To Forecast or Not to Forecast: An Application to Nonlinear Models

Walter Enders¹ Razvan Pascalau²

¹Department of Economics, Finance, and Legal Studies University of Alabama

> ²Department of Economics SUNY Plattsburgh

> > January 7, 2009

1. Forecasting with nonlinear models is complicated: (1) estimation may pose convergence issues and (2) nonlinear forecasting always requires numerical techniques.

< ⊒ ►

3

- 1. Forecasting with nonlinear models is complicated: (1) estimation may pose convergence issues and (2) nonlinear forecasting always requires numerical techniques.
- 2. Forecasting with linear models is straightforward; no error distribution assumptions required.

< ∃⇒

- 1. Forecasting with nonlinear models is complicated: (1) estimation may pose convergence issues and (2) nonlinear forecasting always requires numerical techniques.
- 2. Forecasting with linear models is straightforward; no error distribution assumptions required.
- 3. Thus, is it possible to approximate nonlinear predictions with linear ones? When not, what approach should one use: direct or iterated forecasts?
- 4. No research (that we are aware of) yet on this issue.

1. Propose a pre-testing for nonlinearity approach to forecasting with non-linear models; extend the linearity test of Terasvirta (1994) to various forecasting horizons; thus, focus on smooth transition autoregressive (i.e., STAR) models.

< ∃ →

- 1. Propose a pre-testing for nonlinearity approach to forecasting with non-linear models; extend the linearity test of Terasvirta (1994) to various forecasting horizons; thus, focus on smooth transition autoregressive (i.e., STAR) models.
- 2. Apply the test to OECD countries real exchange rates $(RER) \rightarrow$ REERs roughly linear relative to RERs; OECD Euro area countries display higher nonlinear dynamics than non-Euro OECD countries. Should then a nonlinear model perform better than a linear one for these?

-∢ ≣ ▶

- 1. Propose a pre-testing for nonlinearity approach to forecasting with non-linear models; extend the linearity test of Terasvirta (1994) to various forecasting horizons; thus, focus on smooth transition autoregressive (i.e., STAR) models.
- 2. Apply the test to OECD countries real exchange rates $(RER) \rightarrow$ REERs roughly linear relative to RERs; OECD Euro area countries display higher nonlinear dynamics than non-Euro OECD countries. Should then a nonlinear model perform better than a linear one for these?
- 3. Findings: (a) when the (non)linearity test strongly rejects the null of linearity, then a nonlinear model clearly outperforms a linear model;

프 🖌 🛪 프 🕨

- 1. Propose a pre-testing for nonlinearity approach to forecasting with non-linear models; extend the linearity test of Terasvirta (1994) to various forecasting horizons; thus, focus on smooth transition autoregressive (i.e., STAR) models.
- 2. Apply the test to OECD countries real exchange rates $(RER) \rightarrow$ REERs roughly linear relative to RERs; OECD Euro area countries display higher nonlinear dynamics than non-Euro OECD countries. Should then a nonlinear model perform better than a linear one for these?
- 3. Findings: (a) when the (non)linearity test strongly rejects the null of linearity, then a nonlinear model clearly outperforms a linear model;
- 4. (b) when it fails to reject the null, a logistic and a simple AR model display similar performance; (c) for nonlinear models: the "direct" method performs better than the bootstrap predictor at shorter forecast horizons, but the evidence is mixed at longer horizons.

A E > A E >

1. Terasvirta (1994) - test the null of linearity against the linearity of a STAR process (LSTAR or ESTAR).

< ∃ →

э

- 1. Terasvirta (1994) test the null of linearity against the linearity of a STAR process (LSTAR or ESTAR).
- Lin and Granger (1994) use simulations to recommend the bootstrap predictor over the Monte Carlo approach; when the true DGP is nonlinear, the bootstrap ensures a lower MSPE than the direct method; viceversa is true when the true DGP is linear.

- 1. Terasvirta (1994) test the null of linearity against the linearity of a STAR process (LSTAR or ESTAR).
- Lin and Granger (1994) use simulations to recommend the bootstrap predictor over the Monte Carlo approach; when the true DGP is nonlinear, the bootstrap ensures a lower MSPE than the direct method; viceversa is true when the true DGP is linear.
- 3. Marcellino et al. (2006) large empirical study using several competing AR models and find that multi-step iterated forecasts are more accurate than "direct" ones
- 4. Leybourne et al. (1998), Sollis et al. (2002), Kapetanios et al. (2003) OECD countries RER display some type of smooth adjustment, either asymmetric or asymmetric.

医下 不正下

The model

- 1. Follow Terasvirta (1994) use a third order Taylor series approximation of the STAR component
- 2. A univariate STAR model of order 1:

$$y_{t+1} = \alpha w_t + \beta w_t G(\theta; y_{t-d}; c) + \epsilon_{t+1}, t = 1, \dots, T$$
 (1)

where $w_t = (y_{t-k}, ..., y_{t-p})$ and $0 \le k \le p$. Logistic function:

$$G(\theta; y_{t-d}, c) = [1 + exp(-\theta(y_{t-d} - c))]^{-1},$$
(2)

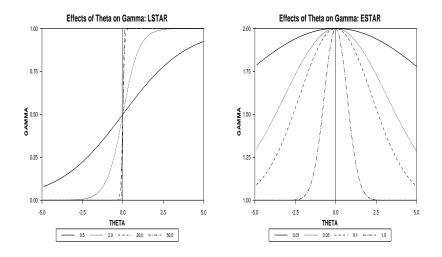
where $\theta > 0$, $d \ge 1$ is the delay parameter, and *c* is the location parameter (i.e. threshold); θ is the slope parameter.

3. Exponential function:

$$G(\theta; y_{t-d}, c) = 1 - \exp(-\theta(y_{t-d} - c)^2), \qquad (3)$$

A =
 A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

LSTAR vs. ESTAR



米間 とくほとくほど

æ

The models

1. Remarks: Whenever $|y_{t-d} - c|$ is large and $y_{t-d} < c$, y_t is effectively generated by the linear model:

$$y_t = \alpha y_{t-1} + \epsilon_t, t = 1, \dots, T.$$
(4)

If $|y_{t-d} - c|$ is large and $y_{t-d} > c$, y_t is virtually generated by:

$$y_t = (\alpha + \beta)y_{t-1} + \epsilon_t, t = 1, \dots, T.$$
(5)

2. Reparameterize to get:

$$\Delta y_{t} = \delta y_{t-1} + \beta y_{t-1} [1 + \exp(-\theta(y_{t-d} - c))]^{-1} + \epsilon_{t}, \quad (6)$$

where $\delta = \alpha - 1$. When $\theta = 0 \Rightarrow$ the transition function $G(\theta; y_{t-d}; c) \equiv 1/2$ so that the LSTAR model nests a linear model. Conversely, when $\theta \to \infty$ the LSTAR model - switching regime with two distinct regimes.

3. The ESTAR process: bounded between 0 (i.e., $\theta = 0$) and 1 (i.e., $\theta \to \infty$).

Forecasting with an AR process

1. Forecasting with linear models is straightforward. For an AR(1):

$$y_{t+1} = \delta + \rho w_t + \epsilon_{t+1} = \delta + \rho \sum_{k=0}^{p} \rho_k y_{t-k} + \epsilon_{t+1}.$$
 (7)

an iterated forecast is obtained recursively as:

2.

$$\hat{y}_{t+h|t}^{I} = \hat{\delta} + \hat{\rho} \sum_{k=0}^{p} \hat{\rho}_{k} \hat{y}_{t+h-1-k|t}^{I}.$$
(8)

3. In contrast, a "direct" forecast writes as:

$$\hat{y}_{t+h|t}^{D} = \hat{\delta} + \hat{\rho} \sum_{k=0}^{p} \hat{\rho}_{k} y_{t-k}^{D}.$$
(9)

Adjust the forecasts if the series needs to be first-differenced.

 $1. \ \mbox{Predictions from a STAR}$ process write as:

$$y_{t+h} = E(y_{t+h}|w_t) = \int_{-\infty}^{+\infty} f(y_{t+h}|w_{t+1})f(w_{t+1}|w_t)dw_{t+1} \quad (10)$$

- 2. Need assumptions about the error distribution $G(\epsilon_{t+1}, ..., \epsilon_t + h)$; generally, use a Monte Carlo simulation or bootstrap the residuals.
- The steps above require that the nonlinear model be correctly specified → the "direct" method more robust to model misspecification.
- Use Terasvirta's (1994) approach to test for linearity at the desired forecast horizon t + h: approximate the nonlinear component through Taylor series expansion (due to the identification issues).

Forecasts from LSTAR and ESTAR processes

1. Simplify the LSTAR model to:

$$y_{t+1} = \alpha y_t + \beta y_t \frac{1}{1 + \exp(-\theta(y_{t-d} - c))} + \epsilon_{t+1}, t = 1, \dots, T$$
(11)

and let $z = \theta(y_t - c)$ s.t. $G = [1 + exp(-z)]^{-1}$.

ヨト

Forecasts from LSTAR and ESTAR processes

1. Simplify the LSTAR model to:

$$y_{t+1} = \alpha y_t + \beta y_t \frac{1}{1 + \exp(-\theta(y_{t-d} - c))} + \epsilon_{t+1}, t = 1, \dots, T$$
(11)

and let $z = \theta(y_t - c)$ s.t. $G = [1 + exp(-z)]^{-1}$.

2. Expand G around z up to the third order and evaluate the expression at z = 0 for various forecasting horizons. Example:

$$y_{t+2}: \frac{1}{4}\beta^2 y_t + \frac{1}{4}\beta^2 y_t z + \frac{1}{16}\beta^2 y_t z^2 + \frac{1}{48}y_t z^3 + \epsilon_{t+2}$$

up to :

$$y_{t+12}: \frac{1}{4096}\beta^{12}y_t + \frac{3}{2048}\beta^{12}y_tz + \frac{33}{8192}\beta^{12}y_tz^2 + \frac{27}{4096}y_tz^3 + \epsilon_{t+12}$$

(E) ► < E ► ...</p>

Forecasts from LSTAR and ESTAR processes

 $1. \ \mbox{Simplify the LSTAR} \ \mbox{model to:}$

$$y_{t+1} = \alpha y_t + \beta y_t \frac{1}{1 + \exp(-\theta(y_{t-d} - c))} + \epsilon_{t+1}, t = 1, \dots, T$$
(11)

and let $z = \theta(y_t - c)$ s.t. $G = [1 + exp(-z)]^{-1}$.

2. Expand G around z up to the third order and evaluate the expression at z = 0 for various forecasting horizons. Example:

$$y_{t+2}: \frac{1}{4}\beta^2 y_t + \frac{1}{4}\beta^2 y_t z + \frac{1}{16}\beta^2 y_t z^2 + \frac{1}{48}y_t z^3 + \epsilon_{t+2}$$

up to :

$$y_{t+12}: \frac{1}{4096}\beta^{12}y_t + \frac{3}{2048}\beta^{12}y_tz + \frac{33}{8192}\beta^{12}y_tz^2 + \frac{27}{4096}y_tz^3 + \epsilon_{t+12}$$

3. For an ESTAR model we have that:

$$y_{t+k} = (\alpha^k + k\alpha^{k-1}\beta\theta c^2)y_t - (2k)\alpha^{k-1}\beta\theta cy_t^2 + k\alpha^{k-1}\beta\theta y_t^3 + \epsilon_{t+k}$$

1. The test with an LSTAR under the alternative writes as:

$$y_{t+h} = \alpha' w_t + \beta_1'(w_t y_{t-d}) + \beta_2'(w_t y_{t-d}^2) + \beta_3'(w_t y_{t-d}^3) + \epsilon_{t+h}$$
(12)

and the null hypothesis is: $\beta'_1 = \beta'_2 = \beta'_3 = 0$. The asymptotic distribution: $LM \sim \chi[3(p-k+1)]$; or allow the lag order p to depend on the forecasting horizon $\rightarrow LM \sim \chi[3(p_k - k + 1)]$.

- 2. The degrees of freedom represent the number of variates in the nonlinear approximation
- 3. For an ESTAR, the null writes as: $\beta_1' = \beta_2' = 0$ and $LM \approx \chi[2(p-k+1)]$
- 4. Perform the LM tests as F-tests for small samples.

< 臣 > < 臣 > …

1. Size simulations:

$$y_t = \rho y_{t-1} + \epsilon_t \tag{13}$$

where $\rho \in \{0.1, 0.3, 0.5, 0.8\}$.

- 2. Size performance 20,000 replications, 5% nominal size, sample sizes of $T \in \{50, 100, 200\}$, at 12 forecast horizons;
- 3. Two cases: Case 1 uses 2 terms 2 in the Taylor series expansion; Case 2 uses 3 terms.
- 4. Findings: (a) good size for low ρ 's, over-reject for higher ones; (b) the degree of over-rejection increases with higher *h*; more so in Case 1 than on Case 2.

Small Sample Properties: Power simulations

1. LSTAR:

$$y_{t+1} = 0.8y_t - \beta [1 + \exp(-\theta(y_t - c))]^{-1} + \epsilon_{t+1}$$
(14)

2. ESTAR:

$$y_{t+1} = 0.8y_t - \beta [1 - exp(-\theta(y_t - c)^2)] + \epsilon_{t+1}$$
(15)

where $\beta \in \{0.1, 0.3, 0.5, 0.8\}$, $\theta \in \{0.5, 2, 20, 50\}$ for LSTAR and $\theta \in \{0.01, 0.05, 0.1, 1.0\}$ for ESTAR, and $c \in \{0,1.0\}$. Use one, four, eight, and twelve forecasting horizons.

- 3. Case 1: set c = 0 and use a 3rd order approximation; Case 2: $c \neq 0$ and use a 3rd order approximation; Case 3: $c c \neq 0$ and use a 2nd order approximation.
- 4. Findings: good power for high values of β and θ ; when $\beta \leq 0.5$ and fixed θ , power increases with the forecasting horizon; vice-versa for β > 0.5 and fixed θ
- 5. For fixed β and θ , power increases with the sample size;

- 1. Apply the test to a set of bilateral RER and real effective exchange rates (REERs) from several OECD countries; use both the CPI and PPI to compute the RER.
- Data source: International Financial Statistics (IFS); use quarterly data: January 1957 - April 2007. This period comprises the fixed exchange rate period (1957-1971) and the flexible exchange rate period (January 1973 - April 2007).
- 3. Apply the linearity test at one, four, eight, and twelve forecasting horizons, respectively; use a 3rd order approximation (i.e., lower size distortion, higher power for larger sample sizes).

Table: Nonlinearity Tests for Bilateral and Real Effective Exchange Rates: use 3 terms

RER(PPI/WPI)						RER(CPI)	REER					
Steps ahead	One	Four	Eight	Twelve	One	Four	Eight	Twelve	One	Four	Eight	Twelve
Australia 1957:1-2007:1	0.76	0.60	0.06	0.91	2.51*	0.62	2.67**	1.09	3.67**	0.91	3.58**	1.79
Austria 1957:1-1998:4	3.11**	15.03***	0.83	22.37***	3.12**	15.07***	0.83	22.36	1.02	5.51***	1.88	1.41
Belgium 1957:1-1998:4	0.72	26.51***	3.41	0.44	24.31***	5.15***	2.92**	2.70**	7.23***	5.63**	2.30*	6.12***
Canada 1957:1-2007:1	2.58*	0.83	1.17	1.62	2.27*	2.61*	0.34	2.81*	2.91*	0.78	0.51	2.43*
Denmark 1957:1-2007:1	0.42	0.15	0.80	0.42	0.22	0.04	2.08	0.94	9.23***	1.42	3.37**	0.07
Finland 1957:1-1998:4	1.70	2.49*	23.56***	14.35***	1.68	2.48*	23.56***	14.35***	3.38**	2.30*	0.35	0.61
France 1957:1-1998:4	-	-	-	-	11.60***	16.41***	13.22***	9.21***	1.25	0.61	0.36	0.39
Germany 1957:1-1998:4	-	-	-	-	6.17***	1.52	13.27***	4.74***	1.58	0.30	0.99	1.63
Greece 1957:1-2000:4	7.39***	9.74***	14.82****	13.27***	7.22***	9.30***	14.40***	12.23***	0.50	1.12	0.17	1.33
Ireland 1957:1-1998:4	18.16***	33.00***	17.22***	27.78***	18.19***	33.58***	17.29***	27.79***	-	-	-	-
Italy 1957:1-1998:4	17.59***	35.38***	17.26***	27.76***	17.65***	35.38***	17.15***	27.56***	2.53*	8.45***	6.39***	1.14

Enders, Pascalau To Forecast or Not to Forecast

Table: Nonlinearity Tests for Bilateral and Real Effective Exchange Rates: use 3 terms

RER(PPI/WPI)						RER(CPI)				REER			
Steps ahead	One	Four	Eight	Twelve	One	Four	Eight	Twelve	One	Four	Eight	Twelve	
Japan													
1957:1-2007:1	0.25	0.49	0.28	1.22	0.90	0.38	0.39	1.70	6.85***	0.20	2.11	0.52	
Luxembourg													
1957:1-1998:4	2.40*	1.45	0.98	0.06	0.82	5.77***	9.89***	3.80**	4.02***	2.79**	0.99	1.06	
Netherlands													
1957:1-1998:4	2.17*	16.52***	15.49***	24.06***	2.19*	16.54***	15.55***	23.40***	2.30*	1.18	11.92***	4.38***	
Norway													
1957:1-2007:1	11.53***	1.04	0.05	0.00	0.05	0.04	0.77	2.05	0.39	1.20	0.88	0.75	
New Zealand													
1957:1-2007:1	1.68	0.23	0.41	6.19***	0.46	2.51	0.82	0.44	0.32	4.55	0.61	1.93	
Spain													
1957:1-1998:4	1.89	2.46*	3.83*	20.94***	1.90	2.47*	3.82**	20.94***	3.31**	3.41**	0.43	1.53	
Sweden													
1957:1-2007:1	1.61	0.04	0.19	0.37	1.06	0.36	0.04	2.56	0.06	4.89***	0.17	0.08	
Switzerland													
1957:1-2007:1	1.64	0.14	0.18	0.58	1.54	0.67	1.42	0.98	2.51*	7.71***	1.52	0.39	
UK													
1957:1-2007:1	2.29*	2.67**	0.47	0.74	0.48	1.12	0.40	1.03	1.41	1.91	1.12	1.76	
* Significan	ce at th	ne 10%	level; *	* Signif	icance	e at the	5% lev	el; ***	Signifi	cance a	t the 1	% leve	

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - 釣A@

- 1. More evidence of nonlinear patterns for CPI and PPI-based RER than for REERs.
- 2. A series may require a linear/nonlinear model depending on the forecasting horizon.
- 3. All Euro area OECD countries display some degree of nonlinear behavior at various horizons, while non-Euro (e.g., Denmark, Norway, Sweden, Switzerland, and the UK) area ones do not.
- 4. In general, whenever the null is rejected, the evidence suggests that most countries display LSTAR-type mean reversion to long-run equilibrium.

- ∢ ≣ ▶

Empirical Findings: Direct vs. Recursive Models

- 1. Marcellino et al. (2006) compare several AR models: recursive forecasts outperform direct ones;
- This study limits to STAR-type models. Consider: Australia's PPI based RER (at 4 and 12 steps ahead), France's CPI based RER, Italy's PPI based RER, Japan's CPI based RER, Netherlands's REER (all 12 steps ahead), and Norway's CPI based RER at 4 steps ahead.
- 3. Failed to reject the null for Australia's and Japan's RER, and Norway's REER, respectively; the rest appear nonlinear.
- 4. 4 models: fixed AR(4), fixed AR(12), AR(BIC), AR(AIC). Use 3 criteria: mean error, MSPE, MAE.

Table: Direct vs. Iterated Forecasting Methods: A Linear Approach

	AR(4)			AR(12)			AR(BIC)			AR(AIC)		
Criterion	Mean	MSPE	MAE									
Australia:	4 steps											
Iterated	-0.04941	0.00504	0.06820	-0.03670	0.00436	0.06397	-0.03566	0.00316	0.05502	-0.03733	0.00435	0.06460
Direct	-0.29684	0.12057	0.31483	-0.26908	0.10071	0.28707	-0.29611	0.11900	0.31409	-0.27178	0.10298	0.28977
Australia:	12 steps											
Iterated	0.04247	0.00798	0.04994	0.05771	0.00869	0.05834	0.04152	0.00786	0.04845	0.05771	0.00869	0.05834
Direct	-0.22902	0.06004	0.22902	-0.22512	0.05769	0.22512	-0.22659	0.06009	0.22659	-0.22785	0.05868	0.22785
France:	12 steps											
Iterated	0.27658	0.21508	0.27658	0.29003	0.21941	0.29003	0.27078	0.21307	0.27078	0.29003	0.21941	0.29003
Direct	0.06230	0.01663	0.10834	0.06256	0.01644	0.10815	0.06245	0.01671	0.10860	0.06245	0.01671	0.10860
Italy:	12 steps											
Iterated	0.64279	4.21620	0.64612	0.68070	4.22331	0.68070	0.63929	4.21539	0.64272	0.68070	4.22331	0.68070
Direct	0.00563	0.00448	0.05405	-0.00891	0.00738	0.06870	0.00447	0.00301	0.04390	-0.00104	0.00736	0.06741
Japan:	12 steps											
Iterated	0.49669	1.78013	0.49669	0.54181	1.80608	0.54181	0.49502	1.77925	0.49502	0.50695	1.78277	0.50695
Direct	0.03011	0.00868	0.07333	0.02997	0.00868	0.07382	0.03011	0.00868	0.07333	0.02997	0.00868	0.07382
Netherlands:	12 steps											
Iterated	0.36924	1.71966	0.37311	0.40022	1.72143	0.40074	0.38178	1.72002	0.38225	0.40022	1.72143	0.40074
Direct	0.05988	0.00478	0.05988	0.05722	0.00443	0.05722	0.06110	0.00489	0.06110	0.05722	0.00443	0.06105
Norway:	4 steps											
Iterated	0.34010	0.75999	0.43808	0.34506	0.75952	0.43311	0.35161	0.75877	0.42656	0.35379	0.75874	0.42439
Direct	-1.55343	3.07805	1.58368	-1.54672	3.05162	1.57696	-1.55423	3.08090	1.58448	-1.54735	3.05405	1.57759

Mean - mean of forecasts; MSPE - mean square predicted error; MAE - absolute mean of forecasts

A B + A B + B
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A

- 1. MSPE increases with the forecast horizon;
- When the test strongly rejects the null, the direct method clearly dominates (e.g., Italy, Netherlands) → strengthen the theoretical finding that the direct method fares better when model is misspecified.
- 3. Evidence is mixed when the model appears linear.

Table: Direct vs. Iterated Forecasting Methods: A Nonlinear Approach

	Mo	nte Carlo		E	Bootstrap	Direct			
Criterion	Mean	MSPE	MAE	Mean	MSPE	MAE	Mean	MSPE	MAE
Australia:	4 steps								
Criterion	-0.05606	0.00329	0.05606	-0.05344	0.00299	0.05344	-0.04496	0.00253	0.04496
Australia:	12 steps								
Criterion	0.00309	0.00173	0.03373	0.00356	0.00170	0.03345	-0.07653	0.00744	0.04431
France:	12 steps								
Criterion	0.09691	0.01316	0.09691	0.10044	0.01403	0.10044	0.01611	0.00434	0.06196
Italy:	12 steps								
Criterion	0.02264	0.00226	0.04232	0.06086	0.00663	0.06642	0.12825	0.02127	0.07381
Japan:	12 steps								
Criterion	0.09860	0.01412	0.09860	0.10602	0.01609	0.10602	0.02704	0.00784	0.06204
Netherlands:	12 steps								
Criterion	0.00872	0.00015	0.00954	0.02123	0.00065	0.02163	0.06482	0.00432	0.05926
Norway:	4 steps								
Criterion	-0.04136	0.00181	0.04136	-0.04153	0.00182	0.04153	-0.02446	0.00076	0.02446

Mean - mean of forecasts; MSPE - mean square predicted error; MAE - absolute mean of forecasts

프 에 제 프 에 드 프

- 1. Use both the Monte Carlo and bootstrap approach: no clear winner
- 2. At shorter horizons the direct method appears to have a slight advantage
- When the test strongly rejects the null, the bootstrap appears to dominate the direct approach (i.e., Italy and Netherlands vs. France).
- 4. Comparing the linear and nonlinear results, it appears that an LSTAR model dominates when the test strongly rejects the null; similar performance when models are approximately linear.

- 1. Pretesting for linearity before forecasting appears to be useful; the test has good size for the less persistent ARs and good power at the longer horizons;
- 2. OECD Euro area countries display higher non-linear dynamics of their RER than non-Euro area ones → further research?; REERs appear linear relative to bilateral RERs.
- When the test strongly rejects the null of linearity ⇒ a nonlinear model clearly dominates a linear one; the bootstrap appears to perform better than the direct approach for nonlinear series (evidence is mixed though).
- 4. the direct method performs better at shorter horizons.

< ⊒ ►