.328	-0.013		
100.00	0.08	2.191	2,191	0.000		
102.00	0.08	1.355	1.368	-0.013		
104.00	0.08	0.781	0.823	-0.042		
106.00	0.08	0.419	0.485	-0.066		
108.00	0.08	0.209	0.283	-0.074		
110.00	0.08	0.097	0.163	-0.066		

