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In this paper I aimed to analyze the use of copulas in financial application, namely to
investigate the assumption of asymmetric dependence and to compute some measures of risk.
For this purpose I used a portfolio consisting in four currencies from Central and Eastern
Europe. Due to some stylized facts observed in exchange rate series I filter the data with an

ARMA*%GJR model. The marginal distributions of filtered residuals are fitted with a semi-

parametric CDF, using a Gaussian kernel for the interior of distribution and Generalized
Pareto Distribution for tails. To obtain a better view of the dependence among the four
currencies I proposed a decomposition of large portfolio in other three bivariate sub-
portfolios. For each of them I compute Value-at-Risk and Conditional Value-at-Risk and then
backtest the results.
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1. Introduction

A series of far-back observation have been reported the non-normality of distribution in the
case of almost economic and financial variables. In this sense Mandelbrot (1963) highlighted
for the first time existence of leptokurtosis effect, he indicating the fact that large changes
tend to be also followed by several large changes of cither sign (volatility clustering effect).
Later in 1976, Black underlined the leverage effect as tends of assets prices correlates
negatively with volatility movements. Furthermore in 1998 Ramchand and Susmel
emphasized the evidence of common volatility tends across markets that could lead to

contagion effects.

Taking into account for the existence of all these stylized facts in financial markets, we can
conclude about complex behaviour of the financial instruments. Over the past 20 years it have
be seen an enormous interest for obtaining better knowledge of financial markets. This
process occurs along the rapid development of financial instruments. In parallel there raised
the interest in protecting against some turbulent motions of the markets. Thus the risk
management became one of the most important concerns in both private and academic

environment.

The first step in developing quantitative tools designed to measure the risk of random events
was made by the risk department of J.P Morgan. In 1994, the CEO of J.P Morgan, Dennis
Weatherstone asked to the risk department that every day at 4.30 P.M to submit a report
relating to the bank risk measure and a corresponding risk measure. Thus it takes birth the
Risk Metrics Department managed by Till Guildman that elaborated the Value-at-Risk (VaR)
model. Value-at-Risk is a statistic model which is designed to express the risk of an exposure
by a single number. More exactly Value-at-Risk model estimates the worst potential loss for a
financial instruments portfolio over a given time horizon and confidence level. Despite the
simple assumptions, the original Value-at-Risk provided satisfactory results from the
beginning. For this reason and also because it is relative easily to implement, this model
became the main risk instrument used in banking and financialsystem. Furthermore due to the
increased importance given by the Group of 30’ Report in 1993 and especially the
introduction to Basel I amendment Value-at-Risk became standard measurement in risk

management modelling



But Value-at-Risk have received a lot of criticism over time due to theirs simplistic
assumptions that made this model to have many limitations in quantifying the risks. In 2001
Dembo and Freeman proved that Value-at-Risk models, like volatility, don’t provide a
satisfactory distinction between “good” risks and “bad” risks. In 1997, Artzner called an
axiomatic approach and set some conditions to certify a satisfactory risk measure. Thus
Artzner called the risk measures which satisfy the formulated axioms as “coherent”. He
proved that Value-at-Risk model is not a coherent risk measure because it doesn’t satisfy one
of axiomatic condition, namely the sub-additivity one. Other important criticism was that
Value-at-Risk model only provides a limit of the losses but tell nothing about the potential

loss when the limit is exceeded.

Meanwhile several recent resounding failures as LTCM, Barings Bank, or more recent as
Enron, Bear Sterns or Lehman Brothers which have brought in discussion that used risk
management models do not take enough into account for potential occurrence of extreme
events. This also applies to the Value at Risk model assumptions, which is actually considered
one of the main catalysts for the current financial crisis because it is widely used in banking
and financial system. But returning about first example of LTCM a very interesting fact was
that the worst scenario provided by their models predicted a loss of only 20% as compared to
60% which was recorded when the situation began to deteriorate. In an interview accorded to
the Wall Street Journal in 2000, John Meriweather that with Nobel Prize winners Robert
Merton and Myron Scholes led LTCM to the time of its bankruptcy, he said that globalization
will lead to increasing occurrence of multiple crises and therefore he encouraged consider
extreme events. Instead few years later, Professor Paul Embrechts who is called Mr. Extreme
Values due to its important contribution in this area declared in a Swiss paper that models
with normality assumption (such as Black & Scholes or VaR) perform poorly in practice, one
possible explanation being the existence of heterosckedasticity. Also Professor Embrechts
added that for this purpose mathematics should be used to adjust some kind of models such

that to be consistent with reality.

Thus in recent years have been proposed many alternatives to the original assumption of
Value-at-Risk models. The flash points were to incorporate in Value-at-Risk the
heteroskedasticity and some distributions that take into account the existence of extreme
events. For the first task there appeared several volatility models from GARCH family as
asymmetric GARCH (GJR) proposed by Glosten, Jagannathan and Runkle (1993) or
exponential GARCH (EGARCH) proposed by Nelson (1991) that includes a Boolean function



wich accounts for negative impact of bad news (leverage effect). Also stochastic volatility
models, Fuzzy-GARCH or Markov-Switching GARCH models are other appropriate choices
to model the heteroskedasticity. For the second task I quote the Bollerslev’s conclusion
(1987) that Student distribution provide suitable fits for univariate distribution, but performs
poorly in the multivariate case. Thus a better choice to model the multivariate distribution is
the use of copulas which permits decomposition of joint distribution in dependence structure
and marginal distributions. Of course in the univariate case Extreme Value distributions are
more appropriate in financial modelling than Student distribution. But a more detailed

description of these concepts I will do later.

So in this paper I aimed to analyze the use of copulas in financial application, namely to
investigate the assumption of asymmetric dependence and to compute measures of risk. For
this purpose I used a portfolio containing four currencies from Central and Eastern Europe.
Due to some stylized facts observed in exchange rate series I filter the data with an

ARMAxGJR model. The marginal distributions of filtered residuals are fitted with a semi-

parametric CDF, using a Gaussian kernel for the interior of distribution and Generalized
Pareto Distribution for tails. To capture a better view of the dependence among the four
currencies | propose a decomposition of large portfolio in other three bivariate sub-portfolios.
For each of them I compute Value-at-Risk and Conditional Value-at-Risk and then backtest

the results.

2.Literature Review
The use of copula in modelling economic and financial processes has recorded a fast growth

in recent years, even though the first applications of copulas date back to late 70s.

Copula concept was firstly introduced in mathematics by Sklar (1959) who defined a theorem
according to which any multivariate joint distribution can be decomposed into a dependence
structure and its N marginal distributions. 1959 actually refers only to the appearance of this
theorem for decomposition of multivariate distributions. Sklar explicitly calls copula concept
in 1996 as a function that satisfies the theorem formulated by him in 1959. Epistemology of
copula word comes from Latin and means connection or link. But until 1996, the functions
that fulfils the Sklar’s theorem from 1959 circulated under different names as: dependence
function (Deheuvels, 1978), standard form (Cook and Jonson, 1981) or uniform

representation (Hutchinson and Lai, 1990).



Copula was used for the first time in the joint-life models by of Joe Clayton (1978), studying
the bivariate life tables of sons and fathers. Others important contributions to the Clayton’s

models have been made by Cook and Johnson (1981) and Oakes (1982).

Hougaard (1992) studied the join-survival of twins born in Denmark between 1881 and 1930
using a Gumbel copula (1960). Frees (1995) used Frank copula to investigate mortality of
annuitants in joint- and last- survivor annuity contracts. Also using Frank copula, Shih and

Louis (1995) studied the joint-survival of a series of patients infected with HIV.

After 2000 a wave of copula applications works in finance came due the growing interest for
risk management. Rockinger and Jondeau (2001) used Plackett copula to analyze the
dependence among S&P500, Nikkei 225 and some European stock indices. Patton (2002)
computed the first conditional copula in order to allow first and second order moments of
distribution function to vary over time. Patton (2004) used conditional copulas to analyze the
asymmetric distribution between Deutsche Mark and Yen against Dollar. Jondeau and
Rockinger (2006) use time-varying Gaussian and Student copula to model the bivariate

dependence between countries, while for univariate marginal distributions propose Skewed-t

GARCH models.

Frey and McNeil (2003) and Goorbergh, Genest and Werker (2005) have used copula
functions to account for dependence in option pricing. Hotta, Lucas and Palaro (2006)

estimates Value-at-Risk using ARMA*GARCH model to filter returns, while the marginal

distributions were modelled by an GPD approach and dependence structure by Gumbel

copula. ARMA XxGARCH model was used previously to filter the returns series by Embrechts
and Dias (2004) and Patton (2006). Hotta and Palaro (2006) use conditional copula to

estimate Value-at-Risk for an bivariate indices portfolio.

Chollete, Heineny and Valdesogo (2008) use Gaussian and Canonical Vine copulas to model
the asymmetric dependence between financial returns. Heineny and Valdesogo (2009)
introduce a Canonical Vine autoregressive copula to model dynamic dependence between

more than 30 assets. .



3. Methodology

3.1. Extreme Value Theory

Extreme Value Theory (EVT) represents a domain of the probability theory that deals with
the study of extreme events. Such events are characterized by extreme deviations from the
normal median of their probability distributions. More exactly, the EVT studies and models
the behaviour of distributions in their extreme tails. These rare events are described by a
thickening of the tails that determines an excess of the kurtosis above the characteristic value
for of the Gaussian distribution. Therefore the apparitions of the so-called fat tails are also
known as the leptokurtic distributions. An important remark about the modelling of extreme
events is that it is not necessary to make a prior specification or assumption about the shape of
the studied distribution. In literature exists two main theories that provided two approaches

for applying the EVT theory.

3.1.1Generalized Extreme Value distributions
Thus the first method is known as Block maxima approach and it is based on the theorems

which were introduced independently by Fisher' and Tippett” et al. (1928) and Gnedenko et
al. (1943). This technique supposes that a sample should be divided into blocks and then the
maximum or minimum value of each block is treated as extreme event. In 1958, Emil Julius
Gumbel® showed that depending if the samples of maximum or minimum are bounded below
or above, the extreme value distribution can be modelled as a few known limiting
distributions. More exactly Gumbel demonstrated that if a distribution has a continuous
repartition function and also has an inverse, then the asymptotic distribution of the maximum
or minimum sample will converge to Gumbel, Fréchet or Weibull distributions. Therefore in a
standard form these three types of distributions are considered as Generalized Extreme Value
(GEV) distributions. It also should be noted that the principle of the limiting distributions is
very close to the Central Limit Theoremwhicht limits the normal distribution to a sample of

averages. Firstly we will define the three distributions of rare events:

Gumbel:

! Sir Ronald Aylmer Fisher (1890 —1962) was an English statistician, biologist , geneticist and eugenicist. He
introduced the maximum likelihood approach.

? Leonard Tippett (1902 - 1985) was an English statistician and physicist who studied under Professor Karl
Pearson.

* Gumbel (1891-1661) was a German mathematician and political writer who founded the Extreme Value
Theory together with Tippett and Fisher.
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For a given random vector ¥ = (X,, ... ., )} in which the random variables are independently
and identically distributed (i.i.d.) and & = mas(X,, .. ,&,), then P(# = &} = L"(X]) is the
distribution function of ¥'. Thus for an appropriate choice of constants &, and T, such that
A= @,x + T, it will be fulfilled a convergence of the maxima’s distribution functions to the

following continuous distribution function:
(4) @™ (fux + 7,0 + ¥(x),

where # — @ and ¥(x)is a non-degenerate distribution function that belongs to one of the

three extreme distributions families.



Considering £ = 1/e, von Mises* et al. (1936) and Jenkinson et al. (1955) proposed a

parametization for the GEV distribution to encompasses the three family of extreme

distribution defined above:

(5) WGy = o~ for 14 fr = 0.F 20
) ﬁ-i‘“rf' =]

where & = 1/@ denotes the tail index and indicates the degree of thickness for the tails of the

distribution. More detailed, the tail index reflects the velocity with which the probability
decays in the extreme of the tail and also approaches to zero. Thus the heavier the tail, it will
result a slower speed of decreasing probability and also a higher tail index. A very important

property of the tail index & = 1/f¢ is that this one indicates the number of moments which
exist in a distribution. Therefore for & = 4 results that in the studied distribution it exists the

first four moments: mean, variance, skewness and kurtosis, but the higher moments have
infinite values. The chosen family of the extreme distribution to model the EVT is determined

by the value of the tail index such that:

o If& « €, then it will be chosen a Weibull distribution;
o [f & = @, then it corresponds a Fréchet distribution;

e Andif § = @, it results as appropriate a Gumbel distribution.

From the three families of extreme distributions it has been found that Fréchet distribution it
is the most appropriated to the fat-tailed financial data due to the particularity of its tail index

& = @, because we know the smaller & corresponds to heavier tails.

In 1943, Gnedenko showed the necessary and sufficient conditions for each parametric
distribution to belong to one of the three families of extreme distributions. Therefore he
demonstrated that normal or log-normal distributions converges to a Gumbel distribution,;

when the parameter a denotes degree of freedom, a Student distribution lead to a Fréchet

distribution for its extremes; or a uniform distribution belongs to the attraction domain of a

Weibull distribution.

4 Richard von Mises (1883— 1953) was an austrian athematcian. His brother was the economist Ludwig von
Mises.



A very important advantage of the GEV approach is that for a given unknown initial
distribution, the modelling of asymptotic distribution doesn’t suppose any assumption about
the particularities of the initial distribution of the sample. An exception of this observation is

shaping by the modelling of a parametric Value-at-Risk (VaR).

3.1.2 Generalized Pareto Distribution
This second approach supposes to set a threshold value such that all the realizations over this

limit are considered and also modelled as extreme events. The main idea behind this method
called also peak-over-threshold is that difference between the realized extreme events and the
set threshold are considered as excesses. Therefore peak-over-threshold approach involves the
estimating of a conditional distribution of the excesses situated above a given set threshold.

For a random vector X = (X, ,&,) with a distribution function @, let consider the

threshold V' as ¥V = x,. Thus ¢, denotes the distribution function of excesses over the

threshold V:
(6lg, (sl =PX-v=x|X »vlx=q

Independently Balkema and de Haan et al. (1974) and Pickands et al. (1975) provided

theorems that demonstrated since the threshold + was estimated and for a sufficiently high v
to satisfy ¥ —+ o, the conditional distribution ¢, can be fit using Generalized Pareto

Distribution (GPD). Therefore we will define the following relationship regarding the fitting

of conditional distribution function ¢, using GPD:
(D g,ix) = G plx)v—wxzd,

where

1
x= B\F
(8) G 0q(x) = 1_(1',*57) JorE2 0

1—¢ ¥ , Far §= 0

and
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In the above relations, the parameter ¥ denotes the scale parameter, while f§ represents the
location parameter. An important observation is that in the case when § = @ and ¥ = 1, then

the relations (&) and (%) constitute a standard GPD.

The relationship between GEV and GDP approaches can be expressed as following:

(10} Gg (x) = 1+ log ¥ (x), for log F(x) =» —1.

3.2 What means dependence?

In the probability theory, two random variables are independence if a part of the information’s
genesis of one variable does not found in the other variable. More exactly two random

variables presents independence if and only if it is respected the following inequality:
(ADPrXsxY =y =PriX=x] = PrlY = y].

Instead, the concept of dependence between two or more random variables has to be described
more in detail, owing to the high complexity of the concept. Another very important concept

is the mutual complete dependence that states in the case of two random variables X and ¥, the
information’ genesis of X implies the knowledge of Y, and inversely. Thus the predictability

of one random variable to other can be defined as following:
(12)¥ = F(X)

where f is either strictly increasing or strictly decreasing mapping, implying that the two

random variables are co-monotonic. For a better understanding of the dependence concept, we

will note the most important families of dependence measures.

3.2.1 Linear Correlations



This method for the measurement of dependence between random variables is the most used
in the finance and insurance areas. Thus the linear correlation coefficient is found in the
structure of many popular models like CAPM or Value-at-Risk (VaR). The main advantage of

the linear correlation coefficient is the easiness of the estimation:

Cov[X, Y]
+ Var[X] = Var[Y]

(13)p(XY) =

where Cov[X, Y] represents the covariance between X and ¥, while ¥ar([X] and ¥ar[¥] are the

variances of X, respectively of Y.

The properties of the linear correlation coefficient are the following:

i) e(X¥)e[-1,1];
ii) If ¥ and Y are independent, then g(X,¥) = 0;

i) @(X.¥) = p(¥,X).

When between X and Y exists a perfect linear dependence defined as : ¥ = w+ X, then
@{%.¥) equals +1, depending on whether § is positive or negative. The main disadvantage of

the linear correlation coefficient is that it supposes a normal distribution of the analyzed

series; otherwise it provides the so-called spurious correlation.

The linear correlation coefficient estimates the overall correlation between two random
variables, basing on the assumption that @{X ¥} is invariant only under linear changes.
Instead, Docksum et al. (1994) developed a coefficient that measures the local correlation
between two random variables, allowing to analyze when the correlation remains constant or

not, in order to the random variables’ realizations. Given the relationship between X and Y:
Y = w + X + g, e~tid, then the correlation coefficient admits the representation:
§=ay

(14)p = ———=
\‘}52 ;a:,:r‘g + ':IEE

where @ and g? are the variances of X, respectively of the error term. More exactly the local

correlation allows the analysis of the changes in the correlation strength using a function of



the random variables’ realizations. This approache is very useful in the study of systemic

risks, contagions of crisis or to analysis the flight-to-quality® phenomenon.

3.2.2 Concordance Measures

A very important limit of the linear correlation coefficient is that this one isn’t a robust
estimator of the correlation. Instead the financial risk management aim to analysis the joint
behaviour of the assets, investigating the propensity of the assets to move together. In these
conditions, the linear correlation coefficient can provides misspecificated results according
with most of the empirical studies’ conclusions that testified the non-normal distributions of
the assets. Therefore have been developed other measures of correlation to avoid the
potentially misalignments. These new approaches, named concordance measure, are based
on the idea that ,large” values from one series corresponds to those ,,large” from other series
and also the principle is validating for the ,,lower” ones. Given two independent random

variables X and Y with the realizations (X;.¥,} and [X,.¥;], we say that the two pairs of
realizations are concordance if (¥; —¥;) =(¥;—¥;) =0, eclsewhere these ones are

disconcordance.

The concordance measures fulfils the following properties:

i) e(X¥)e[-1,1];
i) e(X¥) = p(¥.X);
iii) If ¥ and Y are independent, then (X, ¥) = p(¥.X] = @;

iv) If we denote f and g as two linear or non-linear increasing functions,

then: p(f (X}, g(¥))= g(X.¥).

Kendall’s Tau:

5 4
(18) efr et ) = e ) st = )% - 1)

Spearman’s Rho:

> See Malevergne and Sornette (2006) for more details.
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(16) gfreren (X ¥) = = Y (ramk(t) - S5 (rank(¥) -5

(i — i 2

3.2.3 Dependence Metric
Granger et al. (2004) defined the Dependence metrics as any dependence measure that fulfils

the following properties:

i) Given a measure ¥[X,.¥] of the dependence between two random variables, ¥ is

defined for both continuous and discrete random variables;

i) ¥ represents a distance;

iii) ¥ is invariant under the continuous changes of the realizations of X and Y;

Iv) ¥ is ranging between 0 and 1;

v) If X and Y are independent, then V equals O;

vi) If the relationship between X and Y can be defined as a measurable mapping:

X = F(¥}, then ¥V equals 1.

The concept of dependence metric has the role to test the complicated serial correlations,
being used in the forecasting of financial time series and to analyze the goodness-of-fit in

financial modelling. Therefore we will define two of the most important dependence metrics.

Bhattacharaya, Matusita and Hellinger measure:

172

um%ff 1—(%) dEi (x, ),

where f and g are the marginal densities of X and ¥, & is the joint density function and H

represents the distribution function of the two random variables. More in detail, the

dependence metric defined above relates the entropy between the bivariate density function h
and product of marginal densities f and g. The relation (17) measures Y4 of the symmetric

relative entropy between h and f # g for the 2 -class entropy.

Kullback-Leibler distance:




Given the K-class entropy family named as well as Tsallis entropy, we define the Kullback-

Leibler distance as:

(1B)H, =%(1—E[f“"‘]),§; =1

=-E[nfl.k=1

where f is the density function of a random variable or of a vector. Also the Kullback-Leibler

distance is commonly used in Bayesian econometrics to measure the relative entropy in the

moving process from prior distribution to posterior distribution.

3.2.4 Tail Dependence
The concept of Tail dependence tests the probability of two random variables to posts extreme

movements in the same timeframe. Thus the upper tail dependence can be defined as:
(190 = Um,_, Pri¥ = Fri(u) |y = Fri(uw)] ,

This formula measures the probability to records a large value of X, given that Y is itself

large, at level of probability wu.

The coefficient of lower tail dependence admits the following representation:
(200 = Um, o+ PriX < Frr(u)|¥ = 5 )]

If = 0, then random variables X and Y are asymptotically independent, otherwise when
¥ = @ the large events post common movements. In other words two random variables are
independents if it is fulfilling the following conditions:

F(x5)
0 r R

where the numerator denotes the repartitions function of the joint distribution, while the

F.(x) and E,(¥) represents the margins distribution of X and Y.

In real world, two random variables X and Y can denotes volatilities of two stocks, while the

coefficient y represents the probability that both stocks post simultaneously extreme



volatilities. For example we can consider the Value-at-Risk (VaR) model because it constitutes

the subject of this paper. Therefore considering a VaR, we define the two random variables X
and Y as assets or portfolios, u is the confidence level, while Fy*{w) and F-*{u) represents
the two quantiles. Given the same level of confidence w, the probability that X and Y exhibit

tail dependence and exceed their VaR® equals:

(2Z)py * (L —u), where uw — 1.

3.2.5 Quadrant and Orthant Dependence

The main disadvantage of the concordance measures is the fact that they are difficult to
estimate for portfolios with financial assets. Other limit of the generalization of concordance
measures for more than two random variables is related to the “frustration” phenomenon,
which was introduced in statistical physics. The concept of “frustration” says that
constraints tend to determine opposite and divergent states in two interacting variables that
can’t be incorporated in systems of three or more random variables. More exactly the
“frustration” phenomenon generally leads to existence of multiple equilibria. A way to
remove this limit is the quadrant dependence approach (PQD). Therefore we say two random

variables are positive quadrant dependent if admit the following representation:
(23)Pr[¥ = x, ¥ = ¥] = Pr¥ = x] # Pr[¥ = ¥].¥5 7

The relation (22} states that probability of the two random variables to be in the same

timeframe small is at least equal with probability of the case when these ones are independent.
A very important property is that the PQD random variables post a positive correlation
coefficient. In real world an example of the PQD variables are the assets preferred by risk-

averse investors, having a concave utility function.

But to generalize the concept of PQD for cases with more than two random variables we will
define the concept of positive orthant dependence (POD). Thus for N random variables

Xy, Xy Xy we define the positive lower orthant dependence (PLOD) and the positive

upper orthant dependence (PUQOD) as:

® See Malevergne and Sornette (2006) for more details.



(Z5) Pr(X, > %y, u, Xy = x5] &= PriX; > x,] * o= PriXy > x4].

Therefore if N random variables X,,.X;, .. , Xy are PLOD or PUOD, then it results that they

are POD. The POD random variables have the same interpretation as the PQD ones, only that
the principle is generalized for the multivariate case. In financial world, the concept of POD is
commonly used to analyze and to adopt some strategies of trading that are market neutral.
More exactly the portfolio managers are using the concept of POD to reduce and to remove
the impact of market movements on portfolios evolution, therefore aiming to minimize the

propagation of negative effects produced by some potential extreme events.

3.2.6 Conditional Correlation Coefficient
The concept of conditional correlation coefficient represents a very useful tool for researchers

that study the contagion phenomenon among different markets or economies and to detect the
propagation of the systemic risks. Also the notion of conditional correlation coefficient offers
a better overview of the correlation between two portfolio’s assets when the volatility posts

different movements of different magnitudes.

Given two random variables X and ¥, their conditional correlation coefficient admits the

following representation:

Cov(X, Y|ier]
o Var( X\ XeF JVar(Y|XsF)

(26) gr =

where X and Y are conditioned upon XeF , while F represents a subset of R that fulfils the
condition Pr{XeF} = @. Thus the above relation permits to analyze the impact on the
underlying model and of the conditioning set of information on the evolution of g . It has to
be mentioned that relation {26] represents a standard form of the conditional correlation

coefficient that can be generalized for different types of distribution or model.

For example if we consider that X and Y have a multivariate Gaussian distribution with p as

unconditional correlation coefficient, then the conditional correlation coefficient has the form:



&

(ZT)gr = — —

h ol — oy ¥
- irer

Relation {Z7 implies that ¥ar(¥) has not a direct influence on pp, mentioning also that p
can be either greater or smaller than p because Var{X|XeF) can be either greater or smaller
than Var{X}. Also a very important remark states that pz can changes without p to change or

at least p don’t posts the same manner of the change.

In the case when X and ¥ are conditioned upon XeF and ¥els, where F and & are subsets of R
that fulfils the condition Pr{XeF,YeG} > @, then we define the conditional correlation
coefficient as:

Cov(X, V|XeF, VsG]
(28) gre =—
« Var(X |XeF,Ye@ ) Var(Y|XeF, V'eG)

The conditional correlation coefficient on both variables presents a higher grade of difficulty
regarding the transformation into closed formula for several types of models or distributions
as compared with the conditional correlation coefficient on a single variable. Furthermore

#rz does not add any special improvement versus the correlation coefficient on a single

variable.

Many researchers have studied the efficiency of the conditional correlation coefficient to
detect the contagion phenomenon in the case of emerging markets from Latin America during
the 1994 Mexican crises’. In accordance with the conclusions of Calvo, Garcia, Lizondo,
Reinhart or Rose regarding the contagion occurred in Latin America economies, the
conditional correlation coefficient didn’t yield very clear information about the contagion
effects. In addition the conditional correlation coefficient provided artificial changes, while
the unconditional correlation coefficient remained constant. Therefore the conditional
correlation coefficient does not constitute the a very useful tool to study the behaviour of

extreme events.

7 See Meerschaert and Scheffler et al. (2001)



3.2.7 Conditional Concordance Measures
The main idea behind the conditional concordance measures is to condition the random

variables on values that are larger than a given threshold and also let this threshold to

converge to infinity.

Noting 4 = Fp (X} and B = Fp (Y7, it results that the Spearman’s rho gz¥**"™*is the linear

correlation coefficient of the uniform variables A and E that in fact represents nothing but the

correlation coefficient of the rank:

Cov(d, B
+ Var{ A Var (E—'}

EEQ:]F' EQTMaN —
g

A very important advantage of using the correlation coefficient of the rank is that this one
analyzes only the dependence structure of the random variables, as compared with the linear
correlation coefficient that aggregates in addition the marginal distributions of the studied

variables. Given a threshold, we define the conditional correlation coefficient of the rank as:

Cov(A.BFld = a)
Var(4|4A = e)Var(B|A = &)

EEE‘:[ pg"pu‘rmn‘n EE:[ =

where the random variables A and B are conditioned on A, which is larger than =.

Unlike the conditional correlation coefficient, the transformation of conditional rank
correlation coefficient into closed formula for Gaussian or Student distribution presents a
greater grade of difficulty. Instead the researches made by Meerschaert and Scheffler et al.
(2001) and Edwards and Susmel et al.(2001) in analyizing the contagion across the Latin
America markets during the 1994 Mexican crises concluded that the conditional Spearman’s

rho provides a higher accuracy than the conditional correlation coefficient.

3.2.8 Lagged time-varying dependence
A very disputed topic in the fields as economics, econometrics or finance is so well-known

concept of causality between two time series X ()} and ¥(#). The concept of causality used in

the mentioned domains doesn’t represents a causality in a strictly sense. Therefore the concept
of causality used in economics, econometrics or finance aims to analyze which economic
variable might influence and determines other economic process. Causality is widespread

used to study the interactions between GDP and inflation, unemployment and inflation,



interest rate and exchange rate, bond yields and stock prices, a.s.o. Thus a naive measure of

causality is the lagged time-varying dependence:

Cov[ (XY (t + 1]
FL) Prrim =
FL) Pazis JVar i Var ¥}

where ¥ represents the time lag.

Given a positive ¥, the lagged cross-correlation coefficient gy sy states that the knowledge

of X at t provides information on the future evolution of ¥ at a later moment ¢ 4 ¢#. But it

have to be noted that the lagged cross-correlation coefficient doesn’t imply unguarded the
existence of the causality between the two time series. This phenomenon is owed to the fact
that correlation between two time series is provided by a common source of influence. The

main deficiency of the lagged cross-correlation coefficient pgyrzis that this one represent a

linear measure of dependence and could omits important properties of the non-linear

dependence.

The most used approach to test the causality is the so-called Granger causality that states

between two time series there exist causality if the knowledge of X(t} and of its past values
improves the forecasting of ¥{t + ), for a positive #. Also it have to be mentioned that the

Granger causality is just consistent related with the real causality, being in accordance with

Hume’s principle that the effect has to succeed the cause over time

3.3 Copula models

In probability field, a joint distribution can be decomposed in a dependence structure that
represent a copula and into marginal distributions related to the number of random variables.
So the copulas describe the dependence between two or more random variables, with different
marginal distributions. The main advantage of using copulas is that this procedure allows the
modelling of both parametric and non-parametric marginal distributions into a joint risk
distribution. Also the dependence structure of these joint risk distributions created by copula

models are characterized more in detail as compared with a simple correlation matrix.



Mathematically speaking, in order to notations used by Nelsen (1999), the notion of copula

can be described as following:

Definition. A function C : [&,1]™ = [.1] is a copula with n dimensions only if it follows the

properties:

i) ¥Ywe [01],C (1w Lu,L . 1) =u
i) ¥uw,e[01],C (2w, .. u,)=uifat least one of the u,’s equals zero;

iii) C is n-increasing and grounded, therefore the C- volume of every box is positive only

if its vertices are ranging in [0,1]%,

Also there have to be mentioned that if a function fulfils the property i) then respective
function is grounded. The name of “copula” attributed to the function C results from the

following theorem.

Sklar’s Theorem (1959). If F is a n-dimensional joint distribution function with the

continuous marginal distributions F, .. ,.F;, then there exist a unique n-copula C

[@.1]™ = |&.1], such that:
(32) Flyyme pxy) = C(F (oo B (x0))

for every %y,.. ,%, €&. A very important remark about Sklar’s theorem is that C is unique
only if the F,,.. .F, are continuous. In conclusion, the theorem mentioned above shows that

any joint distribution can be dimensioned in a copula and into marginal distribution functions.
In 1996, Sklar defined copula like “a function that links a multidimensional distribution to its

one dimensional margins”.

Inversely, if there are known the density functions for the n-dimensional joint distribution and

marginal distributions, then the copula is given by the following formula:
(33) €t e ) = (772 () P )

as Nelsen (1999) mentioned that above relation hold only if the F,,.. ,E, are continuous.
Also Nelsen (1999) shown that for a bidimensional distribution function, the two margins F;

and F, are given by F (x,)} = F(x,,+w], respectively F; (x ) = F(+a x ).

Other powerful property registered by all the copulas is referring to theirs invariance:



Invariance Theorem. Let define n continuous random variables ¥, ..,¥, that have a C
copula. So, if g4(¥; 7w - @, ¥, ) @re increasing functions on the range of ¥, .., ¥ , then the

random variables ¥,=g (¥,), ... , X,=g,(¥,) have also the same copula C.

More exactly, the above theorem underlines one of the most important advantages of the
modelling using copulas, namely that the dependence structure is insensitive to the

monotonically changes of random variables.

In accordance with the Lipschitz’s condition of continuity on [Q,1] * [Q,1], we will define the

following property of copulas:

Theorem. Let consider an n-copula C. Then for all ©q,m ,u, «[@1] and all

Ve e o8, €[0,1]:
(34} |[Clwyr we r g} = €C0gpume ptig}] € [y — g |+ o F g — wl.

The above relation is given by the property that copulas are n-increasing. Roughly speaking,

the theorem states that every copula C is uniformly continuous on its domain.

Other important property of these dependence structures refers to the partial derivatives of a

copula with respect to its variables:

Theorem. Given a n-dimensional copula C, for every & [0.1], the partial derivative ¢€/dv

exists for every ¥ & [@,1]. such that:

(35) 0= S (uw)= 1.

Also it have to been mentioned that the analogous is true for /@ . Additionally the functions
u— O (u) = dC(u,v)/dv, respectively v — €, (¥) = #C(wv)/du are defined and non-

decreasing almost everywhere on [0,1].

3.3.1 Examples of Copula Families
Furthermore we will present a few examples of copula families.

Product Copula




Definition. Let denote H, and H, as two random variables. These ones are independent if
and only if the product of their distribution functions F; and F, equals their joint distribution

F:
(36) Flry,n) = F (n) ¥ F (), forall n,ne f.

Theorem. Given two random variables &, and F; with continuous distribution functions
F, and F, and joint distribution F, then H; and H; are independent if and only

if €, =11
Therefore it will result the independence copulaC =J] from:
[:3?:1 n(':#l,- u ’T‘#:j = H?::LT#E.

Also the relation (36) becomes obvious from the Sklar’s theorem that states as there exists a

unique copula C :

(38)P(Hy B n, Hy & np) = Flr,n) = €(Fi(n).F (n)).

Elliptical® Copulas

The most important examples of elliptical copulas are the Gaussian and Student copulas. In
fact, from technical viewpoint, these two copulas are very close to each other. Furthermore
the two copulas become closer and closer in their tail only when the number of freedom

degrees of Student copula increases.
Gaussian (Normal) Copula

According to the notations used by Yannick Malevergne and Didier Sornette (2005), a

Gaussian n-copula C can be defined as following:

(BONCTa " (Uyp e Uy ) = Fon (@ (2t )r e @~ 1))

¥ The name come from the fact that for each iso-density locus represents an ellipse.



Curmnulative Probability

where @ denotes the standard Gaussian distribution, @, 18 the n-dimensional Normal
distribution with correlation matrix @. The Gaussian copulas are derivate from the

multivariate Gaussian distributions.
So the density function of the Normal copula is given by:

X TR
{4‘3}"5}:&3{:“1,- lllpﬂﬂ} = _E::".’IT:

COF of Gaussian copula with te=0.5

POF of Gaussian copula with tho=0.5

Probahility Density

Figure 1. CDF and PDF of Gaussian copula

Noticing with ¥*(u) = (@™ (1w, ), v ™% (u,, ), then it will result:

1 1
(11555 (1 v i) = ————8xp(— 4 “(wl(e™r = Dy(th

NeoT



Student t-Copula

Also the Student t-copulas are derived from the Student multivariate distributions. Likewise
the Gaussian copulas, t-copulas are found in the form of meta-elliptical distributions,
providing a generalization of the multivariate distributions. More exactly, the meta-elliptical
distributions have the same dependence structure like n-dimensional distributions, but differ

in their marginal distributions.

Let denote T,

wes @S @ multivariate Student distribution with v degrees of freedom and

correlation matrix :

i
1 .ﬁ-qy_) Fy o i
Ed}z:ITH,ﬂ,SEx:I = tﬁ 3 E e lf e l[ .
« GELE 13[3} (7Y -5 - (1 4 xtEt?-lx) Z

then the Student copula is:

6 =) Tl (PRI ol SN s ) PRSI s Y ) 8

where T, is the univariate t distribution with v degrees of freedom.

Therefore the density function of the t-copula is defined as following:

o e ) M G

T PER] (o)

() e am e (U e, Uy ) =

where #(x) = (Tyt (e ), .  T7 (ug )],

The Student copulas are characterized by two parameters: the shape matrix o, which also

appears in the Normal copulas, and the number of freedom’s degrees + that supposes a high



Cumulative Probability

level of accuracy for its value’s estimation. Thus the t-copula presents higher degree of

difficulty to use and to calibrate than the Gaussian copula.

POF of T copula with tho=0.5

CDF of T-copula with rho=0.8

ra
A

Probability Density

]

0 02

U2 Ul

Figure 2.. CDF and PDF of Student copula

From the principle of Large Numbers’ Law it results that when the number of freedom’s

degrees v incline to infinity, then the Student copula tends to Normal copula:

(45)w = 4o, sup, o oapt (Crpa (W) — €, ()] = 0.

Archimedean Copulas

Unlike the meta-elliptical copulas, Archimedean copulas are not derived from the multivariate

distributions through the use of Sklar’s theorem. In addition the Archimedean copulas can be



defined as the closed-form solutions. A copula belongs to Archimedean family if it fulfils the

properties:

Definition. Given ¢ as a continuous function from [0,1] onto [&,«], strictly decreasing and

convex, such that @(1} = & and ga['ﬂis a pseudo-inverse of g:

[-1]
(46)@t1(t) = Eif t;::lr;i;?ﬂﬁ t % ?E‘:‘jr

then the function
(47) C(uv) = " (@(w) + @(¥))
is an Archimedean copula with generator g .

A strict condition for C to be an Archimedean copula is that :

b=l
(—1)* Li‘.x-j = @,as ¥ k= 0,1, ..,%, or more exactly if @ is monotonic.

Thus we can generalize relation (15) for n-Archimedean copulas:
(48)C, (tyr e ug) = @ V(e ) + o + @luy) )

The main idea behind Archimedean copulas is that the dependence structure among n

variables is represented by a function of a single variable, which is the generator ¢.

From the large Archimedean family of copulas, we will mention the most known of these

ones:
Clayton Copula

Joe Clayton (1978) has used for the first time the concept of copula in the joint-life models,
studying the bivariate life tables of sons and fathers. Others important contributions to the
Clayton’s models were developed by Cook and Johnson (1981) and Oakes (1982). A Clayton

copula can be defined as following:

(49)€5™ ™ (u,v) = mas([u=? + v~% - 1]_E,.E!],.E‘ e [—1,=),



having the role of a limit copula, with the generator () = %(t'g — 1), whose Laplace

transformation is a Gamma distribution.

Thus the density function of the Clayton copula is:

—
-

(50)cg ™™™ (u,v) = (L+ @)[ur] 52w +v~f - 1)7"%.

Gumbel-Hougaard Copula

This copula developed independently by Gumbel (1960) and Hougaard (1986) admits the

following representation:
1
(1)cg meaRENacaTd (o, o) = eup(—[(~ln ) + (- w}¥]F), B« [1,20),

with the generator @(t) = (—Inz)”.

Using this kind of copula, Hougaard (1992) studied the join-survival of twins born in
Denmark between 1881 and 1930.

Frank Copula

In 1979, Frank introduced the following copula:

(™ = 1)~ 1)
_E_ ,l

1
(5Z)Cem ¢ (m,v) = _EIHE 1+ 1.8 &R,

-
having the generator @(t)} = —lrll"ﬁ?_r:':[ .

This type of copula is very suitable for empirical applications, due to its desirable properties.
In 1995, Frees used Frank’s copula to investigate mortality of annuitants in joint- and last-
survivor annuity contracts. Also using Frank’s copula, Shih and Louis (1995) studied the

joint-survival of a series of patients infected with HIV.
Extreme Value Copula

An Extreme Value Copula can be defined as following:

Extreme Folue | - —_ -_ 1 — 1
(53)CE I;f:tl_,...,f:rﬂ'_l—axp[ v e l““}]



Probability Density

and  (S4)V(xymn %) = [ mas, (g} dEf (),

where H is any positive finite measure such that j; w, dH (w) = 1 and

W, = {weRLEL, w, =1} .

POF of Frank copula with theta=0. 3

POF of Clayton copuls wath thetys( 9 POF of Gumbel copela with thatas1 2

Probisbilty Densiy

0o 02
COF of Cliyton copuls wif theta=09 COF o Gumibl copda wth hatmet 3

2 00 o

COF of Frank coguia w thten0 3

Cumdatn s Progabity

Figure 3. PDF and CDF of Archimedean copulas

Plackett Copula

Plackett copula which was introduced in 1965 after the name of the English statistician Robert
Plackett, it is a very useful toll in many application in finance that analyzes the bivariate
dependence. Like Student and Gaussian, Plackett copula presents completely symmetry in tail
dependence. An important remark is that Plackett copula which is one parameter copula
doesn’t belong to parametric family, but in applications it is usually nested with Elliptical

copulas due to the absence of asymmetry. The Plackett copula is defined as following:



(550 ¢ Flashett = _2,::3.1_ T [1 +0 -1+ vl - 411+ 08 -1l 4 vl]* - hwdls - 11] ifesl

307 Fe=1

Starting from ‘BB7’ copula of Joe (1997) or Joe-Clayton as it is also known in literature,
Patton (2004) introduced the Symetrised Joe-Clayton(SJC) copula:

(56) €%, vlt¥. ¥ =05 = (€ (W, vt )+ (1 - w1l — vtV ) fut v — 1)

Unlike originally ‘BB7°, the Symetrised Joe-Clayton copula may take into account for
completely presence or absence of asymmetry in the tail dependence. In fact the SJIC copula

U=

represents a special case of the Joe-Clayton when T 7*. Empirical facts indicate SJIC

copula as a more interesting choice to model the dependence in economic and financial

Processes.

Fréchet-Hoeffding Upper- and —Lower Bounds

In the case of a copula C with n dimensions, giving all t., ... ,t,, & [€,1], then:
(87 mack (ug + - F oy — 0+ L0 SO0 m Uy ) S mun (T, o Ty )

The properties of Fréchet-Hoeffding bounds are very important for the study copula science,
because the lower bound is an Archimedean copula, while the upper bound apart to the family
of Extreme Value copulas. Furthermore the upper bound has the special property that is the
strongest form of dependence met at the random variables. In addition, the Fréchet-Hoeffding
upper bound represents itself an n-dimensional copula, while the lower bound is a copula only

in the bivariate case.

3.3.2 Copula-Garch Model
A major criticism of the copula models in the favour of multivariate GARCH model was That

former suppose a static measure of dependence. Even though the separately modelling of the
marginal distribution and dependence structure provides a higher degree of robustness over
time of the copula parameters, the empirical findings proving that the high frequency data
records a continuously switching of the regimes. Thus in 2001, Patton took the first initiative
to extend the copula function to conditional case, in order to account the impact of the past

information on the state of copula parameters. He introduced for the first time the concept of



time varying dependence which does nothing to incorporate the heteroschedasticity in

dynamic copula modelling. So to extend the Sklar’s theorem to conditional cumulative

distribution functions, Patton has defined the following conditional 0-algebra:

(58)o — algebra = ofyy_ g ¥oo1r e Faz-1r Fre-2r Fon-gr Frzogr oo §

fort = 1,.. .. In fact the above equation tell us that 0-algebra is generated by all the past

information up to time t. Therefore the Sklar’s theorem cam be expressed as:

CEOF P 1er e Yop| 0 — algsbra) = CAF {0y, | — algsbra), . Fup(¥ne|or — algsibra)| o, — algsbra)

More exactly the main idea behind the equation {58} and (5%} is that in modelling of the marginal

distributions, the conditional mean follows an autoregressive process, while the conditional variance

is modelled as a GARCH(1,1) process.

Further I will define the time-varying equations for Gumbel and SJC copulas which I will use
later to model the dependence between exchange rates over the analyzed period. A general

form of the conditional dependence can be expressed as:

1 T
(60)p, = A| & +fo._y + “EZ @_Lcﬂt-f}@-l&t—f}
F=1

where =" is the modified logistic transformation that holds the dependence parameter

147X
p. in the interval (-1,1). The right hand of above equation contains an autoregressive term
@@.-q , a forcing variabile and m denotes the window length. Equation (8%} was designed for

modelling dynamic Elliptical copulas.

For non-Elliptical copulas Patton proposed the following general form to model the evolution

of the dependence parameter:



(1]
1
(61)8. = A| a+ f8.q + “;Zh‘r-f - Vs
F=1

where A is an appropriate transformation function designed to keep the dependence parameter

1

in its domain. This transformation function can take different forms as: = for tail

dependence, e* for Clayton copula or &+ 1. For SJC copula Patton proposed the following

dynamic equations:

T
1
(62)rf = A| wy + 6,72, + ﬁvﬁzmr-f — Vs
F=L

"
1
(62)r: = Al oy +F7i, + o, EZP‘*:—; ~ Ve-r
F=l

where F and 7} represents the upper, respectively lower tail dependence and |u,.. 5~ Vg

denotes the mean absolute difference over the past observations. Thus the window length can
be seen as a switching parameter of the forcing variable. A very important remark is that the
Patton’s model for conditional dependence supposes the time-varying of parameters
according to defined dynamic equation, while the functional form of copula remains constant
over horizon. Instead Rodriguez (2003) proposed a Markov switching regime for the

functional form of copula.

3.3.3. Estimation of Copula’s parameters
In the fields of economics, finance or actuarial risks it exists a lot of aproaches used to

estimate the parameters of copulas. Broadly speaking we can devide such techniques of

copulas’ estimations in three main categories: nonparametric, semi-parametric and parametric.

3.3.3.1 Nonparametric estimation

Empirical Copula

Paul Deheuvels et al.(1979,1981) elaborated the first approach for the estimation of copula’s

parameters, which is based on the generalization of the multivariate distribution’s estimator.



Thus for a random vector ¥ with n-dimensions ¥ = (¥;,... ,¥,] and for a sample size T,
(G (03 (L) ey 35 () B (7 (70, 32 (T 0y e, 35, (7Y }} 5 then there have to estimate the

empirical density function F of ¥":

T
. 1
(63} P(y)= I—.Z L, by mee iy (et
k=1

and the empirical marginal distributions of ¥;’s:

T

T |

(64) E(y) = fz Lo tedang e
=L

Given a copula C, applying the Sklar’s theorem we will obtain a unique nonparametric
estimator, which is defined at discrete points {ir- £ o ,%E'), having i€ {12, .., T}. Operating the

inverse of the marginal distribution function, it results the so-called empirical copula:

T
by [ 1
(65) €( ) = 7.0 s s, T 5 00T
k=1

where ¥, (k: T) represents the k™ order statistics of the sample E}?g(lj, e s ¥y (7).

There have to be noted that almost surely the empirical distribution function F converges to
the underlying distribution function Fas T — @, also resulting that this property holds for the

nonparametric estimator:
s o e i e

(66) sup, g |€ () — C(u)| ———— 0.

In the same manner we can estimate the empirical copula density:

L
(5?3{ g(t_j-r . rt_ﬁ} = [ Erif E.H:I.Et:l.lrjr ...,Pﬂtian)}hElﬂﬂgﬁ! to the SBI]'IIJ]B,
T T U, inrest

Multivariate Kernel Estimator



Fermanian and Scaillet et al.(2003,2005) proposed a kernel approach to estimate the
parameters and the derivatives of a copula. The Gaussian kernel is probably the most

widespread used in economic and financial modeling, being defined as following:

1

1 2
(67)@(y)= —=e"2".
A

Given a random vector ¥ with n-dimensions ¥ = (}]... ., and for a sample size T,

(G (32(1)s e 3 D} o, G (T 32 (T e 3 (0 ] such that
F(Yy o, ¥,) = C(F, (¥, o, F,(¥,)), the kernel estimator of F(x) is:

(68) P(y) = ;Zﬂe (=21,

and
i
(69) 673) = f e(Oat,

where @(¥) is the density function, and (h,, ... k,) represents the bandwidth, satisfying the

conditions:
(FQ) (T )= @, ¥ T, L ¢ {1 un, B}

and

n n -1
(?131_[&1.(5"” Tl_[mm] =0, a5 T = w0,
=L =1

More detailed, in practice the bandwidth is set as k, = &, [:—r}ﬁ, where &; is the standard

deviation of the sample {3, {1}, w37, (T 1.

Thus the kernel estimator of a copula admits the following representation:

T
) 1 wy, — F () u, — B v*_]
(2} €Lty poe, Uy, ) = Fz Ko, (%)n Y. S ).
=1



where Ey (') is a kernel with the bandwidth h, while P

", represents the empirical

repartition functions of the marginal distributions.

Fermanian and Scaillet have demonstrated that under mild conditions, the kernel defined by

relation (7Z) converges asymptotically to Gaussian distribution as:

[T

(73) (T l_[ .&,) = (C(w) — C(u) ) wﬁfca,c(n}}.
=1

3.3.3.2 Semiparametric estimation

Semi-parametric approaches are very useful estimation when the sample is not large enough.
This technique supposes the use of a parametric estimation only for the copula and

nonparametric one to estimate the univariate marginal distributions.
Parameters’ Estimation based on Concordance Measures

This approach supposes a nonparametric estimation of the parameters that depend only on the
copula. The main idea behind the approach mentioned before is that once the parameters have
been estimated using concordance measures are expressed the parameters of copula as
functions of the former ones. Oakes et al.(1982) emphasized the relation between the

estimated parameter & of Clayton copula and Kendall’s tau as:

2T
1—1

(74)6 =

So that the estimator of the parameter 6 is defined as following:

2ty

(?:’:[ﬁf - 1 — f}_

where T represents version of Kendall’s tau for the sample. Given the bivariate sample of
size T: ({2, )r e (2 3p) ], we define 75 as:

e-r

(76)f, = YD



where € represents the number of concordant pairs: (x, = x;}* (3, = 3;} = 0, while D

denotes the number of discordant pairs (x; — :,::_l__.} = (3, — }r?.} = .

After Lindskog, McNeil and Schmock et al.(2003) have demonstrated that for any elliptical
copula which provides a dependence structure for any pair of random variables there exists

the relation:
2
(Z7)r =  arcsing,
13
in the same manner it is obtained p for the bivariate sample defined before:

(78)8, = sin ['L;Er}.

The main advantage of this approach is represented by its simplicity, but it don’t provides a

very accurate estimation of the parameters.
Pseudo Maximum Likelihood Estimation

In 1995 Genest, Ghoudi and Rivest provided a more elaborated method for estimating the
parameters of copula, based on the maximization of a pseudo likelihood function. Given a
sample of size T {(3y (L) 3% (L) ceer ¥ (LI o evnr (370 (T 352 (T o, 35, (T }} which is derived
from a common distribution F that have a copula € and margin distributions F, such that for
the random vector U it is obtained the following relationship: &, = F,(¥;}). Let consider & as
the vector of parameters of the copula € and supposing that T = C{-; #) belongs to the

family of copulas {€(t,u. Ug; &); eR}, then we will define the likelihood function of the

sequence {[ﬂl(k:l = E}_Cﬁ_(%}}}, ...,[t::ﬁ(k} = Fy (g Ek}}}}:ﬂas following:

T
(79)Ink = Z In ¢ (Fy (g ()} oo B (e (X 11 6,
=1

where ¢(r; &) represents the density function of £(; &I. Because the sequence

{[ful(.&] - E;_E,vl(kj}}, ...,[uﬁ(k] =P, Eﬁitk]}}} is independently and identically

T
k=1

distributed (i.i.d.) it results that also all the ¥,(%])’s are also i.i.d. Another important remark is



the fact that since the marginal distributions are unknown then it is desirable to use the

empirical marginal distributions F; for the estimating of random vector U:
(80) U= (B(5), -, B(5D).

Also it has to be mentioned that extracting the pseudo-sample {(, (&), . ,flg,(k'_)}}; L €ven
all the y(K)’s are i.i.d. the (k] = F.(¥,(k}] isn’t i.i.d. Therefore based on the sample of

size T {(3% (205 (L) s 35 (1) Jowwe s (g (T 32 (T )0 e 35, (T) }} and substituting all u(k)’s

with #(&)’s in relation (18}, we will define the pseudo log-likelihood of the model as:

T
(81) InL = Z111:Izﬁ_lz_vl(ﬂ}....,Ee&nﬁtj};ﬂ}.
=

In these conditions, maximizing the pseudo log-likelihood we obtain the estimation of the

parameter vector £
(82) 8; = arg maxg In £ (fy (£}, o, v (00 €)-

In conclusion, the pseudo maximum likelihood estimation is more reasonable for the low
dimensional sample, while the Kendall’s tau is probably the best when we work with large
portfolios because the last one requires less time consuming. Genest et al.(1995)

demonstrated that in the case of Clayton’s & the pseudo maximum likelihood estimation

provides a smaller variance than the Kendall’s tau.

3.3.3.3 Parametric estimation

In literature exists different parametric methods used for the estimation of the copula’s

parameters. So we will define the most known of them:
Canonical Maximum Likelihood (CML) Estimation

The CML approach supposes an estimation of the copula’s parameters, without any
assumption about the parametric form of marginal distributions. Thus CML technique uses
nonparametric approaches such the kernel estimation for the modelling of marginal
distributions. Maashal and Zeevi et al.(2002) proposed an estimation algorithm based on

crossing of the following two steps:



i) Firstly using the empirical marginal distribution, a given dataset [(¥f,w.,?5) with
t=1..., T is transformed into uniform variates
(L e fIT) = EF:.E}’:I.r:Ir o rﬂ(?nt:[};

i) Secondly it is estimated the vector of copula’s parameters & as:

(83)8y,; = argmax L(#), where
T
(84) L(6) = E In e(@%, ..., 85,

t=1
Therefore the main advantage of the CML approach is the easily of its utilization from the

numerical viewpoint.

Exact Maximum Likelihood (EML) Estimation

The EML approach is based on an algorithm which estimates commonly the parameters of

both the copula € and the marginal distributions. Thus for a dataset (xf....¥%} with
t = 1,.. . T, having the marginal distribution F;, its univariate density function can be defined

COPESE T ACH S AS) ] |l | 1E3)

where ¢ represent the copula’s density function that is resulted from the following relation:

FCCThy p ey Ty )
(EE:I G‘[:T#L,...,.-T#H:l - W.
Also we denote the vector of parameters ¥(#, &) with & = (#,, ...8,) representing the

copula’s parameters, while the parameters of marginal distributions are defined

as: d = (&, ... 8.0

Thus given the repartition function of the marginal distribution F; and their density function

f: the log-likelihood function admits the following representation:



T T =
(7Y L) = ) Inc (B 058, 5 8,18 + D Y (£G58)).
==1 e=li=1
Therefore the EML estimator maximizes the relation 2] such that:

(88)#g,,, = argmax L(§)

From a statistical view the EML method provides the highest degree of accuracy because its
properties are the nearest ones front MLE, but the computational difficulty of this approach is

much greater than CML.
Inference Functions for Marginals (IFM)

The main idea behind the IFM approach is to estimate separately the parameters of marginal
distributions from the copula parameters. Thus the algorithm of this method is compounded

by two steps:

i) Given that the relation (Z&] is equivalent with:
(BR)LE) = L,(8,8) + L.(@),

then the estimation of the marginal distributions’ parameters admits the following

representation:
(90) 8z, = argman E,(8):

ii) Secondly, knowing the parameters of marginal distributions, we estimate the copula’s

parameters £ as:

(91) By = argmaz L, (8,80, ).

Numerically, the IFM approach provides a better accuracy than the EML method even the
algorithms of the two method are very closely.



3.3.4 Goodness-of-Fit Tests
Given that we can choose from a wide range of models in order to estimate parameters, the

efficiency of the selected method will be establish by comparing the empirical distribution to
the theoretical one. Therefore we define two distances and one information criteria that are

designed to amount the efficiency of the chosen approach through a backtesting.
Kolmogorov-Smirnov Distance

The Kolmogorov-Smirnov(K-S) approach determines the maximum local distance among all
quantiles, noting that the maximum is most often located in the bulk of distribution. So that

the Kolmogorov-Smirnov distance is defined as:

(92)D%F = max, |F 2 (2%) — Fa(2®)

’

Where Fp(z¥) and Fs(z%)denotes the empirical distribution, respectively the x”
distribution of the random variable z. The null hypothesis of the Kolmogorov-Smirnov test is
that the sample is drawn from the y? distribution. In addition, for a higher accuracy of the

measurement, we define the average of the Kolmogorov-Smirnov distance:

(93) D& = f|£;a(z=} — Fa(2%)|dF (27,

Unlike £2%¥ that can present a higher degree of sensitivity to the presence of outliers, the
4w 1S less sensitive to an outlier because this one is weighted with the order lfT, where

represents the size of the sample.
Anderson-Darling Distance

Like the K-S distance, the Anderson-Darling (A-D) distance asses the existing differences
between a sample and a specific distribution. Thus under the null hypothesis about a
distribution, the Anderson-Darling distance assumes that sample’s data arise from the specific
distribution and therefore transforms the data into a uniform distribution. So the Anderson-

Darling distance admits the following representation:

[For (2%)— Fa(a®)

JFe - Fa)]

(94104 = man




while the average of A-D distance is defined as:

|FB=- (z%) - Foa (%)

(es)piz? =
_\J‘llFxs(zz",[[l— F.s(z%)]

dPn(z .

Also like B¥~%, the point which maximizes the argument of the max(-) function especially

exerts a control on the D4~¥

also makes it more sensitive to the presence of outliers.
Therefore P42F provides more valuable information about the similitude between the sample

and specific distribution.

Also other important approach to check the efficiency of chosen copula is to compute the

Akaike information criterion (AIC), which is given by:

(96) a1¢ = 2 In L( (y (0 wr 35 (0 }: ) + 2 dim @,

where (3 (), ..., 3, () ] represents a vector of random variable and 8 is the vector of copula’s

parameters. In this paper I use the information criteria to chose the best copula.

3.3.5. Simulation
Once the copula parameters were estimated and marginal distributions were modelled using

Generalized Pareto Distribution, the next stage is to simulate the jointly dependent returns of
the FX portfolio. Thus simulating the cumulative distribution function for a given horizon of

time, we can compute VaR measures.

Firstly we have to generate randomly dependent uniform variates for each series for a given
horizon of time. Using the estimated parameters for dependence structure of our portfolio
given by each type of used copula, we simulate n trials that are uniformly distributed U(0,1).
For this first task I have given an example of bivariate copula, using the method of conditional

distribution:
(97)c, (v)m PV £ v, U= ¢)
for given random variables & and ¥ with C(u,v), where ¢, is the conditional distribution

function for the random variable V at a given value u of UJ. From previous relation we can

write the conditional distribution as:



(98)c. () = _,}E_EGE(R + &u,:i— € (u, v) _ j—xﬂtﬂrﬂ ()

Given the above result we can generate N pairs of {t,%') of pseudo random variable. For reach
this goal, the first step is two generate two independent pseudo random variables w and z, and

then we compute the inverse of conditional parameters as:
(99)w = ;2 (2),

taking into account the estimated for each copula. Instead for some copulas like Gumbel, this
invers can’t be calculated analytically and it is numerically computed. Then using the Monte
Carlo simulation we obtain a desired pair vector of random variables in order to the estimated

dependence parameters:
(100) (3 = @7 (why, = @71 (¥) ).

But this procedure using Monte Carlo simulation is performed iteratively N times to obtain a
sample ¥ = [}r':ﬂ, _T_,r':ﬂ, - };': =! The main advantage of simulation with copulas is they allow
for a differentiation in the type of dependence structure and marginal distributions. For
example we can use Student and Gaussian copula to simulate random vectors in which the

marginal distribution follow a Student, respectively Gamma distribution.

10000 Simulations using T-Copula 10000 Simutationss using Gausssan Cogula

%2~ 1(8)

K1~ Gamma(2,1)

Figure 4. Monte Carlo Simulation eith Copula



The second stage consist in the transformation of uniform variates into standardized residuals
using for this purpose the inversion of semi-parametric marginal CDF which in this paper are
modelled with GPD. At this step are simulated standardized residuals that have the same
features as those resulting from a filtering process with an ARMA x GARCH model.

Using the parameters of dynamic equations estimated with an ARMA X GARCH model, at

third stage reintroduce autocorrelation and heteroskedasticity in the simulated standardized

residuals to obtain conditional returns.

3.4 Risk Measurements
In finance theory, a metric for market risk represents a measurement of uncertainty related to

future evolution of the portfolio’s value. In fact a risk metric attends to summarise the
potential deviations over time from an expected value of a portfolio, which are defined as

profits or losses.

The first step in developing quantitative tools designed to measure the risk of random events
was made by the risk department J.P Morgan. In 1994, the CEO of J.P Morgan, Dennis
Weatherstone asked to the risk department that every day at 4.30 P.M to submit a report
relating to the bank risk measure and a corresponding risk measure. Thus it takes birth the
Risk Metrics Department managed by Till Guildman that elaborated the Value-at-Risk (VaR)
model. VaR is a statistic model which is designed to express the risk of an exposure by a
single number. More exactly VaR model estimates the worst loss for a financial instruments
portfolio over a given time horizon and for a given confidence level. Thus the first form of the

VaR model was defined as:
(101) VaR, . = —q.X,

where h is the horizon of time, 10@(1 — @)% denotes de confidence level, g, is the lowest

quantile of distribution function and X represents the value of a given assets or portfolio. In

the case of normal distribution N( g, ], there could be used the normal transformation:

. H.— B
(192) 2, = =—

to define the lowest quartile of distribution as:

(L03)g, = Z,0+ &



where Z , denotes the lowest quantile @& of the standard normal distribution.

Therefore the previous two relations lead to Analytical VaR:

(LO4)Vak,, = —( 2,0 + &)X,

Over time there have been developed various methods for calculating VaR , among the most

important are Historical VaR, Bootstrapping VaR or Monte Carlo VaR.

But VaR have received more criticism due to theirs simplistic assumptions that made these
model to have many limitations in quantifying the risks. In 2001 Dembo and Freeman proved
that VaR models, like volatility, don’t provide a satisfactory distinction between ”good” risks
and “bad” risks. In 1959, Markovitz introduced the concept of semi-variance as a downside

risk metric that measures the variances of returns which fall below than an expected return:
(105) Semt — Vartance = E[:[mm[-:r,fe —E(R)}) },

where R is the return and E denotes the expectation operator.

Starting from the above relation, Dembo and Freeman (2001) proposed the concept of Regret
as a downside risk which replaced the expected return with a benchmark return. Thus the

Regret concept was defined as:

(106)Regrst = —E(min (0,R — Benchmark_Return) }

From the above relation it could be easily observed that Regret operator embeds the form of a

Put option with benchmark return as strike.

In 1997, Artzner called an axiomatic approach and set some conditions to certify the
satisfactory risk measure. Thus Artzner called the risk measures which satisfy the formulated

axioms as “coherent”. Given a space of risks {2, a risk measure function @, a vector of random
variables (loss distribution) X, the invested capital & and the free-risk interest rate, Artzner

defined that risk measure ¢ (X} is coherent if the following conditions holds:

i) Monotonicity

VXY E D X=2Y —=e@X)=glx)

The above relation implies that a higher return corresponds to a higher risk.



ii) Homogenity

YR EN and YA 20, @Ai=X)=2L=e@X)

This axiom states that for a given position, the associated risk will linearly increase with its

size.

iii) Translational invariance

YEEN and ¥ ER, @XF&Hltu))=@X)—35

The above axiom means that for an investment of capital & in risk-free assets, the risk

decrease with the amount &.

iv) Sub-additivity

VX, K ) E xR, e(X + %) = (X)) + o(X)

The last axiom ensure that total risk of portfolio is no more than sum of individuals positions’
risk that means this condition encourages the portfolio managers to diversify their overall risk

through the aggregate of different positions.

Therefore VaR model is not a coherent risk measure because it doesn’t satisfy the sub-
additivity condition. Other important criticism was that VaR models only provides a limit of
the losses but tell nothing about the potential loss when the limit is exceeded. From this
purpose, Artzner (1999) defined the Conditional Value-at-Risk which is a coherent risk
measure, satisfying all four axioms mentioned above. Conditional VaR represents the

expected loss in the case when VaR limit is violated:

(107 Conditlonal VaR(c) = E(R|R = Vak],

where R denotes the return.



3.5 Backtesting

The main objective of VaR models is to minimize the errors resulting from estimating the
maximum possible loss for an individual asset or portfolio in a given time horizon and for a
given level of confidence. In financial literature there are many approaches designed to
quantify the accuracy and performance of VaR models. In order to assess the performance of

different copulas in estimation of VaR models I used three main approaches:

i) firstly, I compare the in-sample estimation of VaR and CVaR for the whole distribution

with out-of-time empirical returns;

ii) I computed an out-of-sample estimation with 1 day window length for the last three years
of sample and then compared the number of empirical violations with confidence levels of

VaR;

iii) I computed a Bernoulli backtest to estimate the confidence intervals for the number of

excesses and then calibrate results to the traffic light approach proposed by Basel amendment;

iii) I computed a Kupiec backtest to analyze the “success” probability of empirical excesses to

equal the confidence levels provided by VaR.

Thus we can consider that daily empirical returns follow a Bernoulli process and define an

indicator function to accounts the exceedance of 100a%g daily VaR:

108 aqg =1 " e
(1880453044 0, atherwize

where R, 1s the realized return and Faf, . . denotes the forecasted value-at-risk.

Given that forecasting sample has n observations, expected number of successes in the test

sample equals net. Thus denoting X, . as number of successes which has a binomial

distribution, the expected number of successes will be:
(109)E(X, . )} = na
and the variance is:

(110)¥(X, .} = na(l—a).



The standard error resulted from variance 4/na&{1l — &) represents a measure of uncertainty
related to the expected value. So when n is large, the distribution of X, . converges to normal

distribution and we can compute two-sided confidence interval:
(111} [ﬂﬂr — @ Ha" W na(l — al,na + & a)ynall - #}}

where @ *(a™)is the inverse cumulative distribution function for standard normal
distribution in the case of a«* confidence interval. Thus the null hypothesis of Bernoulli test is

that VaR is an accurate model. In practice is unlikely to obtain the expected number of
excesses provided by VaR due to modelling errors, so we use these confidence intervals

around to the expected value of successes.

Kupiec introduced in 1995 an unconditional coverage test where the indicator function
follows a Bernoulli process. The null hypothesis of Kupiec test is that indicator function is
accurate in levelling the significance level of VaR. The statistic of Kupiec test is a likelihood

ratio statistic:

ﬁ;irj%‘ Ql — &Erw}m}
E;%ﬂ':l - 'gmw}w

[: llmmﬂuﬁtrn =

where £

- is the empirical proportion of

is the expected proportion of exceedances, &,

exceedances and N1 denotes the number of exceedances from the backtest sample size n. Thus

equals a, while &

. ml . C e
.mp 15 €qual to — and the asymptotic distribution of —2inLRg, ..

'9':' W

follows a chi-square distribution with 1 degree of freedom.

4. Data and Results

4.1 Data
To analyze the behaviour of dependence among currencies of Central and Eastern I used daily

exchange rate of Czech Koruna (CZK), Hungarian Forint (HUF), Polish Zloty (PLN) and
Romanian New Leu (RON) against Euro (EUR) between February 1999 and February 2010.
Each data set used in this paper represents the closing rate of analyzed currencies, being

provided by Bloomberg.
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Figure 5. Evolution of analyzed daily exchange rate between February 1999 — February 2010.

From the above plot we can observe that patterns of analyzed exchange rate were quite
different. The Czech Koruna was the currency which has recorded de most important
appreciation against Euro due to sound structural reforms. In the same time EUR/RON has
situated at the opposite pole, recording an upward evolution. All of these countries have
addressed different policies to stabilize the nominal exchange rate and prices. The four CEE
countries have changed their monetary policy rules over past 15 years, adopting inflation
targeting regime. Thus Czech Republic adopted inflation target regime in 1998, Poland in
1999, Hungary in 2001 and Romania in 2005. One important requirement of inflation target
regime is to increase the flexibly of exchange rate. In these conditions the four countries opted

for different types of exchange rate regime: Czech Republic use

Exchange Rate Regimes

Czech Republic | Classical administrated floating

Hungary Target zones against Euro
Poland Independent floating
Romania Managed floating

Table 1. Exchange rate regimes for analyzed CEE countries

In order to analyze the switches of exchange rate regimes in the observed period I have
computed Markov Switching regressions for each of the four currencies’ returns.
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Figure 6. EUR/RON switching regimes in observed period

Thus I modelled the exchange rate returns as one lag autoregressive processes with Student
distributed innovations. To capture the transition from one regime to other I switched the AR
term and the innovations of regression. We can easily observe from above plot that starting
with 2005 the EUR/RON returns transitioned more often between regimes due to the
flexibility required by inflation targeting regimes. Instead the EUR/CZK returns recorded far
fewer switches due to the exchange rate regime used by Central Bank of Czech Republic(see
Appendix I, no.1). The very different behaviour of exchange rates is an important issue in

modelling the dependence among the four currencies of portfolio.

The exchange rates have some typical features as compared with other assets traded in

financial markets. To capture these stylized facts I analyzed the returns of exchange rates

computed using the following formula: &,.; * In [:Ef_;'f-j , Where R,., denotes the return and
t

S, 1s daily exchange rate.

Descriptive statistics of returns showed that the four currencies posted quite different
evolution in observed period. EUR/RON recorded the highest depreciation and appreciation
of four currencies. These extreme values were recorded during 1999-2000 due to high
economical, political and social stress at that time. An important remark is that these extreme
values recorded by the EUR/RON are very high compared to the minimums and maximums
registered by other currencies. This observation is also sustained by the highest standard

deviation of EUR/RON. EUR/CZK returns had the fewest extreme variations and also the



smallest standard deviation, but the beginning of the financial crisis pushed the Czech Koruna

like Hungarian Forint to historical minima and maxima.

On the third and fourth order moments of the distribution we observed that analyzed series
recorded very asymmetric evolutions, but all four currencies posted positive skewness and
excess kurtosis (the value of kurtosis is higher than 3). EUR/RON recorded by far the highest
skewness and kurtosis, while the skewness value of EUR/CZK is very close to the normal
distribution, having the most stable distribution. Positive values the third and fourth order
moments of the distribution and the test rejecting of Jarque-Bera’s null hypothesis indicates

that returns are not normally distributed.

Basic Stats EUR/CZK EUR/HUF EUR/PLN EUR/RON

Mean -0.000121 0.000033 -0.000008 0.000385
Median -0.000133 -0.000080  -0.000254 0.000000
Maximum 0.031908 0.065272 0.052507 0.123554
Minimum -0.032471 -0.029232  -0.038318 -0.072379
Std. Dev. 0.004370 0.005827 0.006967 0.007282
Skewness 0.068426 1.236087 0.400931 1.902772
Kurtosis 8.944810 16.109895 7.309036 42.754610
Jarque-Bera 4228.41 21283.56 2297.29 190724.80
Probability 0.00000 0.00000 0.00000 0.00000
Observations 2870 2870 2870 2870

Table 2. Descriptive statistics of analyzed returns

The evolution of exchange rate returns confirms the existence of some typical stylized facts as
the excess kurtosis, heteroskedasticity, volatility clustering and autocorrelation. Also we can
observe that as descriptive statistics showed EUR/RON recorded the most unstable evolution,
while EUR / CZK located at the opposite pole. In the same time EUR/HUF recorded several
clusters of volatility, but EUR/PLN was more stable in the analyzed period. To test the
existence of unit roots in the returns series I computed the ADF and KPSS tests (see,4). The
null hypothesis of no unit roots for ADF test was rejected in all the cases for three confidence
level. Instead the null hypothesis of stationarity in the case of EUR/RON was rejected at 5%

and 10% confidence levels that indicate the existence of microstructures noises.



The GPD modelling and use of copulas requires that analyzed time series to be approximately
1.i.d. Instead most of financial series and especially the exchange rates post autocorrelation
and heteroskedasticity.For this purpose I have computed the autocorrelation function (ACF)
for each of the four exchange rate returns. All ACFs exhibit some correlation, with EUR/RON
and EUR/HUF having the most coefficients of autocorrelation function significantly different

from zero.

Indeed the computed autocorrelation functions for squared returns show some higher
persistence of the variance for all four currencies, especially for EUR/CZK returns that
reveals the sound pattern of Czech Koruna appreciation against Euro.Instead the Romanian
New Leu recorded isolated appreciations against European currency which were due mainly

to increase of foreign direct investments starting with 2005.

4.2 GARCH Modelling

However the sample ACF of returns and squared returns indicate the use of GARCH models
in order to obtain i.i.d. observation as required by GPD and copulas modelling. For this

purpose I have used an asymmetric ARMA X GARCH to compensate for autocorrelation and

heteroskedasticity recorded by exchange rates returns. Thus the conditional mean of each

return is fitted using an ARMA process:

L T
Et - Z¢tﬂt\-# 'I'z&;;ﬁ't_;; +E’t

b= =1

where g.~.l.d. The conditional variance is modeled with an asymmetric GARCH, also

known as GJR after authors' names:

F 2 ?
ol =w +Zﬁ:r§_t + ZWIEE_I +Zr;a§_;£ -
=1 =1 =L

where the last term accounts for asymmetry, I,_; being an indicator function that takes 1 if
g, <2 0 (incorporates the impact of bad news) and 0 when good news arrive. In fact the
ARMA ¥ GJR model acts as a filter to obtain the i.i.d. processes. This approach of filtering

time series was firstly used by Embrechts and Dias (2004) and Patton (2006).

To compensate for autocorrelation and heteroskedasticity I engaged an ARMA x GJR model

for each currency. Conditional variance was modelled by an GJR (1,1) all the currencies,



while the for conditional mean equation I used an AR (1) for EUR/CZK and EUR/PLN,
respectively an ARMA (1,1) process for EUR/HUF and EUR/RON (see_Appendix II., nr.1).
To test the accuracy of fits for engaged ARMA x GJR models I performed Nyblom and

Pearson tests. Additionally I estimated in-sample VaR for each ARMA ¢ GJR and the related

backtests (see_Appendix II., nr.2). But to check if obtained residual series are i.i.d, I

computed Ljung-Box test for filtered residuals. The null of no serial correlation was accepted

for all the currencies (see Appendix II., nr.3).

Ljung-Box Test for squared standardized

Ljung-Box Test for standardized residuals

residuals

EUR/PLN  EUR/HUF  EUR/RON EUR/CZK EUR/PLN EUR/HUF EUR/RON EUR/CZK
H 0 0 0 0 H 0 0 0 0
P-value | 0.607 0.7633 0.9223 0.8159 P-value | 0.8335  0.9738 0.205 0.8972
Q-stat | 17.7024  15.2271 11.8153 14.2829 Q-stat | 13.9398 4.3487 249074 12.5144
Critical Critical

314104  31.4104 31.4104 31.4104 31.4104 31.4104 31.4104 31.4104
Value Value

Table 3. Testing for autocorrelation up to lag 25.

4.3 Preliminary statistic analysis

Once the i.i.d. residuals were obtained, the next step is choice an appropriate distribution to fit
the data. Even the Student distribution of innovations capture a high degree of the
leptokurtosis effect, the unimodal distribution as T or Gaussian are not designed to provide a
good fit in the tails. The main reason for this effect is that tails are low density areas and the
unimodal distributions are an appropriate choice to fit in the areas where data are most
concentrated, namely in mode’. Also the exchange rates contain many microstructure noises

which Student or Gaussian distributions cannot capture.

? See Embrechts (1997) for more details.



But as Embrechts (1997) underlined that before applying some statistical methods, the used
data must be well studied. Firstly I have computed the Mean Excess Function (MEF):

MEFE:E:]: -_ E;L'_Er; ~ t)

Lz Lige

where t denotes the threshold, 1gz..s is an indicator function that accounts for values higher

than respective threshold. Ascending ordered sample values are successively chosen as
thresholds and it is calculated the average of excesses over the threshold. The threshold was
chosen successively in increasing order, then the slope of MEF should have a negative slope
converging to zero. If the empirical MEF is positively slope straight line above 0, there is an

indication of extreme values and need to use EVT theory.

All four currencies have shown signs of excess kurtosis (Appendix III,1,i), with EUR/RON
recorded the highest extremes, while the EUR/CZK posted the lower ones as the previous
analyzes have indicated. Another important tool in analyzing of extreme behaviour of sample
data is the QQ-plot against exponential distribution which is a particular case of GPD when

& = 0. The concave departure of the four filtered residuals series (Appendix II1,1,ii,) against

exponential distributions is an additional argument for the use of EVT in modelling of tail

distribution.

Thus taking into account these reasons, the appliance to EVT theory is an appropriate choice.
Fitting the data in tails is one of the main concerns in many financial applications, especially
in quantile based models as VaR. As compared with GEV or block maxima approach, the
GPD method (peak-over-threshold) has the advantage of require a smaller sample and provide
a much smaller randomisation of data’s distribution in tails. Thus the use of GPD is more

appropriate than GEV in VaR application.

A very important concern in modelling the tails of distribution using GPD approach is to
chose an appropriate threshold over which are considered the excesses, because various
methods for estimating parameters of distributions are very sensitive to the choice of
threshold. Embrechts (1997) has suggested the usage of Hill estimator for threshold

determination. Hill (1997) proposed the following estimator:

k=1
1 = =
- mzhﬂm = Indyy
E=



for k 2 Z. In the above relation k are the upper ordered exceedances, N is the sample size and

§= 2 is the tail index. Computing the Hill-plot for ¥ as Embrechts (1997) suggested a
¥

threshold will be selected from the plot where ¥ 1S fairly stable. Therefore I have ordered the

highest, respectively lowest 500 i.i.d. observations for each currencies and inferenced the Hill
estimator for lower and upper tails (Appendix III,1,iii). The lowest thresholds was recorded
by EUR/RON for the left tail and EUR/HUF for the left, both accounting for about 10% of

sample data over the most stable area of Hill estimator.

In this paper I used a semi-parametric approach to fit the residuals’ distribution, namely for
tails applied the GPD method, while the interior of distribution was fitted with a Gaussian
kernel (Appendix III, no. 2,i). Chosen a non-parametric method as Gaussian kernel to fit the
interior of distribution is very appropriate because most of the data are found near the mode.
Selecting the threshold as 10 % of the residuals in each tail, then parameters of distribution’s
excesses over this threshold were estimated using a maximum likelithood approach. McNeil
and Frey (2000) demonstrated that maximum likelihood estimator is invariant for a selected

threshold ranging between 5% and 13% of the sample size.

Lower tail Upper tail Lower tail Upper tail
Parameters c c c c

-0.1017 0.5328 0.0495 0.6099 -0.0941 0.6138 0.1599 0.6562
ML estimates | (0.0372) (0.0000) (0,3503) (0.0000) (0.0845) (0.0000) (0,0192) (0.0000)
Standard
Error 0.0488 0.0416 0.0530 0.0486  0.0564 0.0521 0.0683 0.0593

Lowerlimits | 91974 04571 -0.0544 0.5216 -0.2086 0.5198  0.0261 0.5496
of Confidence

interval

Upper limits
of Confidence | -0.0059  0.6210 0.1534 0.7130 0.0283  0.7248 0.2936 0.7835

interval

Table 4. Estimated GPD parameters for tail distribution. Values under paranthesis are the P-values




An important remark about fitting marginal distributions with GPD method is that size of tail
index is determined by the original distribution. Thus Student distribution with tails
decreasing as polynomial corresponds to a positive tail index, while Gaussian distribution
leads to a zero tail index due to its tails that drop exponentially. When the tail index is

negative, the original distribution behaves as beta distribution in its tails.

Estimated parameters for distribution of peaks over the selected threshold indicate quite
different behaviour of tails for the filtered residuals (other results in Appendix III, no. 2,ii).
Different values of tail index emphasizes the asymmetry of innovations due to some stylized
fact like leverage effect or volatility clustering. Statistically significant P-values of the tail
index for EUR/PLN lower tail shows that the original distribution behaves as beta in the
respective tail, while the upper tail index is insignificant differently from zero. Economically
speaking the values of tail index recorded for EUR/PLN provides a suitable description for
the exchange rate evolution in analyzed period: appreciations against euro were isolated,
while depreciations against European currency followed a Gaussian process due to price
stabilization. In the same time, significant P-value at 10 % confidence level of EUR/RON
lower tail index emphasizes that starting with the explosive growth of FDI in 2005-2006 the
Romanian New Leu began a robust appreciation process against euro. Estimated tail indexes
for EUR/CZK are insignificant different from zero, while significant shape parameters at 5%,
respectively 10% of EUR/HUF indicates the effect of leptokurtosis due to financial crisis that

pushed this currency to historical minima and maxima.

A very important concern in tails modelling is that estimated parameters reflect the true
behaviour in tails of original distribution such that GPD fit to be close to the empirical
distribution. In the sense of parameters estimation’ accuracy, the standard errors which are
obtained from principal diagonal of the inverse of Fisher’s information matrix tells us that if
the same estimation could be repeated for a large number of times on sample with the same
source, then the parameters estimated with maximum likelihood approach should
asymptotically converge to the normal distribution. But if the source of data comes from a
very asymmetric distribution as beta or gamma, then the maximum likelihood estimates
would not converge to normal distribution. Thus I have tested the asymptotically normal
assumption for estimated parameters in order to verify if the negative values for some tail

indexes really arrived from beta distribution, while the positive shape parameters were



provided by Student distribution. To do this I used a Boostrap'® approach to extract randomly
a number of 10,000 sub-samples of data distributed in each tail. Once the desired numbers of
sub-samples were extracted, I computed the maximum likelihood estimation for each sub-
samples and then computed the resulted parameters against the quartile of Normal

distribution.

Lower Tail of EURRON
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Figure 7. Check for maximum likelihood estimation's accuracy

As we can see the distribution of maximum likelihood estimation for lower tail index doesn’t
approximate the normal quartile that means the negative value of tail index really indicates

the original data behaves as beta in lower distribution (other results in Appendix III, no. 2,iii).

4.4 Copula estimation

Once the marginal distributions of filtered residuals were fitted using a GPD approach for
tails distribution and a Gaussian kernel for the interior of distribution, the next stage was to
estimate the parameters of dependence structure for the analyzed portfolio. Isolating the
effects of marginal distribution I have estimated dependence existent among the four
currencies. In fact this is the copulas’ job: to capture the interaction among the portfolio’

assets by isolating the individual behaviour of each asset.

In this paper I used the Cannonical Maximum Likelihood (CML) approach to estimate the

parameters of copula. Main advantage of CML method is that allows the estimation of

% For Bootstraping | recommend the use of parallel computing approach provided by Matlab as it leads to a
large increase in processing speed.



dependence structure without any assumption about the distribution of marginals. Maashal

and Zeevi et al.(2002) proposed the following formula for estimation of copulas parameters:
T
L(8) = ) In c(@, .. 05)
e=1

where 4§, ... 5 denotes the transformation of semi-parametric CDFs computed for filtered

residuals into uniform variates. Once the transformation was made, the following step is to

estimate the parameters of copula.

For analyzed portfolio I used two Elliptical copulas to estimate the dependence among
exchange rates, namely Student, respectively Gaussian copula. Unlike Gaussian, the
estimation of Student copula was made in two steps: firstly given a fixed value for degree of
freedom (DoF), the likelihood function is maximized with respect to the dependence
parameter; secondly once the results from previous maximization were obtained, DoF

parameter is estimated with respect to dependence parameter.

The estimated parameters with both Elliptical copulas revealed positive dependence among
the four currencies (Appendix IV, no. 1). Correlations estimated with Student copula are
higher than those fitted with Gaussian copula, due to the fact that T copula takes into account
for fat tails. Another approach to compute the linear correlation matrix is to first estimate the
rank correlation matrix''. Then given the previous estimate we can use a robust sine
transformation to obtain a linear correlation matrix (Appendix IV, no. 1). We can observe that
linear correlation matrix obtained from rank correlation provides higher coefficients of
correlation than those estimated with Gaussian copula because the former approach accounts

for tail dependence.

By studying the resulted correlation coefficients it can be observed that in all three methods
the highest correlation is recorded between EUR/PLN and EUR/HUF, while the lowest one is
registered between EUR/CZK and EUR/RON. Another important remark is that each
currency is most correlated with the EUR/PLN and at least with the EUR/RON. However the
correlation coefficients are smaller than 0.5 that means a low dependence in the evolution of

the four currencies. But the empirical events revealed a high dependence among the four

1 Zeevi and Mashal (2002).



exchange rates on depreciation side as the episode from October 2008 showed, when all these
currencies have sharply decreased against European currency. This fact brings the discussion
about the existence of both asymmetric dependence and leverage effect as stylized facts and
also about the contagion of shocks among these countries. This is very interesting result
taking also into account that Poland is the largest country by population and the biggest
economy from CEE zone. Thus a shock of Poland on other countries in the region would have

the greatest impact on the evolution of portfolio.

But to study this hypothesis is very suitable to engage an analysis of conditional dependence
among exchange rates when EUR/PLN plays a pivotal role. From Bayes Law is well-known
the fact that a multivariate joint distribution can be decomposed using iterative conditioning

as following:
FOLr eV} = FO ) PP} # P00l 2000 # ok £ 2| P oms Pram ) O] PLr e s Pramt)
Thus we can decompose the first conditional density in terms of copula:
F(alyy) = 1a (Fy v Fa (30) } 2 (32
Further we can continue with the second conditional density as:
f[,}’a |}’2,}’1} = ¢'23|1[Fz|1EF2 |}’1:Ir5ra|1(}’a|}r1:]}f[:}’a |374)
where

Flrmlyd =g EF:L (3, ). Fa (F&)}.ﬂi (35

This model of conditional copula are called Canonical Vine Copula and was introduced by Bedford
and Cooke (2002) and in financial application were firstly used by Aas (2007) and Berg and Aas
(2007). The notations called here are according those used by Aas (2007). A general form of

Canonical Vine Copula can be defined as:

m=l = f

(s e Fg) ™= l_ﬂ_[ G_;,,;ne|1,..P,;-1[fr|::}’;|F1r r}’_;-n_}rfr&_;-m}’y o r}’_-_'-j_}.}
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Kendall's Upper Lower

tau tail tail

S ————————————————————————
EUR/PLN-EUR/CZK 0.1144 0.1403 0.0742
EUR/PLN-EUR/HUF 0.1462 0.1735 0.1371
EUR/PLN-EUR/RON 0.0547 0.0219 0.0102
EUR/CZK-EUR/HUF|EUR/PLN 0.1789 0.2774 0.1286
EUR/CZK-EUR/RON|EUR/PLN 0.0801 0.0844 0.0183
EUR/HUF-EUR/RONJEURPLN,EUR/CZK 0.1072 0.1049 0.0566
Log Likelihood 457.1408 726.1495

Table 5. Estimation of Cannonical Vine Copula

In the computation of Canonical Vine model for the chosen portfolio I selected the EUR/PLN
returns as pivot. Therefore we can observe that highest dependence was recorded between
EUR/CZK and EUR/HUF conditioned by EUR/PLN in the lower tail that indicates the
existence the spill-over of negative shocks in periods of depreciation against Euro. Also from
estimated result it can be observed that conditional dependences in lower tail are twice than
those from upper tail. The previous remark underlines the existence of asymmetric

dependence among the four currencies and leverage effect

For these reasons we can say that estimated dependence parameters of portfolio with the three
methods would provide incomplete information about the really dependence among
currencies due to the rigidity in capture asymmetric dependence. Also have to be mentioned
that an explanation for much tighter dependency between EURCZK, EUR / HUF and EUR /
PLN as compared with EUR/RON is that Czech Republic, Poland and Hungary have adopted
in periods very close one of the other inflation targeting regime. All four countries are
primarily aimed to accede to ERM II, but they firstly have to satisfy the nominal convergence
criteria in order to provide a high stability of exchange rate. Different reactions of Central
Banks to changes in prices or interest rates, lead to asymmetric dependences among the
analyzed exchange rates’ evolution. The other fundamental explanation of asymmetric
dependence effect is that all four countries are subject to the same problem: the increasing
flows of FDIs from lasts years leads to appreciations of local currencies against Euro, but in

the same time this effect coincides with a loss of external competitiveness.

For this reasons we have to take into account the existence of asymmetric dependence

because this is one of the main concern in portfolio management. Thus I proposed the



decomposition of chosen portfolio in other three bivariate portfolios consisting in EUR/PLN
and each of other three currencies. As we have seen from the estimation of dependence
parameters with Elliptical copulas each currency records the highest correlation with
EUR/PLN, thus supporting the proposal which I made. Another important reason for this
choice is that Poland is the greatest country by population and largest economy from CEE and
such a shock from this country shows a high probability of having a significant impact on
other economies from CEE. Incomplete capture of dependence in the computation of VaR and
other risk measures could lead to important misalignments In this case the decomposition of
portfolio in other three bivariate sub-portfolios permits a higher flexibility to choice the most
suitable copul.s for modelling the dependence in order to obtain a higher accuracy from

computation of risk measurements.

In this paper I decomposed the initial portfolio in other three bivariate sub-portfolios
consisting in EUR/PLN and each of other three currencies. For each sub-portfolio I used a
number of nine copulas for the estimation of dependence parameters and then I computed the
information criteria (AIC, BIC). I divided the nine copulas used in two categories: Elliptical
copulas plus Plackett copula (due to appropriate properties) and Archimedean family. I made
this split in order to select the best copula by goodness-of-fit criteria from each category and
then estimate the risks measures and compare the estimation errors with those of the initial
portfolio and of other sub-portfolios. Additionally I have computed copula-GARCH models
to capture the evolution of dependence over time. On the base of results from information

criteria

For bivariate EUR/PLN-EUR/CZK portfolio the lowest negative log likelihood values and the
information criteria were recorded by Gumbel and Student copula (see Appendix IV, no. 2, i)
and Ii); red inserted values denotes the minimum AIC and BIC). The lower tail dependence

between the two currencies was much lower than the upper tail one (see Appendix IV, no. 2,

ii)).
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Figure 8. Modelling tyme-varying dependence with SJC-copula

For EUR/PLN-EUR/HUF sub-portfolio it can be observed (see Appendix IV, no. 3, iii)) a
very strong dependence especially in the upper tail. An interesting remark is that as we can
see from tyme-varying SJC copula the dependence between two currencies decreased very
sharply in the end of 2006 and the begin of 2007. But from the evolution of Markov-
Switching regimes for EUR/HUF (see Appendix IV, no. 1) it can be observed a suddenly
rigidity in transition of exchange rate between states, thus sharply fall of EUR/HUF due to
intervention of Central Bank is an important explanation for the empirical events emphasized
previously. Instead the beginning of financial crisis coincided with a very high dependence
for the two currencies. Also for this portfolio the goodness-of-fit analysis indicated the choice
of Student and Gumbel copulas. Other important remark is that unlike the case of EUR/PLN-
EUR/CZK portfolio, for EUR/PLN-EUR/HUF dependence the tyme-varying Gumbel
provided lowers AIC and BIC than those obtain by dynamic SJC copula that reveal a very
strong right asymmetry. A very interesting result was obtained for EUR/PLN-EUR/RON sub-
portfolio, where the lowest values of information criteria were obtained by Plackett copula for
the first category and Frank copula for Archimedean family. The result could be explained by
the fact that as we can see from the three dynamic copulas, the (see Appendix IV, no. 4, iii))

the upper tail dependence seems very noising, while the lower tail dependence was filled by



many peaks. Anyway all three sub-portfolios indicate the presence of a sound right

asymmetric dependence.

4.5 Estimates of risk measures
Least but not last I attended the main goal of this paper as to analyze the results of using

different types of dependence on the VaR models’ accuracy. While the VaR models are not
very complicated under their original form, the change of several assumptions creates an
important concern in order to check and to compare the accuracy of involved models. Once
the best copulas for the three sub-portfolios were selected by information criteria, the next
step was to compare the accuracy of the models in order to conclude if my proposal brings
certain benefits. For this reason firstly I estimated the in-sample VaR and CVaR and secondly

I computed an out-of sample forecasting.

In-sample estimates of VaR and CVaR were computed using the Monte Carlo approach to
simulate the cumulative distribution of each portfolio return for a given horizon with respect

to the copula parameters and the estimated parameters for whole sample of ARMA*GJR

model (results can be found in Appendix V). Then the resulted risk measures were

compared with the empirical minimum and maximum returns of portfolio for the respective
horizon. Also the estimated out-of-time'* VaRs and CVaRs were compared with the realized

return for each horizon.

From results it can be observed that overall Student copula provides larger measures of

potential loss than those computed with Gaussian copula, because the former takes into

account for tail dependence (see other estimates in Appendix V, no.l,i)). This fact is

underlined by simulated CDFs which shows a high right skew for T copula. Estimated CVaRs

are very close minima and maxima recorded by portfolio returns, while out-of-time realized

returns are within the limits provided by these two risk measures (Appendix V, no.1,ii)).

For EUR/PLN-EUR/CZK sub-portfolio, the Student copula provides higher values of VaR for

1% and 5% quantiles and lower ones for 95 % and 99 % because Gumbel is a right
asymmetric copula (Appendix V, no.2,ii)). This aspect is also observed in the case of

EUR/PLN-EUR/CZK. An interesting aspect is that for both EUR/ PLN-EUR /CZK and EUR/
PLN-EUR/CZK portfolios the 99 % quantile VaR for one month horizon simulated with T

2 Out-of-Time concept denotes here the first period out of sample for a given horizon. As compared with out-of-
sample forecasting that use a rolling-window method within the sample, out-of-time method used the parameters
estimated for the whole distribution of returns and provides only once estimation of VaR and CVaR.



copula is lower than this one estimated by Gumbel, while CVARSs estimated with T copula are
higher. In the case of EUR/PLN-EUR/HUF this situation is also available for horizons of 5,
respectively 10 days (Appendix V, no.2,i)). Thus conclusion we can draw from the previous
observations is that simulation with Gumbel just facilities the appearance of some peaks for
short horizons and the density of data in tails is smaller than this one simulated with Student
copula. Another very interesting remark is that the 99% quantile of Gumbel- CVaR for
EUR/PLN-EUR/HUF sub-portfolio is much higher than the maximum 3 months cumulated
returns that conclude Gumbel copula provides over conservative risk measures for long
horizons. In the case of EUR/PLN-EUR/RON, the Frank copula provided larger potential

losses and lower potential gains as compared with those estimated with Plackett copula,

because Frank is lighter on the right side (Appendix V, no.3,i). This aspect becomes more

evident in the simulations on longer horizons.

But these static estimates cannot give full information about the models’ forecasting accuracy
of maximum potential losses and gains. In this sense I engaged a dynamic process of risk
measures’ estimation. To do this firstly I split the entire sample in other two: estimation
sample and forecasting sample. Then I appealed the rolling-window method, as the estimation
sample is used to provide a VaR for the next period of a fixed number of days. Setting
constant the size of estimation sample the previous procedure was rolled over the whole
period, such that obtained a series of VaR which represents the forecasting sample. This is an

out-of-sample forecasting is used to test accuracy of models over time.

Therefore I applied a out-of-sample methodology of forecasting with a horizon of 1 day ahead
to large portfolio and to the three sub-portfolios, using for each of them the related copulas in
order to compute VaR measures. The forecasting period was between January 2007 and
January 2010, containing 808 observations, while the estimation sample accounts for 2062
data. The chosen forecasting horizon is very appropriate to test the accuracy of used Copula-
VaR models because contains both a quiet and a turmoil period determined by the financial

Crisis.
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Figure 9. Out-of-Sample forecasts for large portfolio

4.5 Backtesting

Once the out-of-sample forecasts were obtained, I compared the resulted VaRs with empirical

returns (see Appendix VI, no. 1). The following stage was to take into account those returns

which exceeded the forecasted values of VaR. Thus to check the accuracy of engaged models

I compared the number of exceedances with the theoretical levels provided by VaR.



Bernoulli Backtest and Calibration to Basel II Traffic

light
Copula 95% VaR 99% VaR 5% VaR 1% VaR
T O 717% @ 136% (O 729% @ 1.48%
Large Portfolio
Gaussian | 7.42% @ 1.61% () 7.17% 1.98%
EUR/PLN- T @ 569% @1.48% @ 5.69% () 2.35%
EUR/CZK
Portfolio Gumbel @ 569% @ 1.36% () 7.05% 1.98%
EUR/PLN- T @ 532% @ 1.11% O 7.42% Q@ 1.48%
EUR/HUF
Portfolio Gumbel @ 581% @ 1.36% () 8.41% Q@ 1.24%
EUR/PLN- Frank @445% @1.48% @494% @ 1.11%
EUR/RON
Portfolio Plackett @457% @ 136% @ 5.19% Q@ 1.36%

Table 6. Bernoulli Backtest for the number of exceedances

The percent of empirical exceedances over the theoretical levels of VaR resulted from out-of-
sample forecasting for each portfolio and related copulas are found in this Table. A firstly
indication about the accuracy of Copula-VaR models can be made by comparing the percent
of exceeses with VaR confidence levels. We can observe that copula Frank and Plackett
recorded lower percentage of excesses (bolded values from table) than theoretical ones

provided by VaR.

But this is not a “robust” tool in testing the accuracy of Copula-VaR models involved here.
Thus I computed a Bernoulli test under null hypothesis that VaR model is accurate with a 99
% confidence level. Also it has to be mentioned that regulators admit that in period with
turmoil the VaR models could produce some misalignments. From this reason I calibrated my
results to the errors bands proposed by Basel II Traffic light framework. Therefore the green
bullets indicate the acceptance of Bernoulli null hypothesis, while the yellow ones indicate
some misalignments in predicting maximum potential losses or gains. However the results
provided by Copula-VaR models used here gave good results, for which the above table does
not contains any red bullets. One important requirement for the power of the Bernoulli test is

that number of observation has to be large. Also the existence of positive autocorrelation of



exceedances could lead to widening of the confidence interval that affect the power of test

(see Appendix VI, no. 2)

From this purposes I have engaged an unconditional test to strengthen and complete the
conclusions regarding the comparison of models accuracy. Kupiec test under the null
hypothesis that expected number of exceedances equals the number of empirical VaR’s

violations is based on the sample principle as Bernoulli. Statistic of the Kupiec test is a

likelihood ratios statistic, being distributed as ¥ 2 with one degree of freedom.

Kupiec test
Copula 95% VaR 99% VaR 5% VaR 1% VaR
T 7.0987 0.9493*** 7.8832 1.6597***
Large
Portfolio
Gaussian 8.7042 2.5394%** 7.0987 6.0736*
EUR/PLN- T 0.7681 1.6597*** 0.7681%*** 10.7608
EUR/CZK
Portfolio Gumbel | 0.7681%** 0.9493*** 6.3514* 6.0736*
EUR/PLN- T 0.1657*** 0.0996*** 8.7042 1.6597***
EUR/HUF
Portfolio Gumbel | 1.0623%** 0.9493%** 16.5231  0.4232%**
EUR/RON
Portfolio Plackett | 0.3181%** 0.9493***  (0.0617***  (0.9493***

Table 7. Unconditional coverage backtest
***Denotes the acceptance of null at 10%;
**Denotes the acceptance of null at 5%;

*Denotes the acceptance of null at 1%;

Thus Kupiec test as Bernoulli shows that Frank and Plackett copulas provide the best results
after both copulas accepted the null of unconditional coverage test at 10 % confidence level
for all the quantiles. In the same time Gaussian copula recorded the most poorly accuracy
after the null was accepted at 10% was rejected only for 5% quantile of VaR. Also from

Kupiec backtest we can observe that Gumbel is not an appropriate choice for sample with data



distributed onto the middle of the tail’s range, as the null was rejected for 5% quantile of VaR
in the case of EUR/PLN-EUR/HUF portfolio and was accepted only at 1 % confidence level
in the case EUR/PLN-EUR/CZK portfolio. Student copula provided similar results as

Gumbel, indicating the same bad points: low density of data in middle of the tails.

5. Conclusion
Recent turbulences from financial markets revealed the inflexibility of traditional risk models

to capture the observed stylized facts. One of the main concerns in market risk modeling is
how to account for common trends of the assets. So in this paper I aimed to analyze the use of
copulas in financial application, namely to investigate the assumption of asymmetric
dependence and to compute measures of risk. In literature are several methods outside of
copulas to analyze the common evolution of financial assets but this paper is not subject to

compare such approaches.

The analyze of exchange rate returns computed with a logarithmic formula reveals some
typical stylized facts as autocorrelation, heteroskedasticity or volatility clustering. The use of

copula requires uniform distributed data so I had to filter the returns series using an ARMA %

GARCH model to compensate for autocorrelation and heteroskedasticity. For this purpose I
used an asymmetric GARCH (1,1) for conditional variance, called GJR (after the authors’
names), because this model incorporate a Boolean function that takes into account for the
impact of bad news. Instead the conditional mean equation was modeled by an AR(1) process
for EUR/CZK and EUR/PLN, respectively by an ARMA (1,1) for the other two exchange

rates.

Once the filtered residuals were obtained a semi-parametric CDF was fitted for each series.
The preliminary statistic analysis revealed the need to use EVT approach for modeling the
tails of distribution. To do this firstly I computed the Hill-plot for upper and lower tail of each
series in order to select an appropriate threshold. The high density of extreme values in tails of
EUR/HUF and EUR/RON indicated the choice of 10%, respectively 90% quantile as
thresholds.

The interior CDF for each residual series was fitted by a Gaussian kernel, while GPD method
was chosen to model the tails of distribution. The estimated tail parameters showed that
EUR/PLN and EUR/RON behave as beta distribution in lower tail. To test the accuracy of

parameters estimation I engaged a Bootstrap sampling to check the asymptotic normality. The



obtained results indicated largely that estimated parameters consist with the tail behavior of

original data.

Given the semi-parametric CDFs for residuals series, the following step was to fit the copula
parameters using CML approach. Results indicated a positive dependence among the four
currencies, underlining that each currency is most correlated with EUR/PLN and at least with
EUR/RON. Estimation of conditional dependence using a Canonical Vine Copula with
EUR/PLN as pivot emphasized the asymmetric dependence among the four exchange rates.
For this reason I decomposed the large portfolio in three bivariate sub-portfolios consisting in

EUR/PLN and each of other currencies.

Student and Gumbel copulas have recorded the lowest values of negative log-likelihood for
both EUR/PLN-EUR/CZK and EUR/PLN-EUR/HUF sub-portfolios, while for EUR/PLN-
EUR/HUF the information criteria indicated the selection of Frank and Plackett copula as best
fit models. In the same time Copula-GARCH models emphasized the evidence of a strong

asymetric deopendence in right tail for each of the three sub-portfolio.

In-sample estimation of risk measures for large portfolio and each of the three sub-portfolio
with related copulas for different time horizon revealed some interesting remarks about the
copula features. However computed CVaRs situated closely to the minimum and maximum of
empirical returns, even though the 99% quantile of Gumbel-CVaR for EUR/PLN-EUR/HUF
sub-portfolio is much higher than the maximum of 3 months empirical cumulated returns.
Out-of-sample forecasting of VaR made possible both an assessment of Copula-VaR models’
accuracy and also a comparison between them. Kupiec and Bernoulli backtest shows that
Frank copula obtained the best results, followed by Plackett, while the Gaussian copula
situated at the opposite pole. Student and Gumbel copulas provided satisfactory results,

performing poorly for the 95 % quantile of VaR.

An interesting topic for future research is the use Copula-GARCH models to estimate the risk
measures. Also the use of some GARCH models as FIGARCH or HYGARCH that takes into
account for the long memory of financial assets could provide consistent improvement of the

forecasting results.
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Appendix I

1. Evolution of exchange rate regimes and estimated parameters.

Markow-Switching Regimes for EURICZK
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2. Exchange rate returns.
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3. Autocorrelation function for exchange rate returns.

Sample ACF of Returns for EUR/CZK Sample ACF of Returns for EUR/HUF
T T T T T T T T T T

08 08

06 0.6
= c
5 5
= 5
= z
S =
S 04} 8 04
Ea E
= =
= =
E E
5 @
@ 021 ® 02

0 M H : 1 s 3 1 T 0 T ¢ + . s | 1

| ) ] PN Y | N AT N A A S ] v il
+ + i 1 T ¥ *
o2 i i i i i i i i i a8 i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20



Sample ACF of Returns for EUR/RON
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4. Testing for stationarity.

ADF test

Augmented Dickey-Fuller Unit Root Test an EURCZK_RETURNS

Mull Hypothesis: EURCZK_RETURMS has a unit ront
Exogenous: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=27)

Augmented Dickey-Fuller Unit Root Test on EURHUF_RETURNS

Mull Hypothesis: ELRHUF_RETURNS has a unit root
Exngenous: Constant, Linear Trend
Lag Length: 0 (Automatic - hased on SIC, madag=27)

t-Statistic Frob.* t-Statistic Frob*

Augmented Dickey-Fuller test statistic -H5.00640 00000 Augmented Dickey-Fuller test statistic -53.83779  0.0000
Testcritical values: 1% level -3.96124 Testeritical values: 1% lavel -3HE120
5% level -3.411373 5% level -3.411373
10% lewvel -3.127535 10% lewel -3127535

*Mackinnan {1996) one-sided p-valugs.

Augmented Dickey-Fuller Unit Root Test on EURPLN_RETURNS

Mull Hypothesis: EURPLM_RETURMS has a unit roat
Exogenaus: Constant, Linear Trend
Lag Length: 0 (Automatic - based on SIC, maxlag=27)

*hackinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Unit Root Test on EURRON_RETURNS

Hull Hypothesis: EURROKN_RETURNS has a unit root
Exngenous: Constant, Linear Trend
Lag Length: 0 ¢hutamatic - hased on SIC, maxag=27)

1-Statistic Prob* 1-Btatistic Prob.*
Augmented Dickey-Fuller test statistic -64.28395  0.0000  Aogmented Dickey-Fuller test statistic -A3.72558  0.0000
Test critical values: 1% lewel -3.961241 Test critical values: 1% level -3.961241
5% level -31411373 % |evel 3411373
10% level -3127535 0% lewel 3127635
*Mackinnon (1996) one-sided p-values. *Mackinnon (1996) one-gided p-values.
KPSS test
KPSS Unit Root Test on EURCZK_RETURNS KPSS Unit Root Test on EURHUF_RETURNS
Hull Hypothesis: EURCZK_RETURNS is stationary Mull Hypathesis: EURHUF_RETURNS is stationary
Exogenous: Constant, Linear Trend Exogenous: Constant, Linear Trend
Bandwidth: 17 (Newey-iest automatic) using Bartlett kernel Bandwidth: 38 (MeweyWest automatic) using Bartlett kernel
Lht-Stat Lhi-5tat.
Kuwi atkiwis ki-Phillips-Schrnict-Shin test statistic 0.033160  Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.024668
Asymptatic critical values® 1% lavel 0.218000  Agyrmptotic eritical values™ 1% level 0.216000
5% level 0146000 5% level 0146000
0% leval 0118000 10% lavel 0114000
*wiatkoweski-Phillips-Schmidi-Shin (1992, Tahle 1) *Kindatkowski-Phillins-Sehmidt-Shin (1992, Table 1)
Residual variance ina carrectian) 191E-05  Residual variance (no comection) 3.39E-05
HAC conected variance (Bartiet kemel) 1476-05  HAC corrected variance (Bartle kemel) 264E-05




KPSS Unit Root Test on EURPLN_RETURNS

Mull Hypothesis: EURPLM_RETURNS is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 24 (NeweyYWast automatic) using Barlett kernal

KPSS Unit Root Test on EURRON_RETURNS

MUl Hypathesis: ELRROMN_RETURME is stationary
Exogenous: Constant, Linear Trend
Bandwidth: 13 {hewey-yiest autamatic) using Bartlett kernel

Li-Stat. LM-5tat.
Kuiatkowski-Phillips-Schmidi-Shin test statistic 0062514  Kwiatkowski-Phillips-Schmidt-Shin test statistic 0.198176
Asymptotic critical values™® 1% level 0.216000  Asymptotic critical values™ 1% level 0.216000
5% level 0148000 5% lewel 0.146000
10% level 0118000 10% level 0.118000

*Kiwiatkowrski-Phillips-Schmidt-Shin (1992, Table 1) Hawiatkowski-Phillips-Schmidt-Shin (1892, Table 1)
Residual variance (no carrection) 4 85E-05  Residualvariance (no correction) 5. 24E-05
HAC carrected variance (Barlett kemel) 418E-05  HAC corrected variance (Bartlett kemel) 3.40E-05

Appendix II.

1) ARMA xGARCH stats; Nyblom and Pearson tests

EUR/CZK
Dependent wvariable EUR/CZE
Mean Equation LEML (1, O0) model.

Ho regressor in the conditional mean

Variance Egquation

GJR {1,

1)

model .

Ho regressor in the conditional wvariance

Student distribution,

with 3

. 26458 degrees of freedom.

Eztimation done using the MaxSaA algorithm

Strong convergence using numerical derivatives

Log-likelihood =
Plea=ze wait

Robu=st Standard Errors

12044 .4 and temperature 2.42037e-121
Computing the 5td Errors

{Sandwich formuala)

Coefficient S5td.Error t-value tT-prob
Cst (M) -0.0001785.3141e-005 -3.357 0.0008
BRE (1) -0.072902 0.018013 -4.,047 0.0001
C=t (V) 0.003384 0.00045757 T.3%96 0.0000
ARCH (Alphal) 0.078996 0.0049617 15.92 0.0000
GARCH (Betal) 0.90899c 0.00247&65 367.0 0.0000
GJER (Gammal) 0.015983 0.0055638 2.873 0.0041
Student (DF) 3.864590 0.22347 17.2% 0.0000
Ho. Cbhservations 2870 Ho. Parameters T
Mean (Y) —-0.00012 Variance (Y) 0.00002
Skewneszs (Y) 0.06843 Furtosis (Y) 8.54481
Log Likelihood 12044 .412



Joint Statistic of the Nyblom test of stability: 3.08212

Individual Hyblom Statistics:

C=t (M) 0.18878
AR(1) 0.55614
Cat (V) 0.72244
ARCH (ARlphal) 1.50338
GFARCH (Betal) 1.2115%9
ZJR (Gammal) 0.87239
Student (DF) 0.91688
Rem: Asymptotic 1% critical wvalue for individwal statistics = 0.75.

Azymptotic 5% critical wvalue for individual statistics 0.47.

Bdjusted Pearson Chi-sguare Goodness—of—-fit testc

¥ Cell=sig) Stati=stic P—Value (g-1)
10 16.5923 0.055496
20 3I0.2927 O.0482190
30 35.8084 0.105389
g0 435.1150 0.299646
SO 67T .T352 0.039246
&0 65.02494 Q.275027

Bem.: kK = 7 = % ssztimated paramseters

EUR/HUF

Dependent wvariable @ EURHUF

Mean Eguation : ARMA (1, 1) model.

NHo regressor in the conditional mean

Variance Egquation : GJR (1, 1) model.

No regressor in the conditional wariance

Student di=stribution, with 2.0181 degreea of freedom.
Estimation done using the MaxSh algorithm

Weak convergence (no improvement in line search) using numeric
Log=likelihood = 11562.1 and temperature 2.35099=-037
Please wait : Computing the Std Errors

Robust Standard Errors (Sandwich formula)
Comefficient Std.Error t-=value t-prob

Cst (M) 0.0000332.8085e-005 1.1%2 0.2335
AR (1) 0.509308 0.085561 5.953 0.0000
MR (1) =-0.605451 0.084825 =7.128 0.0000
C=c (V) =0.005780 0.00062141 -9.301 0.0000
ARCH (ARlphal) 0.159153 0.41422 15.20 0.0000
GARCH (B=tcal) 0.873435 0.0014679 295.0 0.0000
GJR (Gammal) -2 .594578 i1.0078 -2.574 ©0.0101
Studenc (DF) 2.018100 ©0.0010486& 1925. 0.0000
No. Obsezvations @ 2870 No. Parameters H g
Mean (¥) : 0.00002 Variance (YY) : 0.000032
Skewness (Y) i 1.23609 FEFurtosis (Y) i 16.10080
Log Likelihood : 11562.107

Warning : To avoid numerical problems, the estimated parameter

Cs2z(V), and its scd.Error have been multiplied by 1074.



Joint Statistic of the Hybklom test of stability: 7.089717

Individual HNyblom Statistics:

Cst (M) 1.09405
AR (1) 1.93688
MR (1) 1.39516
Cst (V) 0.26313
LRCH (Alphal) 0.70106
GARCH (Betal) 1.22941
GJR (Gammal) 0.34467
Student (DF) 0.81756

Eem: Asvmptotic 1% critical wvalue for indiwvidual statistics =
Agyvmptotic 5% critical wvalue for indiwvidual statistics

adjusted Pearson Chi-square Goodness-of-fit test

# Cells(g) Statistic BF-Value (g-1)
10 24,1324 0.004087
20 102.1254 0.000000
30 140.0557 0.000000
40 132.3136 0.000000
50 147.9443 0.000000
&0 182.13594 0.000000
EUR/PLN

Dependent wariable : EURPLH

Mean Eguation : ABMA (1, 0) model.

Ho regressor in the conditional mean
Variance Eguation : GJR (1, 1) model.

Ho regressor in the conditional wvariance

Student distribution, with 82.068266 degrees of freedom.

Eztimation done using the MaxS54 algorithm

Strong convergence using numerical derivatives

Log-likelihood = 10614.3 and temperature 3.7252%e-

Plea=se wait :!: Computing the 5td Errors

Eobu=st Standard Errors (Sandwich formumla)
Coefficient 5Std.Error t-wvalue

C=t (M) -0.0002909.2978e-005 -3.115
AR (1) -0.070370 0.015241 -3.657
C=t (V) 0.005346 0.0019852 2.688
ARCH (&lphal) 0.087309 0.017575 4.968
GLRCH (Betal) 0.9218672 0.016096 57.08
EJR (Gammal) -0.037361 0.017003 -2.197
Student (DF) 8.068659 1.298¢& 6.213
Ho. Chservations @ 2870 HMHo. Parameters
Mean (YY) : -0.00001 WVariance (YY)
Skewnes=s (Y) : 0.40093 Eurtosis (Y)

Log Likelihood : 10814.335

Qo8

t-prob
.001%8
.0003
L0072
. 0000
.0000
.0281
.0000

L T e O e Y Y Y e Y

-

0.00005
T.30904

0.75.
0.47.



Joint Statistic of the Hybklom test of stability: 3.08

Individual Hyblom Statistics:

Cst (M) 0.18878
AR (1) 0.59614
C=t (V) 0.72244
ARCH (Alphal) 1.50338
GARCH (Betal) 1.2115%9
GJER (Gammal ) 0.8723%9
Student (DF) 0.91688
Eem: Asvmptotic 1% critical
Azymptotic 5% critical

21

-~
.

value for individual statistics
value for individual statistics

Adjusted Pearson Chi-sguare Goodness-of-fit test

$ Cells(g)
10
20
30
40
50
&0

Dependent wvariabl
Mean Equation

No regressor in the conditional mean

Variance Equation

Ho regressor in the conditional wvariance
with 3.51438 degrees of freedom.
Eztimation done using the Max54A algorithm

Student distribution,

Statistic P-vValue (g-1)
16.5923 0.0554%6
30.2927 0.048130
38.8084 0.105389
43,1150 0.29%646
67.7352 0.039246
65.0244 0.275027

= # estimated parameters

EUR/RON
e EURRCH
ABMAE (1, 1) model.
GJE (1, 1) model.

Strong convergence using numerical derivatives
10970.3 and temperature 3.18618e-057

Log-likelihood
Please wait

Eobust Standard Errors

C=t (M)
RR (1)
ME (1)
C=t (V)
ARCH (Alphal)
GAECH (Betal)
EJE (Gammal)
Student (DF)

Ho.
Mean

Cheservations
(¥)
Skewness (YY)

Log Likelihood

Coefficient

003541
.9599776
9596381
006321
L138777
863213
.050850
514377

2870
0.00038
1.30277

10570.292

Computing the 5td Errors

(Sandwich formula)

S5td.Error t-wvalue
0.020823 -0.1700
0.0013028 TeT.4
0.0016558 -601.7
0.00076446 8.268
0.012143 11.51
0.0061180 141.1
0.013263 3.834
0.19462 18.06
Ho. Parameters
Variance (YY)
Furtosis (Y)

0.

Qo005

42,7546l

= 0.75.

0.47.



Joint Statistic of the Nyblom test of stability: 7.61897

Individual Hyblom Statistics:

C=t (M) 1.46734
RER (1) 0.33566
MR (1) 0.32906
Cat (V) 1.594896
ARCH (Alphal) 1.33683
GRARCH (Betal) 1.919&0
EJE (Gammal) 1.43161
Student (DF) 2.455930
Rem: Asymptotic 1% critical walue for individwal statistics = 0.75.

Asymptotic 5% critical walue for indiwvidual statistics 0.47.

Adijusted Pearson Chi-square Goodness-of-fit test

¥ Cellsiq) Statis=stic P-Value (g-1)
10 17.8606 0.036825
20 24.4530 0.175347
30 44,3275 0.03415%9
40 54,9059 0.046963
S0 62 .2648 0.096603
&0 T9.8676 0.036569

2) In-Sample VaR estimation and backtests

EUR/CZK

EUR/CZK daily returns
95% VaR AR(1)-GJR(1.1)
99% VaR AR(1)-GJR(1.1)

0.03
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In-=zample Value-at-Risk Backtesting

Eupiec LR test

— Short positions -

Quantile Failure rate Eupiec LRT P-value E5SF1 ESF2
0.95000 0.95505 1.55941 0.20674 0.0097000 1.4303
0.99000 0.99338 3.7597 0.052503 0.014786 1.25952

- Long positions -

Cuantile Failure rate KEupiec LRT P-value ESF1 ESF2

0.050000 0.0445599 1.8258 0.17661 -0.0092412 1.4143

0.010000 0.0066202 3.7597 0.052503 -0.01534% 1.29&87

Dynamic Quantile Test of Engle and Manganelli (2002)

— Short positions -

Quantile Etat. P-value
0.95000 4,9310 0.55270
0.99000 3.65941 0.71759%

- Long positions -

Quantile Start. P-value
0.050000 4.5128 0.60763
0.010000 11.884 0.064611

Remark: In the Dynamic Quantile Regression, p=5.
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In-zample Value-at-Risk Backtesting

Eupiec LR test

— Short positions -

Quantile Failure rate Fupiec LRT P-wvalue ESF1 ESFZ2
0.95000 0.95780 3.8642 0.04932¢ 0.012616 1.774%8
0.99000 0.959512 9.3455 0.0022354 0.022211 1.9393

- Long positions -

Quantile Failure rate Kupiec LERT P-value ESF1 ESFz2

0.050000 0.022672 56,115 6£.823%90e-014 -0.0088022 1.68023

0.010000 0.0013952 33.797 6.1162e-009 -0.014138 2.8745

Dynamic Quantile Test of Engle and Manganelli (2002)

- Short positions -

Puancile Stat. P-value
0.95000 4,9713 0.54750
0.9%000 7.7274 0.25876

- Long positions -

Quantile Stat. P-wvalue
0.050000 45.453 3.8033e-008
0.010000 21.447 0.0015246

Remark: In the Dynamic (uantile Regression, p=>5.

EUR/PLN
003k EUR/PLN daily returns
i — 95% VaR AR(1)-GIR(1,1)
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In-sample Value-at-Risk Backtesting

Fupiec LR test

- Short positions -

Quantile Failure rate Eupiec LRT P-value E5F1 ESF2
0.85000 0.83763 8.6004 0.0033608 0.013886 1.3%962
0.89000 0.98641 3.3572 0.066911 0.019791 1.3078

- Long positions -

Quantile Failure rate Fupiec LRT P-wvalue ES5F1 ESFZ

0.050000 0.038676 8.3752 0.0038038 -0.013991 1.2748

0.010000 0.0048780 9.3764 0.0021980 -0.019582 1.1367

Dynamic Quantile Test of Engle and Manganelli (2002)

— Short positions -

Quantile Stat. P-value
0.95000 10.410 0.10841
0.995000 T.11l4% 0.31038

- Long positions -

Quantile Etat. P-value
0.050000 9.9845 0.12531
0.010000 T.7785 0.25478

Remark: In the Dynamic Quantile Regression, p=5.

EUR/RON

i EUR/RON daily returns
0t ——— 95% VaR ARMA(1,1)-GJR(1,1)
999 VaR ARMA(1,1)-GJR(1,1)
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In-sample Value-at-Risk Backtesting

Fupiec LR test

— Short positions -

Quantile Failure rate Fupiec LRT P-value E5F1 ESF2
0.95000 0.94070 4.9348 0.028322 0.014622 1.5058
0.99000 0.99058 0.10020 0.75158 0.028451 1.4844

- Long positions -

Quantile Failure rate Fupiec LRT P-wvalue ESF1 ESFZ

0.050000 0.044297 2.0380 0.15341 -0.012585 1.3133

0.010000 0.00313%92 18.621 1.5948e-005 -0.020228 1.15%58

Dyvnamic Quantile Test of Engle and Manganelli (2002)
— Short positions -

Quantile Stat. P-value
0.95000 7.5885 0.26975
0.99000 3.1535 0.78934

- Long positions -

Quantile Stat. P-value

0.050000 5.3364 0.50145

0.010000 13.677 0.033455

Eemark: In the Dynamic Quantile Regression, p=35.

3)Autocorrelation function for filtered residuals.

Sample ACF of Standardized Residuals for EUR/CZK Sample ACF of Standardized Residuals for EUR/HUF
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Sample ACF of Standardized Residuals EUR/ROMN

Sample ACF of Standardized Residuals for EUR/PLN
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Appendix 111

1. Preliminary statistic analyzes of filtered data.

i) Computation of Mean Excess Function

Mean Excess

Mean Excess

Estimation of Mean Excess Function for EURICZK Estimation of Mean Excess Function for EURMHUF
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_il) QQ-plot against Exponential distribution.

Behavior of EUR/CZK distribution against Exponential Quantiles Behavior of EURMHUF distribution against Exponential Quantiles
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Tal mdax

ii) Hill-plot inference for lower and upper tails.

Estimation of Hill parameter for EURICZEK et tail

EUR/CZK

Estimation of Hill parameter for EUR/CZK-right tail
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Tail index

Estimation of Hill parameter for EUR/PLN-Ieft tail

Estimation of Hill parameter for EUR/PLN-right tai
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2. GPD modelling.
i) Semi-parametric CDFs of filtered innovations.




Empirical Semi-Paramefric CDF of EURHUF

Empirical Semi-Paramefric CDF of EURICZK
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Probability

ii)Inference for GPD parameters

EUR/CZK EUR/HUF
Lower tail Upper tail Lower tail Upper tail
Parameters & c c § c §
0.0813 0.5934 0.0140 0.6307 0.1264 0.4327 0.1253
ML estimates (0.2797) (0.0000) (0.7998) (0.0000) (0.0452) (0.0000) (0.0698)
Standard Errors 0.0606 0.0507 0.0552 0.0518 0.0631 0.0373 0.0691
Lower limitsof | 59375 (05019 -0.0941 0.5370 0.0027 0.3654 -0.0102
Confidence
interval
Upper limits of
Confidence 0.2000 0.7016  0.1222  0.7407 0.2502 0.5124  0.2607
interval

iii) Check the Asymptotical Normality

Lower Tail of EURICZK

Exceedance

Standard Normal Quantiles

‘ : : | | Bootstrap estimates of tail index Bootstrap estimates of sigma
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Probability

Probability

Probability

Upper Tail of EUR/CZK
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Probability

Probability

Frobability

Lower Tail of EUR/PLN

Bootstrap estimates of tail index
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Bootstrap estimates of sigma
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Appendix IV
1. Estimation of copula parameters for the four currencies portfolio.

DoF DoF CI

17.3080 12.1811 22.4348
Correlation Matrix for T-copula

Correlation Matrix for T-copula

EUR/CZK EUR/HUF EUR/PLN EUR/RON

EUR/CZK EUR/HUF EUR/PLN EUR/RON

EUR/CZK 1.0000 0.2954 0.3446 0.1453 EUR/CZK 1.0000 0.2816 0.3303 0.1345
EUR/HUF 0.2954 1.0000 0.4764 0.2332 EUR/HUF 0.2816 1.0000 0.4618 0.2240
EUR/PLN 0.3446 0.4764 1.0000 0.3388 EUR/PLN 0.3303 0.4618 1.0000 0.3311

0.1345 0.2240 0.3311 1.0000

1.0000 EUR/RON

EUR/RON 0.1453 0.2332 0.3388

Empirical Kendall's tau

Theoretical R using Kendall's tau

EUR/CZK EUR/HUF EUR/PLN EUR/RON

EUR/CZK EUR/HUF EUR/PLN EUR/RON

EUR/CZK 1.0000 0.2913 0.3317 0.1403

EUR/CZK 1.0000 0.1882 0.2153 0.0896
EUR/HUF 0.1882 1.0000 0.3175 0.1433 EUR/HUF 0.2913 1.0000 0.4783 0.2232
EUR/PLN 0.2153 0.3175 1.0000 0.2238 EUR/PLN 0.3317 0.4783 1.0000 0.3443

0.1403 0.2232 0.3443 1.0000

1.0000 EUR/RON

EUR/RON 0.0896 0.1433 0.2238

Empirical Spearman's rho Theoretical R using Spearman'rho

EUR/CZK EUR/HUF EUR/PLN EUR/RON

EUR/CZK EUR/HUF EUR/PLN EUR/RON

EUR/CZK 1.0000 0.2769 0.3135 0.1336 EUR/CZK 1.0000 0.2890 0.3268 0.1398
EUR/HUF 0.2769 1.0000 0.4561 0.2116 EUR/HUF 0.2890 1.0000 0.4731 0.2211
EUR/PLN 0.3135 0.4561 1.0000 0.3269 EUR/PLN 0.3268 0.4731 1.0000 0.3407

EUR/RON 0.1336 0.2116 0.3269 1.0000 EUR/RON 0.1398 0.2211 0.3407 1.0000




2. Estimation of copula parameters bivariate EUR/PLN-EUR/CZK sub-portfolio.

i) Copula parameters.

Theoretical Rhoof ~ Gaussian Clayton

Kendall's tau

the sample R

0.2153 03317 03302 03424 95650 56044 135255 03947 03448 04447 21141 18906  2.3376

Rotated Gumbel Plackett SIC
0 Cl 0 Cl 9 Cl 0 Cl T-Llower  T-Upper

Gumbel Rotated Clayton

12602 12267 12937 04291 03792 04791 12530 12195 12866 2.8710  2.6475 3.0945 0.1365  0.1879

Tyme-varying Rotated Gumbel Tyme-varying Gumbel Tyme-varying SJC

0 B a 0 B a Q-Lower p-lower a-lower Q-Upper p-Upper a-Upper

07420 0.1256  -1.5428 02080 04210 -0.9072 02397 -81954 12386 04134 -7.9968 -1.0793

ii) Tail Dependence and Information Criteria.

Tail Dependence Information Criteria

Copula Lower Upper Copula NLL AIC BIC
Gaussian 0 0 Gaussian -165.6123 -331.224 -331.222
Clayton 0.1729 0 Clayton -117.6286 -235.257 -235.255
Rotated Clayton 0 0.1989 Rotated Clayton -144.4857 -288.971 -288.969
Plackett 0 0 Plackett -163.1631 -326.326 -326.323
Frank 0 0 Frank -154.9511 -309.902  -309.9
Gumbel 0 0.2667 Gumbel -166.6571 -333.314 -333.311
Rotated Gumbel 0.2612 0 Rotated Gumbel -150.4854 -300.97 -300.968
T 0.0449 0.0449 T -179.3969 -358.792 -358.788
SJC 0.1365 0.1879 SJC -176.2975 -352.594 -352.59

Copula-GARCH

Rotated Gumbel -176.0552 -352.108 -352.102

Gumbel -188.9844 -377.967 -377.96

Symmetrised Joe- -198.7753 -397.546 -397.534

Clayton




iii) Copula-GARCH.

SJC copula - lower tail
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3. Estimation of copula parameters bivariate EUR/PLN-EUR/HUF sub-portfolio.

i) Copula parameters.

Kendall's  Theoretical Rho of

Gaussian Clayton

tau the sample )

0.3175 04783 0.4618 04759 12.6829 6.4495 189163 05628 05085 0.6171 32315 2998  3.4662

Gumbel Rotated Clayton Rotated Gumbel Plackett SIC
Cl T-Lower  T-Upper

14293 13900  1.4687 0.6929 06387 07472 13893 13500 14286 44910 42563 47257 0.170839 0.345223

Tyme varying Rotated Gumbel Tyme varying Rotated Gumbel Tyme varying SJC

Q0 B a Q B a Q-Lower B-Lower a-Lower Q-Upper B-Upper a-Upper

0336375 039426  -1.179 0357299 0.388526 -1.1701 -1.9619 -0.45904  4.0943 0.94699 -14.2717 0.844943

ii) Tail Dependence and Information Criteria.

\ Tail Dependence Information Criteria
Copula ‘ Lower Upper Copula NLL AIC BIC
Gaussian 0 0 Gaussian -344.113 -688.225 -688.223
Clayton 0.1729 0 Clayton -217.074 -434.146 -434.144
Rotated Clayton 0 0.1989 Rotated Clayton | -306.968 -613.936 -613.934
Plackett 0 0 Plackett -351.701 -703.402 -703.399
Frank 0 0 Frank -342.603 -685.205 -685.202
Gumbel 0 0.2667 Gumbel -349.786 -699.570 -699.568
Rotated Gumbel 0.2612 0 Rotated Gumbel | -280.449 -560.898 -560.896
T 0.0449 0.0449 T -354.053 -708.104 -708.100
SIC 0.1365 0.1879 SIC -339.544 -679.087 -679.083
Copula-GARCH
Gumbel 417.9847 835.9674 835.9611
Rotated Gumbel | 339.3431 678.6842 678.6780
Symmetrised 416.8612 833.7181 833.7057
Joe-Clayton




iii) Copula-GARCH.

SJC copula - lower tail
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3. Estimation of copula parameters bivariate EUR/PLN-EUR/HUF sub-portfolio.

i) Copula parameters.

Kendall's  Theoretical Rho of ~ Gaussian T-copula Clayton
tau the sample R DoF

0.2238 0.3443 03313 03440 162281 55441 269121 03815 03304 04327 21826 19571 24081

Rotated Clayton Rotated Gumbel SIC

T-lower  T-Upper

12589 12256 12923 04225 03713 04737 12481 12147 12815 29357 27102 31611 01181 0.1884

Tyme varying Rotated Gumbel Tyme varying Rotated Gumbel Tyme varying SIC
Q B a Q B a QO-lower p-lower a-Lower Q-Upper B-Upper a-Upper

09591 -0.075 -14112 -0.1557 06135 -04331 13151 84214 35242 -0.0334  -9.0312 15326

ii) Tail Dependence and Information Criteria.

Tail Dependence Information Criteria
\Copula Lower Upper Copula NLL :\[o :][
Gaussian 0 0 Gaussian -166.8175 -333.634 -333.632
Clayton 0.1627 0 Clayton -112.2710 -224.541 -224.539
Rotated
Clayton 0 0.1939 Rotated Clayton -138.9871 -277.974 -277.971
Plackett 0 0 Plackett -172.1960 -344.391 -344.389
Frank 0 0 Frank -166.1478 -332.295 -332.293
Gumbel 0 0.2657 Gumbel -159.1701 -318.339 -318.337
Rotated
Gumbel 0.2574 0 Rotated Gumbel -142.3737 -284.747 -284.745
T 0.0099 0.0099 T -171.8631 -343.725 -343.721
SJC 0.1181 0.1884 SJC -163.9774 -327.953 -327.949
Copula-GARCH ‘
Gumbel -172.0255 -344.049 -344.043
Rotated Gumbel -156.7138  -313.426  -313.419
Symmetrised Joe-
Clayton -176.9928 -353.981 -353.969




iii) Copula-GARCH.

SJC copula - lower tail
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Appendix V

1. Portfolio risk measure; i) In-sample estimation of VaR and CvaR

Confidence T-copula Gaussian- T-copula Gaussian- Min. and max. Out-of-Time

Copula Copula empirical realized
level VaR VaR VaR VaR return return

Horizon

1 month

5.6392 5.5865 7.5849 7.4142
95%
-4.9829 -5.0366 -6.4952 -6.3666 9.2584
99%
3 oz -7.4981 -7.2513 o -8.7605 -8.4968
months I 3 1.2677
5%
6.8738 6.8910 10.0183 10.0590
18.7701

1%
11.9919 11.9431 16.3543 15.5711




ii) Monte-Carlo simulation of CDF

1-Month Out-of-time simuiated CDF with Gaussian-copula

1-Manth Out-of-time simulated CDF with T-copula
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2. EUR/PLN-EUR/CZK sub-portfolio risk measure

i) In-sample estimation of VaR and CvaR



Min. and

Gumbel- Out-of-Time
. Confiden T-copula max. .
Horizon Copula . . realized
ce level VaR empirical
VaR return
return
95% 1.1922 1.2045
- - -2.6805
0,
99% -1.6351 -1.6002
0.1748
5%
0.8817 0.7710 1.2421 1.2279 31735
1%
1.4329 1.4865 1.8942 1.9810
95%
-2.0562  -1.9067 -2.5697  -2.3575 79016
0,
99% -2.8617 -2.6298 (5 -3.5580 -2.9903
s -1.4244
5% c
1.8991 1.7797 2.6586 2.6064 8.2211
1%
3.1737 3.1102 3.9587 3.8942
95%
-2.6055 -2.7462 -3.3623 -3.4626
-6.6230
99% o
-3.7940 -3.7864 g -4.6173 -4.5741 -2.1492
5%
2.3839 2.5540 3.4456 3.5967
8.0561
1%
3.9764 4.2246 5.1431 5.6460
95%
-4.0449 -4.0077 -5.3040 -5.0007
-7.6330
99%
-5.8364 -5.6978 = -7.2352 -6.3841
S -3.8425
5% °
4.0071 3.7864 5.9100 5.8640
10.9775
1%
6.5271 7.3033 10.1099 9.4476
95%
-7.2029 -6.8356 -8.9414 -8.7052 11.0234
99%
-10.0390 -9.8307 "3 -11.8241 -11.9075
3 months S 0.4159
5% ©
6.4088 6.6884 9.3623 11.3436
22.3665
1%
11.1877 13.3398 15.0395 20.9592

ii) Monte-Carlo simulation of CDF



1-Month Out-of-ime simulated CDF with Gumbel-copula

1-Manth Out-of-time simulated CDF with T-copula
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2. EUR/PLN-EUR/HUF sub-portfolio risk measure
i) In-sample estimation of VaR and CvaR



Gumbel- Gumbel- M3 6 of Time
. Confidence T-copula T-copula max. .
Horizon level VaR Copula VaR Copula empirical realized
VaR VaR p return
return
-1.0755
-1.5137 -1.9167 -1.8433
0.5517
0.9200 1.3930 1.4393 4.1159
1.6072 1.7173 2.0539 2.3175
-2.2232 -2.0826 -2.9005 -2.6689 -9.2020
o -3.2520 -3.0598 4 -3.8961 -3.4373
5 days iy S -1.5119
O
2.1244 2.0942 3.2111 3.0368 92936
3.6069 3.5849 4.8605 4.6940
-2.9652 -3.0645 -3.7032 -3.8050
-7.9383
o
10 days E -4.2056 -4.3303 g -4.8996 -5.0764 -1.4125
2.9689 3.0843 4.2654 4.3156
9.0617
5.2296 5.3492 6.4678 6.4423
-4.5654 -4.2590 -5.9553 -5.4747
-7.4851
o -6.8459 -6.2733 o -8.0956 -7.2053
1 month S S -4.0792
o
4.5619 4.6203 6.9346 7.1122
15.4599
8.0534 8.3552 11.7663 10.8031
95%
-7.3782 -7.2217 -9.5191 -9.3648 11.5424
99%
3 - -10.4988 -10.7371 o -12.5633 -13.4850
o S 2.5407
months 5% > o
(o]
7.8492 8.6982 11.8615 14.2239
21.5802
1%
13.8947 17.1297 18.6205 25.7856

ii) Monte-Carlo simulation of CDF



1-Month Qut-of-ime simulated COF with Gumbel-copula

1-Month Qut-of-ime simulated COF with T-copula
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2. EUR/PLN-EUR/HUF sub-portfolio risk measure

i) In-sample estimation of VaR and CvaR



Min. and Out-of-

Frank- Plackett- Plackett- .
. Confidence max. Time
Horizon level copula Copula Copula empirical  realized
VaR VaR VaR P
return return
95% 1.2759 1.3022
o o -4.0511
0,
99% -1.7752 -1.8018
0.4116
5%
0.9036 0.9167 1.2445 1.3030 5 8615
1%
1.4666 1.5054 1.7806 2.0016
95%
-2.0450 -2.0300 -2.7283 -2.6029 -4.8666
0,
99% Il -3.2014 -2.9115 3 -3.7722 -3.4631
| 5 days S g -1.1141
5% ©
1.8590 1.8269 2.5676 2.5472 6.5516
1%
2.9923 2.9373 3.7096 3.7520
95%
-2.8445 -2.8308 -3.7579 -3.5763
-5.5519
99% »
‘10 days E -4.1471 -4.2037 ; -5.2994 -4.6958 -1.0764
(@]
5%
2.7004 2.9144 3.7518 3.9300
7.5991
1%
4.4391 45338 5.3432 5.4369
95%
-4.4102 -4.3280 -5.6651 -5.5022
-5.5050
99%
'3l -6.2009 -6.1906 3 -7.6919 -7.2893
1 month L] S -3.1584
5% c
4.1188 45157 5.7739 6.3479
9.6777
1%
6.7624 7.1696 7.9586 9.6292
95% B
-7.7137 -7.4042 10.2423 -9.8925 10.2125
99% ) )
3 Al 11.7625 -10.9088 " 14.9252 -14.4789
© S 1.9176
months 5% > O
0
7.5080 8.6671 11.7263 13.1176
22.1169
1%
13.2778  15.5488 18.1708  21.1178

ii) Monte-Carlo simulation of CDF



1-Month Out-o-time simulated CDF with Plackeft-copula

1-Month Out-ot-time simulated COF with Frank-copula
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3Months Qut-of-time simulated CDF with Plackefi-copula

J-Months Out-of-time simulated GDF with Frank-copula
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Appendix VI

1. Out-of-Sample forecast of VaR against empirical returns

FPortfolio Evolution (ELR/PLRN, ELRSCE R

EUR/PLN-EUR/CZK

[ Day Ahead Ou of- Sample VaR with Gumbel copula

1 Dav-Ahead Out-o-Sample VaR with T-copula
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Faortfolio Evolution (EUR/FLM, ELIR/HLIF])

Portfolio Evolution (EURSELR, ELIRROM)
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2. Evolution out-of-sample forecast’s errors for large portfolio.

Errors of 95% VaR estimation with Gaussian-copula
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Errors of 95% VaR estimation with T-copula
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