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1. Testing Non-normal Returns

• Simple statistics: 
Skewness τ = Ε ((X − µ)/σ)3

Excess Kurtosis κ = Ε ((X − µ)/σ)4 − 3
where µ and σ are the mean and standard deviation of   
the returns X

Approximate standard errors: √(6/n) and √(24/n)

• QQ plots: QQ Plot of 1-hr Returns on DEM-USD
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Asymptotic tests:
- e.g. Jarque-Bera
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Hedge Fund Returns
 Skewness Excess 

Kurtosis 
RISK ARBITRAGE   
ZURICH -3.21 19.77 
HENNESSEE -3.02 18.46 
TUNA -2.25 11.28 
ALTVEST -2.74 14.67 
HFR -3.78 22.53 
DISTRESSED   
ZURICH -2.59 14.05 
HENNESSEE -2.12 9.53 
TUNA -2.02 12.26 
ALTVEST -1.23 4.66 
VAN -0.09 3.52 
HFR -2.18 10.57 
EMERGING MARKETS   
ZURICH -2.41 12.92 
HENNESSEE -0.91 4.70 
HFR -0.81 3.86 
CSFB/TREMONT -0.84 3.09 
ALTVEST -0.70 1.87 
VAN -0.06 1.96 

 

Source: Brooks and Kat (2001)
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Empirical Evidence: HF Data 

Empirical vs Normal Density of DEM-USD
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Normality statistics for the return on DEM/USD rates

1-hr 6-hr 12-hr 1-day
Skewness 0.289 0.231 0.198 0.089
XS Kurtosis 8.34 3.43 1.51 0.61
JB 18245 520 55 4.62

Over a time horizon of no more than a 
few days, there is significant XS 
kurtosis. This will affect:

– the pricing of short term options
– Intra-day delta hedging of options positions
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What is XS Kurtosis?

• XS Kurtosis means that the kurtosis is greater than the 
normal with with same variance, also termed ‘leptokurtic’

• Leptokurtic is the Latin for ‘thin arch’
• What we mean is that the density has long thin tails: in fact 

the term ‘fat-tailed’ is a bit of a misnomer
• For example, this trinomial distribution has 

XS kurtosis = (1/2p) – 3 
which is large for small p:

x   [w.p. p]

0   [w.p. 1 – 2p]

-x  [w.p. p]
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• A normal mixture density is a probability weighted sum of normal
density functions. 

• For example a mixture of two normal densities
φ1(x) = φ(x; µ1 ,σ1

2 ) and φ2(x) = φ(x; µ2 ,σ2
2 ) 

is the density: 
η(x) = p φ1(x) + (1-p) φ2(x) 

That is:
p [(2πσ1

2)-1/2 exp (-((x - µ1) /σ1)2/2 )] + 
(1 - p) [(2πσ2

2)-1/2 exp (-((x – µ2) /σ2)2/2 )] 

2. Normal Mixture Densities
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Normal Mixture Distributions

Mixture of Two Normal Densities with Different Means
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Normal Mixture Densities

Mixing two normal densities with the same 
mean but different variances gives a 

symmetric and leptokurtic distribution

Mixture of Two Zero Mean Normal Densities
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Volatility of Normal Mixtures

• If we wish to model only the fat-tails, not the skewness, we can 
use two normal densities with zero means.

• Assuming means are zero, the variance is just the probability 
weighted sum of the individual variances

• For example consider a mixture of two zero mean normal 
densities 
– one with probability 0.6 and volatility 5% 
– the other with probability 0.4 and volatility 14.58%. 

• The mixture density has volatility 10%, since 
0.6x52 + 0.4x14.582 = 100
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XS Kurtosis of Normal Mixtures

• A zero mean normal mixture with volatility 10% always has 
fatter tails than a normal density with volatility 10% 

• This is because, assuming zero means, the excess kurtosis 
of a normal mixture η(x) = Σ pi φ(x; 0, σi

2 ) is:
3 [ ( Σ pi σi

4 / { Σ pi σi
2 }2 ) - 1 ]

• For example, on the previous slide where:

p1 = 0.6, p2 = 0.4, σ1 =  0.05 and σ2 =  0.1458 
the XS kurtosis is 2.535 

• But the normal density with the same volatility (10%) has 
zero XS kurtosis
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XS Kurtosis Term Structure

• High frequency returns in liquid markets have significant XS 
kurtosis and can be modelled by normal mixture densities

• The XS kurtosis disappears when returns are sampled over 
more than a few days - this is a consequence of the central 
limit theorem

• There is a behavioural model to support this where traders 
have heterogeneous expectations of volatility over the very 
short term although their views on volatility may be similar 
over an horizon of a few days (and then, in all probability, 
their views about long term volatility will diverge again)
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XS Kurtosis Term Structure

• Type j traders have 
volatility expectations 
term structure 'vol j‘ (j = 
1,2)

• Using normal mixture 
model, the aggregate 
volatility in this example 
is an almost constant 
volatility term structure 

• However, note the 
declining XS kurtosis 
term structure

Volatility and Excess Kurtosis Term Structure Forecasts 
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Moments of Normal Mixtures

η(x) = Σ pi φ(x; µi ,σi
2 )

• Mean 

• Variance

• Skewness

• XSKurtosis
(for zero means)

µ η  =  ∑ pi  µi  

ση 
2

  =  ∑ pi σi 
2

 + ∑ pi µi 2  -  µ η
2   

τη  =  ∑ pi [ (3µi/σi) +  (µi
3/σi

3) ] (σi 
3/ ση 

3)  - (3µ η /ση) -  (µ η
3/ ση

3)  

κe η    = 3 { [ (∑  pi σi 
4 )/ (∑ pi σi 

2 )2 ] – 1 }         
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Four Parameter 
NM (p, µ, 0, σ1

2, σ2
2)

p µ σ1
2 σ2

2 τη κe η

Scenario A 0.8 0.5 0.02 0.1 1.4891 2.5956 τη > 0; κe η > 0 
Scenario B 0.2 0.5 0.02 0.1 0.1649 -0.5234 τη > 0; κe η < 0
Scenario C 0.2 0.5 0.1 0.02 -1.4891 2.5956 τη < 0; κe η > 0
Scenario D 0.8 0.5 0.1 0.02 -0.1649 -0.5234 τη < 0; κe η < 0

A mixture of two normal densities, one of which has non-zero 
mean is a four parameter density which is flexible enough to fit
most types of returns distributions:
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Four Parameter 
NM (p, µ, 0, σ1

2, σ2
2)
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Parameter Estimation 

Risk Neutral
– Choose parameters to minimize RMSE between market 

prices of options, and – assuming we can price options 
under the lognormal mixture process – the model price 
based on lognormal mixture

– Ritchey (1990), Melick and Thomas (1997)
Real World 

– Method of Moments: Choose parameters so that the 
mean, variance, skewness and excess kurtosis under the 
normal mixture is the same is that observed on empirical 
returns.

– Hull and White (1998), Alexander and Naranathan (2001) 
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3. Application to VaR Models

Background: 
How to obtain VaR estimates: simulation vs analytic
A comparison of methodologies:

RiskMetrics
Orthogonal Methods

Non-normal VaR: 
Why use non-normal VaR estimates?
Normal mixture VaR estimates

22

3.1. Background

Value-at-Risk (VaR) 
is the anticipated 

loss from an 
adverse market 

movement with a 
specified probability 

over a particular 
period of time

Source: Market Models (C.Alexander, Wiley 2001)
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Historical Simulation

Does not assume 
normality

– To obtain robust estimates 
one has to use many 
years of good daily data, 
which may not be easy to 
obtain

– Only one estimate is 
obtained, which is a 
‘hybrid’ of VaR in normal 
market circumstances and 
VaR in extreme market 
circumstances

Figure 9.4: VaR from a Simulated P&L Density

If the shaded area is α 
then the cut-off point is 

- VaRα,h

Pt+h - Pt  - VaRα,h
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Covariance (RiskMetrics) 
VaR Model

• Assumes P&L is normally 
distributed

• Analytic formula for VaR:
VaR = Zα σ

Zα is the critical value of N(0,1)
σ is the volatility of P&L, given 

by

√p’Vp

-VaR h-day P&L0

Important Note: most analytic VaR 
models are not good for long-only positions
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Covariance Matrix, V
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The covariance matrix of asset or risk factor h-day returns is 
central to both the ‘Riskmetrics” and the MC VaR models:

26

Monte Carlo VaR

• Monte Carlo VaR is similar to historical VaR in that a set 
of scenarios on the risk factors are put into the option 
pricing functions to get a set of portfolio values, and 
then these portfolio values are used to generate a P&L 
distribution.

• However the scenarios are forward looking, over a pre-
determined risk horizon of h days.

• Correlated scenarios are used, and these are generated 
using an h- day covariance matrix of risk factor returns 
(only historical simulation does not use the covariance 
matrix)
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Monte Carlo Simulation

Random number 
generator 

Marginal returns 
distributions

Uncorrelated 
simulations on 
risk factors

Cholesky 
Decomposition

Covariance 
Matrix

Correlated Risk Factors

Pricing Models

Simulated 
portfolio values
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Future Simulations

Figure 9.5: Sampling the Hypercube and Simulating Independent 
N(0,1) Observations
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Correlated Simulations
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Estimation of Covariance Matrix

• Many different methodologies available
– ‘Historical’
– Exponential weighted moving averages (EWMA)
– Generalized autoregressive conditional heteroscedasticity 

(GARCH)

• Difficult to assess which is most accurate
– Unlike prices, volatilities and correlations are not observable 

in the market
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RiskMetrics Data

• Very large covariance matrices of the returns to many risk 
factors: major foreign exchange rates, money market rates, 
equity indices, interest rates and some key commodities. 

• Downloadable from the internet: www.riskmetrics.com.
• There are three types of covariance matrix:

– 1-day matrix (EWMA with λ = 0.94)
– 1-month (25-day) matrix (EWMA on daily returns with λ = 0.97 

and then the matrix is multiplied by 25)
– a ‘regulatory’ matrix (Historical with n = 250) 

• More details are in the RiskMetrics Technical Document (J.P. 
Morgan and Reuters, 1996).
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Problems with RiskMetrics

A major problem 
with the ‘historical’
estimates is that 
extreme events 
are just as 
important to 
current estimates, 
whether they 
occurred 
yesterday or at 
any other time 
during the 
historical period. 

DJIA Historical Volatilities
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Problems with RiskMetrics

In the EWMA 
matrices, the 
same value of 
the exponential 
smoothing 
constant λ must 
be used for all 
markets. This is 
necessary, 
otherwise the 
covariance 
matrix would not 
be positive semi-
definite

DJIA - EWMA Volatilities
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Which Estimate?

Date 3m 6m 1yr ewma(0.9) ewma(0.95)
31-Dec-01 19.02% 22.20% 21.35% 12.41% 15.85%

• These are all estimates of the same thing – the 
constant volatility in the GBM price process

• There is no ‘optimal’ way to choose the best 
parameter values – which of these estimates you 
decide use is just a matter of subjective choice.
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Problems with RiskMetrics

• Constant volatility:
– ‘Square root of time’ rule: 

h-day covariance matrix = h * 1-day covariance matrix
– Current estimate is the forecast for all risk horizons
– Assumption is that returns are normal and independent

• But returns are not normal, or independent.
Figure 4.1: Volatility Clustering
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The Advantage of GARCH Models

Figure 4.10a: GARCH Volatility Term Structure Forecasts 
for General Electric
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The Problem with GARCH Models

• Computational problems are inevitable if one attempts direct 
estimation of full multivariate GARCH models for large-
dimensional systems. 

• Even the simplest parameterization of a bivariate GARCH(1,1) 
model, the diagonal vech, has eleven parameters:

1−1231−21−13312

2
1−22

2
1−222

2
2

2
1−11

2
1−111

2
1

σβ+εεα+ω=σ

σβ+εα+ω=σ

σβ+εα+ω=σ

t,t,t,t,

t,t,t,

t,t,t,
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Orthogonal Methods

• Several papers (www.ismacentre.rdg.ac.uk) explain how to use 
principal component analysis to generate large dimensional 
covariance matrices using EWMA or GARCH:

• O-EWMA
• O-GARCH

• This method avoids the problems with the RiskMetrics data that 
were just outlined: 
– Positive definiteness can be assured without using the same 

smoothing constant for all markets; 
– It conforms to regulators requirements on historic data

• However the O-EWMA model is still based on constant volatility 
and correlation assumptions ( ≈ ‘square root of time’ rule)
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Why Use O-GARCH?

• Gives convergent term 
structures 

• Simple to compute (only 
univariate GARCH volatility 
models)

• Positive semi-definiteness 
assured

• Produces more robust 
measures of risk

• Copes with missing data
• Copes with illiquid markets

Figure 7.15: Orthogonal GARCH Correlations of UK Zero-
Coupon Yields
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3.2 Non-Normal VaR

-VaR

If the P&L 
distribution has fat-

tails, actual VaR 
may be greater than 

the normal 
approximation 

VaR…….but it could 
also be less!

-VaR (normal) h-day P&L
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Scenarios for Equity VaR

• Normal mixtures are useful to model scenarios in markets 
with jumps

• For example, the long term average equity index volatility 
may be 20%, but in your scenario there may be a 1% chance 
of a market crash, where volatility would be 80%

• This can be modelled by a mixture of two zero mean normal 
densities with 

p = 0.99, vol1 =20% and vol2 = 80%
• How should we estimate the equity VaR from taking a long 

position on this index?

42

Normal Mixture VaR

• Recall that the normal covariance VaRα estimate ≈ Zασ where 
Zα is the critical value of a standard normal variate and σ is the 
P&L volatility. 

• In this model the P&L variations are assumed to be normal, 
and so a simple analytic formula for VaR could be derived. 

• If we now assume that P&L variations have normal mixture 
distributions there is no analytic formula for VaR. However it is 
a simple matter to use a numerical algorithm to obtain a normal 
mixture covariance VaR measure. 

• If we know the probabilities and the volatilities of the normal 
mixture, we can ‘back-out’ the VaRα estimate:

prob(P&L < - VaRα)  = Σ pi prob (Z < (-VaRα / σi)) = α
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Example: 10-day 1% VaR

• Vol1 = 20% ⇒ 10-day standard deviation = 0.2/√250/10 = 
0.2/5 = 0.04

• Vol2 = 80% ⇒ 10-day standard deviation = 0.8/√250/10 = 
0.8/5 = 0.16

• So 1% 10-day VaR is found by solving:
0.99 Prob(Z < VaR/0.04) + 0.01 Prob(Z < VaR/0.16) = 0.01

• This gives a 10-day 1% VaR = 0.4878$ for each $ 
invested

• Notice that this is less than 0.4989$, the 1% VaR based 
on the normality assumption with an equivalent volatility 
(21.45%)

• However, the 0.1% VaR is greater under the normal 
mixture: it is 1.025$ for each $ invested, but the normal 
VaR is only 0.66$ per $ invested.

44

Example
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Scenarios for Diversified Portfolios

• Portfolio diversification: risk reduction achieved by
– Long/long (or short/short) on negatively correlated pairs
– Long/short positions on highly correlated pairs

• Stress Covariance Matrix: Long/long or short/short 
equity

NB. 10-day variance 0.04 ⇒ volatility of √0.04*5 = 100%
Cov = 0.04 ⇒ correlation = 1
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Scenarios for Diversified Portfolios

• Stress Covariance Matrix: Long/short equity:

OR
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Example

Normal market (V1): 30% volatility; positive correlation 
(asset1, asset 3) and (asset2, asset3); zero correlation: 
(asset1, asset2).

Stress market (V2): correlation structure breaks down and 
volatilities increase to 100%

48

Example (Cont’d)

1% normal mixture VaR 
= 2.87$ 

But normal VaR 
seriously under 
estimates:

1% normal VaR = 1.66$
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Summary: Normal Mixture VaR

• Standard ‘normal’ VaR estimates are inadequate for portfolio 
risk management

• Even when they use the best possible betas and covariance 
matrices, there is still the problem that portfolio returns are 
often highly non-normal

• Even in the exception, where portfolio returns may be fairly 
normal, they will not normal under stressed market 
circumstances

• The normal mixture model presented here has useful 
applications to calculating 
– Market Risk Capital Requirements when market returns 

are not normal, and 
– Scenario VaR that incorporates the probability that the 

market will crash
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4. Option Pricing with Normal 
Mixture Densities

• Recent research by Brigo and Mercurio (2001) – see 
www.fabiomercurio.it

• Option may be priced under the assumption of normal 
mixture price processes

• There is no additional source of uncertainty in the model – it 
is a local volatility model and not a stochastic volatility

• Simple formulae for pricing European options with the 
assumption of NM price process

• Explanation for the smile! 
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Lognormal Mixture Densities

• Log returns (X) generated by normal mixture 
⇒ prices (S) generated by lognormal mixture:

• For example a mixture of two lognormal densities
f1(s) = f(s; µ1 ,σ1

2 ) and f2(s) = f(s; µ2 ,σ2
2 ) 

is the density: 
g(s) = p f1(s) + (1-p) f2(s) 

That is:
p [(2πσ1

2 s2 )-1/2 exp (-((ln(s) - µ1) /σ1)2/2 )] + 
(1 - p) [(2πσ2

2 s2)-1/2 exp (-((ln(s) – µ2) /σ2)2/2 )]
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Lognormal Mixture Price Process

• Suppose that the risk-neutral density at time t of the asset 
prices is a lognormal mixture density

gt(s) = p1 f1,t(s) + …+ pn fn,t(s) 

where at each time t, fi,t(s) has mean µ and variance σi,t
2

• Then Brigo and Mercurio (2001) showed that the underlying 
asset’s price process is a lognormal mixture process

dS/S  = µ dt + σ (S, t) dW
where the local volatility σ (S, t) is given by

σ (S, t)2 = Σ pi,t
* σi,t

2

and p*
I,t = pi [fi,t(s) / gt(s)] so Σ pi

* = 1.
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Normal Mixture Option Prices

• Notice that with the lognormal mixture price process the 
market is still complete so we can price options without 
introducing a subjective risk premium

• Denote by F(σ) the Black-Scholes price for a simple 
European option

• Suppose returns are generated by a mixture of normal 
distributions with variances σi

2 and probabilities pi 

• Then 
Normal mixture option price = Σ pi F(σi)
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Calibration to Historical Data

Method of Moments
• Historical data on daily returns:

Daily XS kurtosis = 2.53 
Annual volatility 20% 

• Mixture of two zero mean normal densities 
p = 0.6 annual volatility = 10% (variance = 0.01)
(1- p) = 0.4 annual volatility = 29.15% (variance = 0.085)
Annual Variance = pσ1

2 + (1-p) σ2
2 = 0.04 

Daily XS kurtosis = 2.53 (using formula on slide 12)

• With these parameters the normal mixture option prices are
0.6 F(10%) + 0.4 F(29.15%) 
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Example
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Comparison with BS Prices

• Several studies (e.g. Hull and White, 1987) that use historical 
data to obtain option prices based on non-normal price 
processes, and then compare these prices with BS option 
prices, conclude that BS prices are too low for OTM and ITM 
options and too high for ATM options

• This is an erroneous conclusion because they compare the 
non-normal option price with the BS price based on the same 
expected variance

• In fact, the non-normal price should be compared with the BS 
price that has the same expected volatility - since E(√X) ≠
√E(X), the expected volatility is NOT the square root of the 
expected variance!
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Comparison with BS Prices

• ATM options are linear in 
volatility therefore the BS 
price of an ATM option that 
is based on the expected 
volatility, will be the same as 
the normal mixture option 
price.

• However simple OTM and 
ITM are convex in volatility 
so the normal mixture price 
will be greater than the BS 
price.

Price

Volatil ity

Figure 10.9: Option Price Under Expected Volatility Compared 
with Option Price Under Distribution of Volatil ities

f(σ)

p1f(σ1)+p2f(σ2)
f(E(σ))

σ1 σ2Ε(σ)
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Explanation for the Smile

• One reason for the smile 
that is observed in implied 
volatilities is that returns 
are leptokurtic

• Thus OTM and ITM options 
are under-priced by BS, 
and their implied volatilities 
must be greater than ATM 
implied

• However NM option prices 
for OTM and ITM options 
are greater than BS prices, 
so we have explained at 
least part of the smile.

Figure 13: S mile surface of the FTSE, De 1
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Comparison with BS Prices

60

NM Price – BS price
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New greek: ∂2f/∂σ2

NM Price – BS price  ∝ ∂2f/∂σ2

• To see this, take Taylor expansion about E(σ) and then take 
expectations:

f(σ)  ≈ f(E(σ)) + ( ∂f/∂σ)(σ − E(σ)) + ½(∂2f/∂σ2)(σ − E(σ))2

E(f(σ))  ≈ f(E(σ)) + ½( ∂2f/∂σ2) V(σ)

NM Price – BS price = E(f(σ))  − f(E(σ)) ≈ ½( ∂2f/∂σ2) V(σ)
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Relation with the Smile

E(f(σ))  ≈ f(E(σ)) + ½(∂2f/∂σ2) V(σ)
• But

f(E(σ) + ∆σ)  ≈ f(E(σ)) + ∂f/∂σ ∆σ
• So

∆σ ≈ ½(∂2f/∂σ2) V(σ) / ∂f/∂σ
• And it can be shown that for European options:

∂2f/∂σ2 / ∂f/∂σ = σ−1 + Ασ−2

where A = xy (these are the x and y in the BS formula)
• Interpret ∆σ as the extra implied volatility in the smile
• The smile always increases, despite the ‘M’-shape of ∂2f/∂σ2
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Summary

• Option prices that include uncertainty in volatility – such as 
the normal mixture (NM) option pricing model of this lecture, 
should be compared with normal Black-Scholes (BS) option 
prices with the same expected volatility

• Earlier work has made the mistake of comparing non-normal 
prices with the BS prices having the same expected variance 
– but this leads to the erroneous conclusion that the BS 
model under-prices ATM options by a long way.

• Normal mixture option prices are the same as BS prices of 
ATM options but, for OTM options, the NM prices are greater 
than the BS prices. 

• Hence the NM model explains at least part of the smile. 


