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In this paper I aimed to analyze the use of copulas in financial application, namely to 

investigate the assumption of asymmetric dependence and to compute some measures of risk. 

For this purpose I used a portfolio consisting in four currencies from Central and Eastern 

Europe. Due to some stylized facts observed in exchange rate series I filter the data with an 

ARMA GJR model. The marginal distributions of filtered residuals are fitted with a semi-

parametric CDF, using a Gaussian kernel for the interior of distribution and Generalized 

Pareto Distribution for tails. To obtain a better view of the dependence among the four 

currencies I proposed a decomposition of large portfolio in other three bivariate sub-

portfolios. For each of them I compute Value-at-Risk and Conditional Value-at-Risk and then 

backtest the results. 
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1. Introduction 
 

A series of far-back observation have been reported the non-normality of distribution in the 

case of almost economic and financial variables. In this sense Mandelbrot (1963) highlighted 

for the first time existence of leptokurtosis effect, he indicating the fact that large changes 

tend to be also followed by several large changes of either sign (volatility clustering effect). 

Later in 1976, Black underlined the leverage effect as tends of assets prices correlates 

negatively with volatility movements. Furthermore in 1998 Ramchand and Susmel 

emphasized the evidence of common volatility tends across markets that could lead to 

contagion effects. 

Taking into account for the existence of all these stylized facts in financial markets, we can 

conclude about complex behaviour of the financial instruments. Over the past 20 years it have 

be seen an enormous interest for obtaining better knowledge of financial markets. This 

process occurs along the rapid development of financial instruments. In parallel there raised 

the interest in protecting against some turbulent motions of the markets. Thus the risk 

management became one of the most important concerns in both private and academic 

environment.  

The first step in developing quantitative tools designed to measure the risk of random events 

was made by the risk department of J.P Morgan.  In 1994, the CEO of J.P Morgan, Dennis 

Weatherstone asked to the risk department that every day at 4.30 P.M to submit a report 

relating to the bank risk measure and a corresponding risk measure. Thus it takes birth the 

Risk Metrics Department managed by Till Guildman that elaborated the Value-at-Risk (VaR) 

model. Value-at-Risk is a statistic model which is designed to express the risk of an exposure 

by a single number. More exactly Value-at-Risk model estimates the worst potential loss for a 

financial instruments portfolio over a given time horizon and confidence level. Despite the 

simple assumptions, the original Value-at-Risk provided satisfactory results from the 

beginning. For this reason and also because it  is relative easily to implement, this model 

became the main risk instrument used in banking and financialsystem. Furthermore due to the 

increased importance given by the Group of 30’ Report in 1993 and especially the 

introduction to Basel I amendment Value-at-Risk became standard measurement in risk 

management modelling 



But Value-at-Risk have received a lot of criticism over time due to theirs simplistic 

assumptions that made this model to have many limitations in quantifying the risks. In 2001 

Dembo and Freeman proved that Value-at-Risk models, like volatility, don’t provide a 

satisfactory distinction between ”good” risks and “bad” risks. In 1997, Artzner called an 

axiomatic approach and set some conditions to certify a satisfactory risk measure.  Thus 

Artzner called the risk measures which satisfy the formulated axioms as “coherent”.  He 

proved that Value-at-Risk model is not a coherent risk measure because it doesn’t satisfy one 

of axiomatic condition, namely the sub-additivity one. Other important criticism was that 

Value-at-Risk model only provides a limit of the losses but tell nothing about the potential 

loss when the limit is exceeded.   

Meanwhile several recent resounding failures as LTCM, Barings Bank, or more recent as 

Enron, Bear Sterns or Lehman Brothers which have brought in discussion that used risk 

management models do not take enough into account for potential occurrence of extreme 

events. This also applies to the Value at Risk model assumptions, which is actually considered 

one of the main catalysts for the current financial crisis because it is widely used in banking 

and financial system. But returning about first example of LTCM a very interesting fact was 

that the worst scenario provided by their models predicted a loss of only 20% as compared to 

60% which was recorded when the situation began to deteriorate. In an interview accorded to 

the Wall Street Journal in 2000, John Meriweather that with Nobel Prize winners Robert 

Merton and Myron Scholes led LTCM to the time of its bankruptcy, he said that globalization 

will lead to increasing occurrence of multiple crises and therefore he encouraged consider 

extreme events. Instead  few years later, Professor Paul Embrechts who is called Mr. Extreme 

Values due to its important contribution in this area declared in a Swiss paper that models 

with normality assumption (such as Black & Scholes or VaR) perform poorly in practice, one 

possible explanation being the existence of heterosckedasticity. Also Professor Embrechts 

added that for this purpose mathematics should be used to adjust some kind of models such 

that to be consistent with reality. 

Thus in recent years have been proposed many alternatives to the original assumption of 

Value-at-Risk models. The flash points were to incorporate in Value-at-Risk the 

heteroskedasticity and some distributions that take into account the existence of extreme 

events. For the first task there appeared several volatility models from GARCH family as 

asymmetric GARCH (GJR) proposed by Glosten, Jagannathan and Runkle (1993) or 

exponential GARCH (EGARCH) proposed by Nelson (1991) that includes a Boolean function 



wich accounts for negative impact of bad news (leverage effect). Also stochastic volatility 

models, Fuzzy-GARCH or Markov-Switching GARCH models are other appropriate choices 

to model the heteroskedasticity. For the second task I quote the Bollerslev’s conclusion 

(1987) that Student distribution provide suitable fits for univariate  distribution, but performs 

poorly in the multivariate case. Thus a better choice to model the multivariate distribution is 

the use of copulas which permits decomposition of joint distribution in dependence structure 

and marginal distributions. Of course in the univariate case Extreme Value distributions are 

more appropriate in financial modelling than Student distribution. But a more detailed 

description of these concepts I will do later.  

So in this paper I aimed to analyze the use of copulas in financial application, namely to 

investigate the assumption of asymmetric dependence and to compute measures of risk. For 

this purpose I used a portfolio containing four currencies from Central and Eastern Europe. 

Due to some stylized facts observed in exchange rate series I filter the data with an 

ARMA GJR model. The marginal distributions of filtered residuals are fitted with a semi-

parametric CDF, using a Gaussian kernel for the interior of distribution and Generalized 

Pareto Distribution for tails. To capture a better view of the dependence among the four 

currencies I propose a decomposition of large portfolio in other three bivariate sub-portfolios. 

For each of them I compute Value-at-Risk and Conditional Value-at-Risk and then backtest 

the results. 

2.Literature Review  
The use of copula in modelling economic and financial processes has recorded a fast growth 

in recent years, even though the first applications of copulas date back to late 70s. 

Copula concept was firstly introduced in mathematics by Sklar (1959) who defined a theorem 

according to which any multivariate joint distribution can be decomposed into a dependence 

structure and its n marginal distributions. 1959 actually refers only to the appearance of this 

theorem for decomposition of multivariate distributions. Sklar explicitly calls copula concept 

in 1996 as a function that satisfies the theorem formulated by him in 1959. Epistemology of 

copula word comes from Latin and means connection or link. But until 1996, the functions 

that fulfils the Sklar’s theorem from 1959 circulated under different names as: dependence 

function (Deheuvels, 1978), standard form (Cook and Jonson, 1981) or uniform 

representation (Hutchinson and Lai, 1990). 



Copula was used for the first time in the joint-life models by of Joe Clayton (1978), studying 

the bivariate life tables of sons and fathers. Others important contributions to the Clayton’s 

models have been made by Cook and Johnson (1981) and Oakes (1982). 

Hougaard (1992) studied the join-survival of twins born in Denmark between 1881 and 1930 

using a Gumbel copula (1960). Frees (1995) used Frank copula to investigate mortality of 

annuitants in joint- and last- survivor annuity contracts. Also using Frank copula, Shih and 

Louis (1995) studied the joint-survival of a series of patients infected with HIV. 

After 2000 a wave of copula applications works in finance came due the growing interest for 

risk management. Rockinger and Jondeau (2001) used Plackett copula to analyze the 

dependence among S&P500, Nikkei 225 and some European stock indices. Patton (2002) 

computed the first conditional copula in order to allow first and second order moments of 

distribution function to vary over time. Patton (2004) used conditional copulas to analyze the 

asymmetric distribution between Deutsche Mark and Yen against Dollar. Jondeau and 

Rockinger (2006) use time-varying Gaussian and Student  copula to model the bivariate 

dependence between countries, while for univariate marginal distributions propose Skewed-t 

GARCH models. 

Frey and McNeil (2003) and Goorbergh, Genest and Werker (2005) have used copula 

functions to account for dependence in option pricing. Hotta, Lucas and Palaro (2006) 

estimates Value-at-Risk  using ARMA GARCH model to filter returns, while the marginal 

distributions were modelled by an GPD approach and dependence structure by Gumbel 

copula. ARMA GARCH model was used previously to filter the returns series by Embrechts 

and Dias (2004) and Patton (2006).  Hotta and Palaro (2006) use conditional copula to 

estimate Value-at-Risk for an bivariate indices portfolio. 

Chollete, Heineny and Valdesogo (2008) use Gaussian and Canonical Vine copulas to model 

the asymmetric dependence between financial returns. Heineny and Valdesogo (2009) 

introduce a Canonical Vine autoregressive copula to model dynamic dependence between 

more than 30 assets.  . 



3. Methodology 

3.1. Extreme Value Theory 
Extreme Value Theory (EVT) represents a domain of the probability theory that deals with 

the study of extreme events. Such events are characterized by extreme deviations from the 

normal median of their probability distributions. More exactly, the EVT studies and models 

the behaviour of distributions in their extreme tails. These rare events are described by a 

thickening of the tails that determines an excess of the kurtosis above the characteristic value 

for of the Gaussian distribution. Therefore the apparitions of the so-called fat tails are also 

known as the leptokurtic distributions. An important remark about the modelling of extreme 

events is that it is not necessary to make a prior specification or assumption about the shape of 

the studied distribution. In literature exists two main theories that provided two approaches 

for applying the EVT theory.  

3.1.1Generalized Extreme Value distributions 
Thus the first method is known as Block maxima approach and it is based on the theorems 

which were introduced independently by Fisher1 and Tippett2 et al. (1928) and Gnedenko et 

al. (1943). This technique supposes that a sample should be divided into blocks and then the 

maximum or minimum value of each block is treated as extreme event. In 1958, Emil Julius 

Gumbel3 showed that depending if the samples of maximum or minimum are bounded below 

or above, the extreme value distribution can be modelled as a few known limiting 

distributions. More exactly Gumbel demonstrated that if a distribution has a continuous 

repartition function and also has an inverse, then the asymptotic distribution of the maximum 

or minimum sample will converge to Gumbel, Fréchet or Weibull distributions. Therefore in a 

standard form these three types of distributions are considered as Generalized Extreme Value 

(GEV) distributions. It also should be noted that the principle of the limiting distributions is 

very close to the Central Limit Theoremwhicht limits the normal distribution to a sample of 

averages. Firstly we will define the three distributions of rare events: 

 

Gumbel:  

                                                            
1 Sir Ronald Aylmer Fisher  (1890 –1962) was an English statistician, biologist , geneticist  and eugenicist. He 
introduced the maximum likelihood approach. 
2 Leonard Tippett (1902 -  1985) was an English statistician and physicist who studied under Professor Karl 
Pearson. 
3 Gumbel (1891-1661) was a German mathematician and political writer who  founded the Extreme Value 
Theory together with  Tippett and Fisher. 



 where   

 

 Fréchet: 

 

Weibull: 

. 

 

For a given random vector  in which the random variables are independently 

and identically distributed (i.i.d.) and , then  is the 

distribution function of . Thus for an appropriate choice of constants  and  such that 

 it will be fulfilled a convergence of the maxima’s distribution functions to the 

following continuous distribution function: 

 

where  and is a non-degenerate distribution function that belongs to one of the 

three extreme distributions families.  



Considering , von Mises4 et al. (1936) and Jenkinson et al. (1955) proposed a 

parametization for the GEV distribution to encompasses the three family of extreme 

distribution defined above: 

 

where   denotes the tail index and indicates the degree of thickness for the tails of the 

distribution. More detailed, the tail index reflects the velocity with which the probability 

decays in the extreme of the tail and also approaches to zero. Thus the heavier the tail, it will 

result a slower speed of decreasing probability and also a higher tail index. A very important 

property of the tail index   is that this one indicates the number of moments which 

exist in a distribution. Therefore for  results that in the studied distribution it exists the 

first four moments: mean, variance, skewness and kurtosis, but the higher moments have 

infinite values. The chosen family of the extreme distribution to model the EVT is determined 

by the value of the tail index such that: 

• If , then it will be chosen a Weibull distribution; 

• If , then it corresponds a Fréchet distribution; 

• And if , it results as appropriate a Gumbel distribution. 

From the three families of extreme distributions it has been found that Fréchet distribution it 

is the most appropriated to the fat-tailed financial data due to the particularity of its tail index 

, because we know the smaller  corresponds  to heavier tails.    

In 1943, Gnedenko showed the necessary and sufficient conditions for each parametric 

distribution to belong to one of the three families of extreme distributions. Therefore he 

demonstrated that normal or log-normal distributions converges to a Gumbel distribution,; 

when the parameter  denotes degree of freedom, a Student distribution lead to a Fréchet 

distribution for its extremes; or a uniform distribution belongs to the attraction domain of a 

Weibull distribution.  

                                                            
4 Richard von Mises (1883– 1953) was an austrian athematcian. His brother was the economist Ludwig von 
Mises.  



A very important advantage of the GEV approach is that for a given unknown initial 

distribution, the modelling of asymptotic distribution doesn’t suppose any assumption about 

the particularities of the initial distribution of the sample. An exception of this observation is 

shaping by the modelling of a parametric Value-at-Risk (VaR).  

 

3.1.2 Generalized Pareto Distribution 
This second approach supposes to set a threshold value such that all the realizations over this 

limit are considered and also modelled as extreme events. The main idea behind this method 

called also peak-over-threshold is that difference between the realized extreme events and the 

set threshold are considered as excesses. Therefore peak-over-threshold approach involves the 

estimating of a conditional distribution of the excesses situated above a given set threshold. 

For a random vector   with a distribution function , let consider the 

threshold  as . Thus  denotes the distribution function of excesses over the 

threshold : 

 

Independently Balkema and de Haan et al. (1974) and Pickands et al. (1975) provided 

theorems that demonstrated since the threshold  was estimated and for a sufficiently high  

to satisfy , the conditional distribution  can be fit using Generalized Pareto 

Distribution (GPD). Therefore we will define the following relationship regarding the fitting 

of conditional distribution function using GPD: 

 

where  

 

and 



 

In the above relations, the parameter  denotes the scale parameter, while  represents the 

location parameter. An important observation is that in the case when  and , then 

the relations  and   constitute a standard GPD.  

The relationship between GEV and GDP approaches can be expressed as following: 

 

 

3.2 What means dependence? 
 

In the probability theory, two random variables are independence if a part of the information’s 

genesis of one variable does not found in the other variable. More exactly two random 

variables presents independence if and only if it is respected the following inequality: 

. 

Instead, the concept of dependence between two or more random variables has to be described 

more in detail, owing to the high complexity of the concept. Another very important concept 

is the mutual complete dependence that states in the case of two random variables  and , the 

information’ genesis of  implies the knowledge of , and inversely. Thus the predictability 

of one random variable to other can be defined as following: 

 

where  is either strictly increasing or strictly decreasing mapping, implying that the two 

random variables are co-monotonic. For a better understanding of the dependence concept, we 

will note the most important families of dependence measures.  

 

3.2.1 Linear Correlations 
 



This method for the measurement of dependence between random variables is the most used 

in the finance and insurance areas. Thus the linear correlation coefficient is found in the 

structure of many popular models like CAPM or Value-at-Risk (VaR). The main advantage of 

the linear correlation coefficient is the easiness of the estimation: 

 

where   represents the covariance between  and , while  and  are the 

variances of , respectively of . 

The properties of the linear correlation coefficient are the following: 

i) ; 

ii) If  and  are independent, then ; 

iii) . 

When between  and  exists a perfect linear dependence defined as : , then 

 equals , depending on whether  is positive or negative. The main disadvantage of 

the linear correlation coefficient is that it supposes a normal distribution of the analyzed 

series; otherwise it provides the so-called spurious correlation. 

The linear correlation coefficient estimates the overall correlation between two random 

variables, basing on the assumption that   is invariant only under linear changes. 

Instead, Docksum et al. (1994) developed a coefficient that measures the local correlation 

between two random variables, allowing to analyze when the correlation remains constant or 

not, in order to the random variables’ realizations. Given the relationship between   and : 

, , then the correlation coefficient admits the representation: 

 

where   and  are the variances of , respectively of the error term. More exactly the local 

correlation allows the analysis of the changes in the correlation strength using a function of 



the random variables’ realizations. This approache is very useful in the study of systemic 

risks, contagions of crisis or to analysis the flight-to-quality5 phenomenon.  

3.2.2 Concordance Measures 
 

A very important limit of the linear correlation coefficient is that this one isn’t a robust 

estimator of the correlation. Instead the financial risk management aim to analysis the joint 

behaviour of the assets, investigating the propensity of the assets to move together. In these 

conditions, the linear correlation coefficient can provides misspecificated results according 

with most of the empirical studies’ conclusions that testified  the non-normal distributions of 

the assets. Therefore have been developed other measures of correlation to avoid the 

potentially misalignments.  These new approaches, named concordance measure, are based 

on the idea that  „large” values from one series corresponds to those „large” from other series 

and also the principle is validating for the „lower” ones. Given two independent random 

variables  and  with the realizations  and , we say that the two pairs of 

realizations are concordance if , elsewhere these ones are 

disconcordance. 

The concordance measures fulfils the following properties: 

i) ; 

ii) ; 

iii) If  and  are independent, then ; 

iv) If we denote  and  as two linear or non-linear increasing functions, 

then: . 

Kendall’s Tau: 

 

 

Spearman’s Rho: 

                                                            
5 See Malevergne and Sornette (2006) for more details. 



 

 

3.2.3 Dependence Metric 
Granger et al. (2004) defined the Dependence metrics as any dependence measure that fulfils 

the following properties: 

i) Given a measure  of the dependence between two random variables,  is 

defined for both continuous and discrete random variables; 

ii)  represents a distance; 

iii)  is invariant under the continuous changes of the realizations of  and ; 

iv)  is ranging between 0 and 1; 

v) If  and  are independent, then  equals 0; 

vi) If the relationship between  and  can be defined as a measurable mapping: 

, then  equals 1. 

The concept of dependence metric has the role to test the complicated serial correlations, 

being used in the forecasting of financial time series and to analyze the goodness-of-fit in 

financial modelling. Therefore we will define two of the most important dependence metrics. 

Bhattacharaya, Matusita and Hellinger measure: 

 

where  and  are the marginal densities of  and ,  is the joint density function and  

represents the distribution function of the two random variables. More in detail, the 

dependence metric defined above relates the entropy between the bivariate density function  

and product of marginal densities  and . The relation  measures ¼ of the symmetric 

relative entropy between  and  for the ½ -class entropy. 

Kullback-Leibler distance:  



Given the k-class entropy family named as well as Tsallis entropy, we define the Kullback-

Leibler distance as: 

 

                                               

where  is the density function of a random variable or of a vector. Also the Kullback-Leibler 

distance is commonly used in Bayesian econometrics to measure the relative entropy in the 

moving process from prior distribution to posterior distribution.  

 

3.2.4 Tail Dependence 
The concept of Tail dependence tests the probability of two random variables to posts extreme 

movements in the same timeframe. Thus the upper tail dependence can be defined as: 

 , 

This formula measures the probability to records a large value of  , given that Y is itself 

large, at level of probability . 

The coefficient of lower tail dependence admits the following representation: 

. 

If , then random variables  and  are asymptotically independent, otherwise when  

 the large events post common movements. In other words two random variables are 

independents if it is fulfilling the following conditions: 

 

where the numerator denotes the repartitions function of the joint distribution, while the  

 and  represents the margins distribution of  and . 

In real world,  two random variables  and  can denotes volatilities of two stocks, while the 

coefficient  represents the probability that both stocks post simultaneously extreme 



volatilities. For example we can consider the Value-at-Risk (VaR) model because it constitutes 

the subject of this paper. Therefore considering a VaR, we define the two random variables  

and  as assets or portfolios,  is the confidence level, while  and  represents 

the two quantiles. Given the same level of confidence , the probability that  and  exhibit 

tail dependence and exceed their VaR6 equals: 

, where . 

 

3.2.5 Quadrant and Orthant Dependence 
The main disadvantage of the concordance measures is the fact that they are difficult to 

estimate for portfolios with financial assets. Other limit of the generalization of concordance 

measures for more than two random variables is related to the “frustration” phenomenon, 

which was introduced in statistical physics.  The concept of “frustration” says that  

constraints tend to determine opposite and divergent states in two interacting variables that 

can’t be incorporated in systems of three or more random variables. More exactly the 

“frustration” phenomenon generally leads to existence of multiple equilibria. A way to 

remove this limit is the quadrant dependence approach (PQD). Therefore we say two random 

variables are positive quadrant dependent if admit the following representation: 

 

The relation  states that probability of the two random variables to be in the same 

timeframe small is at least equal with probability of the case when these ones are independent. 

A very important property is that the PQD random variables post a positive correlation 

coefficient. In real world an example of the PQD variables are the assets preferred by risk-

averse investors, having a concave utility function.  

But to generalize the concept of PQD for cases with more than two random variables we will 

define the concept of positive orthant dependence (POD). Thus for N random variables 

 we define the positive lower orthant dependence (PLOD) and the positive 

upper orthant dependence (PUOD) as: 

 

                                                            
6 See Malevergne and Sornette (2006) for more details. 



 

. 

Therefore if N random variables  are PLOD or PUOD, then it results that they 

are POD. The POD random variables have the same interpretation as the PQD ones, only that 

the principle is generalized for the multivariate case. In financial world, the concept of POD is 

commonly used to analyze and to adopt some strategies of trading that are market neutral. 

More exactly the portfolio managers are using the concept of POD to reduce and to remove 

the impact of market movements on portfolios evolution, therefore aiming to minimize the 

propagation of negative effects produced by some potential extreme events.  

 

3.2.6 Conditional Correlation Coefficient 
The concept of conditional correlation coefficient represents a very useful tool for researchers 

that study the contagion phenomenon among different markets or economies and to detect the 

propagation of the systemic risks. Also the notion of conditional correlation coefficient offers 

a better overview of the correlation between two portfolio’s assets when the volatility posts 

different movements of different magnitudes.  

Given two random variables  and , their conditional correlation coefficient admits the 

following representation: 

 

where  and  are conditioned upon  , while  represents a subset of R that fulfils the 

condition . Thus the above relation permits to analyze the impact on the 

underlying model and of the conditioning set of information on the evolution of  . It has to 

be mentioned that relation  represents a standard form of the conditional correlation 

coefficient that can be generalized for different types of distribution or model. 

For example if we consider that  and  have a multivariate Gaussian distribution with  as 

unconditional correlation coefficient, then the conditional correlation coefficient has the form: 



 

Relation  implies that  has not a direct influence on , mentioning also that  

can be either greater or smaller than  because  can be either greater or smaller 

than . Also a very important remark states that   can changes without  to change or 

at least  don’t posts the same manner of the change.  

In the case when  and  are conditioned upon  and , where  and are subsets of R 

that fulfils the condition , then we define the conditional correlation 

coefficient as: 

 

The conditional correlation coefficient on both variables presents a higher grade of difficulty 

regarding the transformation into closed formula for several types of models or distributions 

as compared with the conditional correlation coefficient on a single variable. Furthermore 

 does not add any special improvement versus the correlation coefficient on a single 

variable. 

Many researchers have studied the efficiency of the conditional correlation coefficient to 

detect the contagion phenomenon in the case of emerging markets from Latin America during 

the 1994 Mexican crises7. In accordance with the conclusions of Calvo, Garcia, Lizondo, 

Reinhart or Rose regarding the contagion occurred in Latin America economies, the 

conditional correlation coefficient didn’t yield very clear information about the contagion 

effects. In addition the conditional correlation coefficient provided artificial changes, while 

the unconditional correlation coefficient remained constant. Therefore the conditional 

correlation coefficient does not constitute the a very useful tool to study the behaviour of 

extreme events. 

 

                                                            
7 See  Meerschaert and Scheffler et al. (2001) 



3.2.7 Conditional Concordance Measures 
The main idea behind the conditional concordance measures is to condition the random 

variables on values that are larger than a given threshold and also let this threshold to 

converge to infinity.  

Noting  and , it results that the Spearman’s rho is the linear 

correlation coefficient of the uniform variables  and  that in fact represents nothing but the 

correlation coefficient of the rank: 

 

A very important advantage of using the correlation coefficient of the rank is that this one 

analyzes only the dependence structure of the random variables, as compared with the linear 

correlation coefficient that aggregates in addition the marginal distributions of the studied 

variables. Given a threshold, we define the conditional correlation coefficient of the rank as: 

 

where the random variables  and  are conditioned on , which is larger than . 

Unlike the conditional correlation coefficient, the transformation of conditional rank 

correlation coefficient into closed formula for Gaussian or Student distribution presents a 

greater grade of difficulty. Instead the researches made by Meerschaert and Scheffler et al. 

(2001) and Edwards and Susmel et al.(2001) in analyizing the contagion across the Latin 

America markets during the 1994 Mexican crises concluded that the conditional Spearman’s 

rho provides a higher accuracy than the conditional correlation coefficient. 

3.2.8 Lagged timevarying dependence 
A very disputed topic in the fields as economics, econometrics or finance is so well-known 

concept of causality between two time series  and . The concept of causality used in 

the mentioned domains doesn’t represents a causality in a strictly sense. Therefore the concept 

of causality used in economics, econometrics or finance aims to analyze which economic 

variable might influence and determines other economic process. Causality is widespread 

used to study the interactions between GDP and inflation, unemployment and inflation, 



interest rate and exchange rate, bond yields and stock prices, a.s.o. Thus a naive measure of 

causality is the lagged time-varying dependence: 

 

where  represents the time lag. 

Given a positive , the lagged cross-correlation coefficient  states that the knowledge 

of  at  provides information on the future evolution of  at  a later moment . But it 

have to be noted that the lagged cross-correlation coefficient doesn’t imply unguarded the 

existence of the causality between the two time series. This phenomenon is owed to the fact 

that correlation between two time series is provided by a common source of influence. The 

main deficiency of the lagged cross-correlation coefficient is that this one represent a 

linear measure of dependence and could omits important properties of the non-linear 

dependence. 

The most used approach to test the causality is the so-called Granger causality that states 

between two time series there exist causality if the knowledge of  and of its past values 

improves the forecasting of , for a positive . Also it have to be mentioned that the 

Granger causality is just consistent related with the real causality, being in accordance with 

Hume’s principle that the effect has to succeed the cause over time 

 

3.3 Copula models 
 

In probability field, a joint distribution can be decomposed in a dependence structure that 

represent a copula and into marginal distributions related to the number of random variables. 

So the copulas describe the dependence between two or more random variables, with different 

marginal distributions. The main advantage of using copulas is that this procedure allows the 

modelling of both parametric and non-parametric marginal distributions into a joint risk 

distribution. Also the dependence structure of these joint risk distributions created by copula 

models are characterized more in detail as compared with a simple correlation matrix. 



Mathematically speaking, in order to notations used by Nelsen (1999), the notion of copula 

can be described as following: 

Definition. A function C :  is a copula with n dimensions only if it follows the 

properties:  

i)   , C ; 

ii)   , C  if at least one of the ’s equals zero; 

iii) C is n-increasing and grounded, therefore the C- volume of every box is positive only 

if its vertices are ranging in  

Also there have to be mentioned that if a function fulfils the property i) then respective  

function is grounded. The name of “copula” attributed to the function C results from the 

following theorem. 

Sklar’s Theorem (1959). If F is a n-dimensional joint distribution function with the 

continuous marginal distributions , then there exist a unique n-copula C 

, such that: 

 

for every . A very important remark about Sklar’s theorem is that C is unique 

only if the   are continuous.  In conclusion, the theorem mentioned above shows that 

any joint distribution can be dimensioned in a copula and into marginal distribution functions. 

In 1996, Sklar defined copula like “a function that links a multidimensional distribution to its 

one dimensional margins”. 

Inversely, if there are known the density functions for the n-dimensional joint distribution and 

marginal distributions, then the copula is given by the following formula: 

 

as Nelsen (1999) mentioned that above relation hold only if the  are continuous. 

Also Nelsen (1999) shown that for a bidimensional distribution function, the two margins  

and are given by , respectively  

Other powerful property registered by all the copulas is referring to theirs invariance: 



Invariance Theorem. Let define n continuous random variables  that have a C 

copula. So, if  are increasing functions on the range of  , then the 

random variables =  , … , =  have also the same copula C. 

More exactly, the above theorem underlines one of the most important advantages of the 

modelling using copulas, namely that the dependence structure is insensitive to the 

monotonically changes of random variables. 

In accordance with the Lipschitz’s condition of continuity on , we will define the 

following property of copulas: 

Theorem. Let consider an n-copula C. Then for all  and all 

: 

. 

The above relation is given by the property that copulas are n-increasing. Roughly speaking, 

the theorem states that every copula C is uniformly continuous on its domain.  

Other important property of these dependence structures refers to the partial derivatives of a 

copula with respect to its variables: 

Theorem. Given a n-dimensional copula C, for every  , the partial derivative  

exists for every such that: 

 

 . 

Also it have to been mentioned that the analogous is true for  . Additionally the functions 

, respectively  are defined and non-

decreasing almost everywhere on [0,1]. 

 

3.3.1 Examples of Copula Families 
Furthermore we will present a few examples of copula families. 

Product Copula  



Definition. Let denote and  as two random variables. These ones are independent if 

and only if the product of their distribution functions and  equals their joint distribution 

F: 

, for all . 

Theorem. Given two random variables and  with continuous distribution functions 

and  and joint distribution F, then and  are independent if and only 

if  

Therefore it will result the independence copula C =  from : 

.  

Also the relation (36) becomes obvious from the Sklar’s theorem that states as there exists a 

unique copula C : 

. 

 

Elliptical8 Copulas  

The most important examples of elliptical copulas are the Gaussian and Student copulas. In 

fact, from technical viewpoint, these two copulas are very close to each other. Furthermore 

the two copulas become closer and closer in their tail only when the number of freedom 

degrees of Student copula increases. 

Gaussian (Normal) Copula 

According to the notations used by Yannick Malevergne and Didier Sornette (2005), a 

Gaussian n-copula C can be defined as following: 

 ,  

                                                            
8 The name come from the fact that for each iso-density locus represents an ellipse. 



where   denotes the standard Gaussian distribution,  is the n-dimensional Normal 

distribution with correlation matrix . The Gaussian copulas are derivate from the 

multivariate Gaussian distributions. 

So the density function of the Normal copula is given by: 

. 

 

Figure 1. CDF and PDF of Gaussian copula 

  

 

 

Noticing with , then it will result: 

 

 



Student t-Copula 

Also the Student t-copulas are derived from the Student multivariate distributions. Likewise 

the Gaussian copulas, t-copulas are found in the form of meta-elliptical distributions, 

providing a generalization of the multivariate distributions. More exactly, the meta-elliptical 

distributions have the same dependence structure like n-dimensional distributions, but differ 

in their marginal distributions. 

Let denote  as a multivariate Student distribution with  degrees of freedom and 

correlation matrix  : 

 

 

then the Student copula is: 

 , 

where   is the univariate t distribution with  degrees of freedom. 

 

Therefore the density function of the t-copula is defined as following: 

 

  

where  . 

The Student copulas are characterized by two parameters: the shape matrix , which also 

appears in the Normal copulas, and the number of freedom’s degrees   that supposes a high 



level of accuracy for its value’s estimation. Thus the t-copula presents higher degree of 

difficulty to use and to calibrate than the Gaussian copula. 

 

Figure 2.. CDF and PDF of  Student copula 

 

From the principle of Large Numbers’ Law it results that when the number of freedom’s 

degrees  incline to infinity, then the Student copula tends to Normal copula: 

. 

 

 

 

 

Archimedean Copulas  

Unlike the meta-elliptical copulas, Archimedean copulas are not derived from the multivariate 

distributions through the use of Sklar’s theorem. In addition the Archimedean copulas can be 



defined as the closed-form solutions. A copula belongs to Archimedean family if it fulfils the 

properties: 

Definition. Given  as a continuous function from  onto , strictly decreasing and 

convex, such that  and is a pseudo-inverse of : 

 

then the function 

 

is an Archimedean copula with generator  . 

A strict condition for C to be an Archimedean copula is that : 

as , or more exactly if  is monotonic. 

Thus we can generalize relation (15) for n-Archimedean copulas:  

 

The main idea behind Archimedean copulas is that the dependence structure among n 

variables is represented by a function of a single variable, which is the generator . 

From the large Archimedean family of copulas, we will mention the most known of these 

ones: 

Clayton Copula 

Joe Clayton (1978) has used for the first time the concept of copula in the joint-life models, 

studying the bivariate life tables of sons and fathers. Others important contributions to the 

Clayton’s models were developed by Cook and Johnson (1981) and Oakes (1982). A Clayton 

copula can be defined as following: 

, 



having the role of a limit copula, with the generator , whose Laplace 

transformation is a Gamma distribution. 

Thus the density function of the Clayton copula is: 

. 

Gumbel-Hougaard Copula 

This copula developed independently by Gumbel (1960) and Hougaard (1986) admits the 

following representation: 

 

with the generator . 

Using this kind of copula, Hougaard (1992) studied the join-survival of twins born in 

Denmark between 1881 and 1930.  

Frank Copula 

In 1979, Frank introduced the following copula: 

 

having the generator  . 

This type of copula is very suitable for empirical applications, due to its desirable properties. 

In 1995, Frees used Frank’s copula to investigate mortality of annuitants in joint- and last- 

survivor annuity contracts. Also using Frank’s copula, Shih and Louis (1995) studied the 

joint-survival of a series of patients infected with HIV. 

Extreme Value Copula 

An Extreme Value Copula can be defined as following: 

  



and       , 

where  is any positive finite measure such that  and  

 . 

 

Figure 3. PDF and CDF of Archimedean copulas  

 

Plackett Copula 

Plackett copula which was introduced in 1965 after the name of the English statistician Robert 

Plackett, it is a very useful toll in many application in finance that analyzes the bivariate 

dependence. Like Student and Gaussian, Plackett copula presents completely symmetry in tail 

dependence. An important remark is that Plackett copula which is one parameter copula 

doesn’t belong to parametric family, but in applications it is usually nested with Elliptical 

copulas due to the absence of asymmetry. The Plackett copula is defined as following: 



 

 

Starting from ‘BB7’ copula of Joe (1997) or Joe-Clayton as it is also known in literature, 

Patton (2004) introduced the Symetrised Joe-Clayton(SJC) copula: 

(56)  . 

Unlike originally ‘BB7’, the Symetrised Joe-Clayton copula may take into account for 

completely presence or absence of asymmetry in the tail dependence. In fact the SJC copula 

represents a special case of the Joe-Clayton when . Empirical facts indicate SJC 

copula as a more interesting choice to model the dependence in economic and financial 

processes.  

 

Fréchet-Hoeffding Upper- and –Lower Bounds 

In the case of a copula C with n dimensions, giving all , then: 

 

The properties of Fréchet-Hoeffding bounds are very important for the study copula science, 

because the lower bound is an Archimedean copula, while the upper bound apart to the family 

of Extreme Value copulas. Furthermore the upper bound has the special property that is the 

strongest form of dependence met at the random variables. In addition, the Fréchet-Hoeffding 

upper bound represents itself an n-dimensional copula, while the lower bound is a copula only 

in the bivariate case. 

3.3.2 CopulaGarch Model 
A major criticism of the copula models in the favour of multivariate GARCH model was That 

former suppose a static measure of dependence. Even though the separately modelling of the 

marginal distribution and dependence structure provides a higher degree of robustness over 

time of the copula parameters, the empirical findings proving that the high frequency data 

records a continuously switching of the regimes. Thus in 2001, Patton took the first initiative 

to extend the copula function to conditional case, in order to account the impact of the past 

information on the state of copula parameters. He introduced for the first time the concept of 



time varying dependence which does nothing to incorporate the heteroschedasticity in 

dynamic copula modelling. So to extend the Sklar’s theorem to conditional cumulative 

distribution functions, Patton has defined the following conditional σ‐algebra: 

 

for     In fact the above equation tell us that σ‐algebra is generated by all the past 

information up to time . Therefore the Sklar’s theorem cam be expressed as: 

 

More exactly the main idea behind the equation  and  is that in modelling of the marginal 

distributions, the conditional mean follows an autoregressive process, while the conditional variance 

is modelled as a GARCH(1,1) process. 

Further I will define the time-varying equations for Gumbel and SJC copulas which I will use 

later to model the dependence between exchange rates over the analyzed period. A general 

form of the conditional dependence can be expressed as: 

 

where   is the modified logistic transformation that holds the dependence parameter 

 in the interval (-1,1).  The right hand of above equation contains an autoregressive term  

 , a forcing variabile and m denotes the window length. Equation  was designed for 

modelling dynamic Elliptical copulas. 

For non-Elliptical copulas Patton proposed the following general form to model the evolution 

of the dependence parameter: 



 

where  is an appropriate transformation function designed to keep the dependence parameter 

in its domain. This transformation function can take different forms as:  for tail 

dependence,  for Clayton copula or . For SJC copula Patton proposed the following 

dynamic equations: 

 

 

where   and  represents the upper, respectively lower tail dependence and  

denotes the mean absolute difference over the past observations. Thus the window length can 

be seen as a switching parameter of the forcing variable. A very important remark is that the 

Patton’s model for conditional dependence supposes the time-varying of parameters 

according to defined dynamic equation, while the functional form of copula remains constant 

over horizon. Instead Rodriguez (2003) proposed a Markov switching regime for the 

functional form of copula.  

 

3.3.3. Estimation of Copula’s parameters 
In the fields of economics, finance or actuarial risks it exists a lot of aproaches used to 

estimate the parameters of copulas. Broadly speaking we can devide such techniques of 

copulas’ estimations in three main categories: nonparametric, semi-parametric and parametric. 

3.3.3.1 Nonparametric estimation 

Empirical Copula 

Paul Deheuvels et al.(1979,1981) elaborated the first approach for the estimation of copula’s 

parameters, which is based on the generalization of the multivariate distribution’s estimator. 



Thus for a random vector  with n-dimensions  and for a sample size , 

 , then there have to estimate the 

empirical density function  of : 

 

and the empirical marginal distributions of ’s: 

 

Given a copula , applying the Sklar’s theorem we will obtain a unique nonparametric 

estimator, which is defined at discrete points , having . Operating the 

inverse of the marginal distribution function, it results the so-called empirical copula: 

 

where  represents the  order statistics of the sample . 

There have to be noted that almost surely the empirical distribution function converges to 

the underlying distribution function  as , also resulting that this property holds for the 

nonparametric estimator: 

. 

In the same manner we can estimate the empirical copula density: 

 

 

Multivariate Kernel Estimator 



Fermanian and Scaillet et al.(2003,2005) proposed a kernel approach to estimate the 

parameters and the derivatives of a copula. The Gaussian kernel is probably the most 

widespread used in economic and financial modeling, being defined as following: 

 

Given a random vector  with n-dimensions  and for a sample size , 

 such that 

, the kernel estimator of  is: 

 

and 

 

where  is the density function, and  represents the bandwidth, satisfying the 

conditions: 

 

and 

 

More detailed, in practice the bandwidth is set as , where  is the standard 

deviation of the sample . 

Thus the kernel estimator of a copula admits the following representation: 

 



where  is a kernel with the bandwidth , while  represents the empirical 

repartition functions of the marginal distributions. 

Fermanian and Scaillet have demonstrated that under mild conditions, the kernel defined by 

relation   converges asymptotically to Gaussian distribution as: 

 

 

3.3.3.2 Semiparametric estimation 

Semi-parametric approaches are very useful estimation when the sample is not large enough. 

This technique supposes the use of a parametric estimation only for the copula and 

nonparametric one to estimate the univariate marginal distributions.   

Parameters’ Estimation based on Concordance Measures 

This approach supposes a nonparametric estimation of the parameters that depend only on the 

copula. The main idea behind the approach mentioned before is that once the parameters have 

been estimated using concordance measures are expressed the parameters of copula as 

functions of the former ones. Oakes et al.(1982) emphasized the relation between the 

estimated parameter  of Clayton copula and Kendall’s tau as:  

 

So that the estimator of the parameter  is defined as following: 

 

where  represents  version of Kendall’s tau for the sample. Given the bivariate sample of 

size , we define  as: 

 



where  represents the number of concordant pairs: , while  

denotes the number of discordant pairs . 

After Lindskog, McNeil and Schmock et al.(2003) have demonstrated that for any elliptical 

copula which provides a dependence structure for any pair of random variables there exists 

the relation: 

 

in the same manner it is obtained for the bivariate sample defined before: 

 

The main advantage of this approach is represented by its simplicity, but it don’t provides a 

very accurate estimation of the parameters. 

 Pseudo Maximum Likelihood Estimation 

In 1995 Genest, Ghoudi and Rivest provided a more elaborated method for estimating the 

parameters of  copula, based on the maximization of a pseudo likelihood function. Given a 

sample of size   which is derived 

from a common distribution  that have a copula  and margin distributions  such that for 

the random vector  it is obtained the following relationship:  . Let consider  as 

the vector of parameters of the copula   and supposing that  belongs to the 

family of copulas , then we will define the likelihood function of the 

sequence as following: 

 

where  represents the density function of . Because the sequence 

is independently and identically 

distributed (i.i.d.) it results that also all the ’s are also i.i.d. Another important remark is 



the fact that since the marginal distributions are unknown then it is desirable to use the 

empirical marginal distributions  for the estimating of random vector : 

 

Also it has to be mentioned that extracting the pseudo-sample , even 

all the ’s are i.i.d. the   isn’t i.i.d. Therefore based on the sample of 

size   and substituting all ’s 

with ’s in relation , we will define the pseudo log-likelihood of the model as: 

 

In these conditions, maximizing the pseudo log-likelihood we obtain the estimation of the 

parameter vector : 

 

In conclusion, the pseudo maximum likelihood estimation is more reasonable for the low 

dimensional sample, while the Kendall’s tau is probably the best when we work with large 

portfolios because the last one requires less time consuming. Genest et al.(1995) 

demonstrated that in the case of Clayton’s  the pseudo maximum likelihood estimation 

provides a smaller variance than the Kendall’s tau. 

3.3.3.3 Parametric estimation 

In literature exists different parametric methods used for the estimation of the copula’s 

parameters. So we will define the most known of them: 

Canonical Maximum Likelihood (CML) Estimation 

The CML approach supposes an estimation of the copula’s parameters, without any 

assumption about the parametric form of marginal distributions. Thus CML technique uses 

nonparametric approaches such the kernel estimation for the modelling of marginal 

distributions. Maashal and Zeevi et al.(2002) proposed an estimation algorithm based on 

crossing of the following two steps:  



i) Firstly using the empirical marginal distribution, a given dataset  with 

 is transformed into uniform variates 

; 

ii) Secondly it is estimated the vector of copula’s parameters  as: 

 where 

 
Therefore the main advantage of the CML approach is the easily of its utilization from the 

numerical viewpoint.  

 

 

 

Exact Maximum Likelihood (EML) Estimation 

The EML approach is based on an algorithm which estimates commonly the parameters of 

both the copula  and the marginal distributions.  Thus for a dataset  with 

, having the marginal distribution , its univariate density function can be defined 

as: 

 

where  represent the copula’s density function that is resulted from the following relation: 

 

Also we denote the vector of parameters  with representing the 

copula’s parameters, while the parameters of marginal distributions are defined 

as:  

Thus given the repartition function of the marginal distribution  and their density function 

, the log-likelihood function admits the following representation: 



 

Therefore the EML estimator maximizes the relation  such that: 

 

From a statistical view the EML method provides the highest degree of accuracy because its 

properties are the nearest ones front MLE, but the computational difficulty of this approach is 

much greater than CML. 

Inference Functions for Marginals (IFM) 

The main idea behind the IFM approach is to estimate separately the parameters of marginal 

distributions from the copula parameters. Thus the algorithm of this method is compounded 

by two steps: 

 

 

 i) Given that the relation  is equivalent with: 

  

then the estimation of the marginal distributions’ parameters admits the following 

representation: 

 

ii) Secondly, knowing the parameters of  marginal distributions, we estimate the copula’s 

parameters  as: 

 

 

Numerically, the IFM approach provides a better accuracy than the EML method even the 

algorithms of the two method are very closely. 

     



3.3.4 GoodnessofFit Tests 
Given that we can choose from a wide range of models in order to estimate parameters, the 

efficiency of the selected method will be establish by comparing the empirical distribution to 

the theoretical one. Therefore we define two distances and one information criteria that are 

designed to amount the efficiency of the chosen approach through a backtesting. 

Kolmogorov-Smirnov Distance 

The Kolmogorov-Smirnov(K-S) approach determines the maximum local distance among all 

quantiles, noting that the maximum is most often located in the bulk of distribution. So that 

the Kolmogorov-Smirnov distance is defined as: 

 

Where  and denotes the empirical distribution, respectively the  

distribution of the random variable . The null hypothesis of the Kolmogorov-Smirnov test is 

that the sample is drawn from the  distribution. In addition, for a higher accuracy of the 

measurement, we define the average of the Kolmogorov-Smirnov distance: 

 

Unlike   that can present a higher degree of sensitivity to the presence of outliers, the  

 is less sensitive to an outlier because this one is weighted with the order , where 

represents the size of the sample.  

Anderson-Darling Distance 

Like the K-S distance, the Anderson-Darling (A-D) distance asses the existing differences 

between a sample and a specific distribution. Thus under the null hypothesis about a 

distribution, the Anderson-Darling distance assumes that sample’s data arise from the specific 

distribution and therefore transforms the data into a uniform distribution. So the Anderson-

Darling distance admits the following representation: 

 



while the average of A-D distance is defined as: 

 

Also like , the point which maximizes the argument of the  function especially 

exerts a control on  the  also makes it more sensitive to the presence of outliers. 

Therefore  provides more valuable information about the similitude between the sample 

and specific distribution. 

Also other important approach to check the efficiency of chosen copula is to compute the  

Akaike information criterion (AIC), which is given by: 

 

where  represents a vector of random variable and  is the vector of copula’s 

parameters. In this paper I use the information criteria to chose the best copula. 

 

3.3.5. Simulation 
Once the copula parameters were estimated and marginal distributions were modelled using 

Generalized Pareto Distribution, the next stage is to simulate the jointly dependent returns of 

the FX portfolio. Thus simulating the cumulative distribution function for a given horizon of 

time, we can compute VaR measures. 

Firstly we have to generate randomly dependent uniform variates for each series for a given 

horizon of time. Using the estimated parameters for dependence structure of our portfolio 

given by each type of used copula, we simulate n trials that are uniformly distributed U(0,1). 

For this first task I have given an example of bivariate copula, using the method of conditional 

distribution: 

 

for given random variables  with , where   is the conditional distribution 

function for the random variable V at a given value  of . From previous relation we can 

write the conditional distribution as: 



 

Given the above result we can generate n pairs of  of pseudo random variable. For reach 

this goal, the first step is two generate two independent pseudo random variables , and 

then we compute the inverse of conditional parameters as: 

 

taking into account the estimated for each copula. Instead for some copulas like Gumbel, this 

invers can’t be calculated analytically and it is numerically computed. Then using the Monte 

Carlo simulation we obtain a desired pair vector of random variables in order to the estimated 

dependence parameters: 

 

But this procedure using Monte Carlo simulation is performed iteratively N times to obtain a 

sample . The main advantage of simulation with copulas is they allow 

for a differentiation in the type of dependence structure and marginal distributions. For 

example we can use Student and Gaussian copula to simulate random vectors in which the 

marginal distribution follow a Student, respectively Gamma distribution. 

  

Figure 4. Monte Carlo Simulation eith Copula 

 



The second stage consist in the transformation of uniform variates into standardized residuals 

using for this purpose the inversion of semi-parametric marginal CDF which in this paper are  

modelled with GPD. At this step are simulated standardized residuals that have the same 

features as those resulting from a filtering process with an ARMA  GARCH model.  

Using the parameters of dynamic equations estimated with an ARMA  GARCH model, at 

third stage reintroduce autocorrelation and heteroskedasticity in the simulated standardized 

residuals to obtain conditional returns. 

3.4 Risk Measurements 
In finance theory, a metric for market risk represents a measurement of uncertainty related to 

future evolution of the portfolio’s value. In fact a risk metric attends to summarise the 

potential deviations over time from an expected value of a portfolio, which are defined as 

profits or losses.  

The first step in developing quantitative tools designed to measure the risk of random events 

was made by the risk department J.P Morgan.  In 1994, the CEO of J.P Morgan, Dennis 

Weatherstone asked to the risk department that every day at 4.30 P.M to submit a report 

relating to the bank risk measure and a corresponding risk measure. Thus it takes birth the 

Risk Metrics Department managed by Till Guildman that elaborated the Value-at-Risk (VaR) 

model. VaR is a statistic model which is designed to express the risk of an exposure by a 

single number. More exactly VaR model estimates the worst loss for a financial instruments 

portfolio over a given time horizon and for a given confidence level. Thus the first form of the 

VaR model was defined as: 

 

where h  is the horizon of time,  denotes de confidence level,  is the lowest 

quantile of distribution function and X represents the value of a given assets or portfolio. In 

the case of normal distribution , there could be used the normal transformation: 

 

 to define the lowest quartile of distribution as:  

 



where  denotes the lowest quantile  of the standard normal distribution. 

Therefore the previous two relations lead to Analytical VaR: 

 

Over time there have been developed various methods for calculating VaR , among the most 

important are Historical VaR, Bootstrapping VaR or Monte Carlo VaR.  

But VaR  have received more criticism due to theirs simplistic assumptions that made these 

model to have many limitations in quantifying the risks. In 2001 Dembo and Freeman proved 

that VaR models, like volatility, don’t provide a satisfactory distinction between ”good” risks 

and “bad” risks. In 1959, Markovitz introduced the concept of semi-variance as a downside 

risk metric that measures the variances of returns which fall below than an expected return: 

 

where R is the return and E denotes the expectation operator. 

Starting from the above relation, Dembo and Freeman (2001) proposed the concept of Regret 

as a downside risk which replaced the expected return with a benchmark return. Thus the  

Regret concept was defined as: 

 

From the above relation it could be easily observed that Regret operator embeds the form of a 

Put option with benchmark return as strike. 

In 1997, Artzner called an axiomatic approach and set some conditions to certify the 

satisfactory risk measure.   Thus Artzner called the risk measures which satisfy the formulated 

axioms as “coherent”. Given a space of risks , a risk measure function , a vector of random 

variables (loss distribution) X, the invested capital  and the free-risk interest rate, Artzner 

defined that risk measure  is coherent  if the following conditions holds: 

i) Monotonicity 

       

The above relation implies that a higher return corresponds to a higher risk.  



 

ii) Homogenity 

 and          

This axiom states that for a given position, the associated risk will linearly increase with its 

size.  

 

 iii) Translational invariance 

 and          

The above axiom means that for an investment of capital  in risk-free assets, the risk 

decrease with the amount . 

 

 

iv) Sub-additivity 

  

The last axiom ensure that total risk of portfolio is no more than sum of individuals positions’ 

risk that means this condition encourages the portfolio managers to diversify their overall risk 

through the aggregate of different positions. 

Therefore VaR model is not a coherent risk measure because it doesn’t satisfy the sub-

additivity condition. Other important criticism was that VaR models only provides a limit of 

the losses but tell nothing about the potential loss when the limit is exceeded.  From this 

purpose, Artzner (1999) defined the Conditional Value-at-Risk which is a coherent risk 

measure, satisfying all four axioms mentioned above. Conditional VaR represents the 

expected loss in the case when VaR limit is violated: 

 

where R denotes the return.  



3.5 Backtesting 
The main objective of VaR models is to minimize the errors resulting from estimating the 

maximum possible loss for an individual asset or portfolio in a given time horizon and for a 

given level of confidence. In financial literature there are many approaches designed to 

quantify the accuracy and performance of VaR models. In order to assess the performance of 

different copulas in estimation of VaR models I used three main approaches: 

i) firstly, I compare the in-sample estimation of VaR and CVaR for the whole distribution 

with out-of-time empirical returns; 

ii) I computed an out-of-sample estimation with 1 day window length for the last three years 

of sample and then compared the number of empirical violations with confidence levels of 

VaR; 

iii) I computed a Bernoulli backtest to estimate the confidence intervals for the number of 

excesses and then calibrate results to the traffic light approach proposed by Basel amendment; 

iii) I computed a Kupiec backtest to analyze the “success” probability of empirical excesses to 

equal the confidence levels provided by VaR. 

Thus we can consider that daily empirical returns follow a Bernoulli process and define an 

indicator function to accounts the exceedance of 100  daily VaR: 

 

where  is the realized return and  denotes the forecasted value-at-risk. 

Given that forecasting sample has n observations, expected number of successes in the test 

sample equals n . Thus denoting  as number of successes which has a binomial 

distribution, the expected number of successes will be: 

 

and the variance is: 

 



The standard error resulted from variance  represents a measure of uncertainty 

related to the expected value. So when n is large, the distribution of  converges to normal 

distribution and we can compute two-sided confidence interval: 

 

where is the inverse cumulative distribution function for standard normal 

distribution in the case of confidence interval. Thus the null hypothesis of Bernoulli test is 

that VaR is an accurate model. In practice is unlikely to obtain the expected number of 

excesses provided by VaR due to modelling errors, so we use these confidence intervals 

around to the expected value of successes.   

Kupiec introduced in 1995 an unconditional coverage test where the indicator function 

follows a Bernoulli process. The null hypothesis of Kupiec test is that indicator function is 

accurate in levelling the significance level of VaR. The statistic of Kupiec test is a likelihood 

ratio statistic: 

 

where  is the expected proportion of exceedances,  is the empirical proportion of 

exceedances and n1 denotes the number of exceedances from the backtest sample size n. Thus 

 equals , while  is equal to  and the asymptotic distribution of  

follows a chi-square distribution with 1 degree of freedom.  

 

4. Data and Results 

4.1 Data 
To analyze the behaviour of dependence among currencies of Central and Eastern I used daily 

exchange rate of Czech Koruna (CZK), Hungarian Forint (HUF), Polish Zloty (PLN) and 

Romanian New Leu (RON) against Euro (EUR) between February 1999 and February 2010. 

Each data set used in this paper represents the closing rate of analyzed currencies, being 

provided by Bloomberg. 



 

Figure 5. Evolution of analyzed daily exchange rate between February 1999 – February 2010. 

From the above plot we can observe that  patterns of analyzed exchange rate were quite 

different. The Czech Koruna was the currency which has recorded de most important 

appreciation against Euro due to sound structural reforms. In the same time EUR/RON has 

situated at the opposite pole, recording an upward evolution. All of these countries have 

addressed different policies to stabilize the nominal exchange rate and prices. The four CEE 

countries have changed their monetary policy rules over past 15 years, adopting inflation 

targeting regime. Thus Czech Republic adopted inflation target regime in 1998, Poland in 

1999, Hungary in 2001 and Romania in 2005.  One important requirement of inflation target 

regime is to increase the flexibly of exchange rate. In these conditions the four countries opted 

for different types of exchange rate regime: Czech Republic use  

Exchange Rate Regimes 
Czech Republic Classical administrated floating 
Hungary Target zones against Euro  
Poland Independent floating 
Romania Managed floating 

                                          Table  1. Exchange rate regimes for analyzed CEE countries 

      

In order to analyze the switches of exchange rate regimes in the observed period I have 
computed Markov Switching regressions for each of the four currencies’ returns.  



 

Figure 6. EUR/RON switching regimes in observed period 

Thus I modelled the exchange rate returns as one lag autoregressive processes with Student 

distributed innovations. To capture the transition from one regime to other I switched the AR 

term and the innovations of regression. We can easily observe from above plot that starting 

with 2005 the EUR/RON returns transitioned more often between regimes due to the 

flexibility required by inflation targeting regimes. Instead the EUR/CZK returns recorded far 

fewer switches due to the exchange rate regime used by Central Bank of Czech Republic(see 

Appendix I, no.1). The very different behaviour of exchange rates is an important issue in 

modelling the dependence among the four currencies of portfolio.  

The exchange rates have some typical features as compared with other assets traded in 

financial markets. To capture these stylized facts I analyzed the returns of exchange rates 

computed using the following formula:  , where  denotes the return and 

 is daily exchange rate. 

Descriptive statistics of returns showed that the four currencies posted quite different 

evolution in observed period. EUR/RON recorded the highest depreciation and appreciation 

of four currencies. These extreme values were recorded during 1999-2000 due to high 

economical, political and social stress at that time. An important remark is that these extreme 

values recorded by the EUR/RON are very high compared to the minimums and maximums 

registered by other currencies. This observation is also sustained by the highest standard 

deviation of EUR/RON. EUR/CZK returns had the fewest extreme variations and also the 



smallest standard deviation, but the beginning of the financial crisis pushed the Czech Koruna 

like Hungarian Forint to historical minima and maxima. 

On the third and fourth order moments of the distribution we observed that analyzed series 

recorded very asymmetric evolutions, but all four currencies posted positive skewness and 

excess kurtosis (the value of kurtosis is higher than 3).  EUR/RON recorded by far the highest 

skewness and kurtosis, while the skewness value of EUR/CZK is very close to the normal 

distribution, having the most stable distribution. Positive values the third and fourth order 

moments of the distribution and the test rejecting of Jarque-Bera’s null hypothesis indicates 

that returns are not normally distributed. 

Basic Stats EUR/CZK EUR/HUF EUR/PLN EUR/RON 

 Mean -0.000121 0.000033 -0.000008 0.000385 

 Median -0.000133 -0.000080 -0.000254 0.000000 

 Maximum 0.031908 0.065272 0.052507 0.123554 

 Minimum -0.032471 -0.029232 -0.038318 -0.072379 

 Std. Dev. 0.004370 0.005827 0.006967 0.007282 

 Skewness 0.068426 1.236087 0.400931 1.902772 

 Kurtosis 8.944810 16.109895 7.309036 42.754610 

 Jarque-Bera 4228.41 21283.56 2297.29 190724.80 

 Probability 0.00000 0.00000 0.00000 0.00000 

 Observations 2870 2870 2870 2870 
                     Table  2. Descriptive statistics of analyzed returns 

                        

The evolution of exchange rate returns confirms the existence of some typical stylized facts as 

the excess kurtosis, heteroskedasticity, volatility clustering and autocorrelation. Also we can 

observe that as descriptive statistics showed EUR/RON recorded the most unstable evolution, 

while EUR / CZK located at the opposite pole. In the same time EUR/HUF recorded several 

clusters of volatility, but EUR/PLN was more stable in the analyzed period. To test the 

existence of unit roots in the returns series I computed the ADF and KPSS tests (see,4). The 

null hypothesis of no unit roots for ADF test was rejected in all the cases for three confidence 

level. Instead the null hypothesis of stationarity in the case of EUR/RON was rejected at 5% 

and 10% confidence levels that indicate the existence of microstructures noises.           



The GPD modelling and use of copulas requires that analyzed time series to be approximately 

i.i.d. Instead most of financial series and especially the exchange rates post autocorrelation 

and heteroskedasticity.For this purpose I have computed the autocorrelation function (ACF) 

for each of the four exchange rate returns. All ACFs exhibit some correlation, with EUR/RON 

and EUR/HUF having the most coefficients of autocorrelation function significantly different 

from zero.  

Indeed the computed autocorrelation functions for squared returns show some higher 

persistence of the variance for all four currencies, especially for EUR/CZK returns that 

reveals the sound pattern of Czech Koruna appreciation against Euro.Instead the Romanian 

New Leu recorded isolated appreciations against European currency which were due mainly 

to increase of foreign direct investments starting with 2005.  

4.2 GARCH Modelling 
However the sample ACF of returns and squared returns indicate the use of GARCH models 

in order to obtain i.i.d. observation as required by GPD and copulas modelling. For this 

purpose I have used an asymmetric ARMA  to compensate for autocorrelation and 

heteroskedasticity recorded by exchange rates returns. Thus the conditional mean of each 

return is fitted using an ARMA process: 

 

where  The conditional variance is modeled with an asymmetric GARCH, also 

known as GJR after authors' names: 

 

where the last term accounts for asymmetry,   being an indicator function that takes 1 if 

 (incorporates the impact of bad news) and 0 when good news arrive. In fact the 

ARMA  model acts as a filter to obtain the i.i.d. processes. This approach of filtering 

time series was firstly used by Embrechts and Dias (2004) and Patton (2006). 

To compensate for autocorrelation and heteroskedasticity I engaged an ARMA  GJR model 

for each currency. Conditional variance was modelled by an GJR (1,1) all the currencies, 



while the for conditional mean equation I used an AR (1) for EUR/CZK and EUR/PLN, 

respectively an ARMA (1,1) process for EUR/HUF and EUR/RON (see Appendix II., nr.1). 

To test the accuracy of fits for engaged ARMA  GJR models I performed Nyblom and 

Pearson tests. Additionally I estimated in-sample VaR for each ARMA  GJR and the related 

backtests (see Appendix II., nr.2). But to check if obtained residual series are i.i.d, I  

computed Ljung-Box test for filtered residuals. The null of no serial correlation was accepted 

for all the currencies (see Appendix II., nr.3). 

EUR/PLN EUR/HUF EUR/RON EUR/CZK EUR/PLN EUR/HUF EUR/RON EUR/CZK

H 0 0 0 0 H 0 0 0 0

P‐value 0.607 0.7633 0.9223 0.8159 P‐value 0.8335 0.9738 0.205 0.8972

Q‐stat 17.7024 15.2271 11.8153 14.2829 Q‐stat 13.9398 4.3487 24.9074 12.5144

Critical 
Value

31.4104 31.4104 31.4104 31.4104
Critical 
Value

31.4104 31.4104 31.4104 31.4104

                 Ljung‐Box Test for squared standardized 
residuals

                 Ljung‐Box Test for standardized residuals

 
Table  3. Testing for autocorrelation up to lag 25. 

 

 

 

 

4.3 Preliminary statistic analysis 
Once the i.i.d. residuals were obtained, the next step is choice an appropriate distribution to fit 

the data. Even the Student distribution of innovations capture a high degree of the 

leptokurtosis effect, the unimodal distribution as T or Gaussian are not designed to provide a 

good fit in the tails. The main reason for this effect is that tails are low density areas and the 

unimodal distributions are an appropriate choice to fit in the areas where data are most 

concentrated, namely in mode9. Also the exchange rates contain many microstructure noises 

which Student or Gaussian distributions cannot capture.  

                                                            
9 See Embrechts (1997) for more details. 



But as Embrechts (1997) underlined that before applying some statistical methods, the used 

data must be well studied. Firstly I have computed the Mean Excess Function (MEF): 

 

 where   denotes the threshold,  is an indicator function that accounts for values higher 

than respective threshold. Ascending ordered sample values are successively chosen as 

thresholds and it is calculated the average of excesses over the threshold. The threshold was 

chosen successively in increasing order, then the slope of MEF should have a negative slope 

converging to zero. If the empirical MEF is positively slope straight line above 0, there is an 

indication of extreme values and need to use EVT theory.  

All four currencies have shown signs of excess kurtosis (Appendix III,1,i), with EUR/RON 

recorded the highest extremes, while the EUR/CZK posted the lower ones as the previous 

analyzes have indicated. Another important tool in analyzing of extreme behaviour of sample 

data is the QQ-plot against exponential distribution which is a particular case of GPD when 

. The concave departure of the four filtered residuals series (Appendix III,1,ii,) against 

exponential distributions is an additional argument for the use of EVT in modelling of tail 

distribution. 

Thus taking into account these reasons, the appliance to EVT theory is an appropriate choice. 

Fitting the data in tails is one of the main concerns in many financial applications, especially 

in quantile based models as VaR. As compared with GEV or block maxima approach, the 

GPD method (peak-over-threshold) has the advantage of require a smaller sample and provide 

a much smaller randomisation of data’s distribution in tails. Thus the use of GPD is more 

appropriate than GEV in VaR application.  

A very important concern in modelling the tails of distribution using GPD approach is to 

chose an appropriate threshold over which are considered the excesses, because various 

methods for estimating parameters of distributions are very sensitive to the choice of 

threshold. Embrechts (1997) has suggested the usage of Hill estimator for threshold 

determination. Hill (1997) proposed the following estimator: 

 



for . In the above relation  are the upper ordered exceedances, N is the sample size and 

 is the tail index. Computing the Hill-plot for  as Embrechts (1997) suggested a 

threshold will be selected from the plot where  is fairly stable. Therefore I have ordered the 

highest, respectively lowest 500 i.i.d. observations for each currencies and inferenced the Hill 

estimator for lower and upper tails (Appendix III,1,iii). The lowest thresholds was recorded 

by EUR/RON for the left tail and EUR/HUF for the left, both accounting for about 10% of 

sample data over the most stable area of Hill estimator.  

In this paper I used a semi-parametric approach to fit the residuals’ distribution, namely for 

tails applied the GPD method, while the interior of distribution was fitted with a Gaussian 

kernel (Appendix III, no. 2,i). Chosen a non-parametric method as Gaussian kernel to fit the 

interior of distribution is very appropriate because most of the data are found near the mode. 

Selecting the threshold as 10 % of the residuals in each tail, then parameters of distribution’s 

excesses over this threshold were estimated using a maximum likelihood approach. McNeil 

and Frey (2000) demonstrated that maximum likelihood estimator is invariant for a selected 

threshold ranging between 5% and 13% of the sample size.   

 

 

 

 

   Lower tail Upper tail Lower tail Upper tail 
Parameters ξ σ ξ σ ξ σ ξ σ 

ML estimates 
‐0.1017 
(0.0372) 

0.5328 
(0.0000) 

0.0495 
(0,3503) 

0.6099 
(0.0000)

‐0.0941 
(0.0845)

0.6138 
(0.0000) 

0.1599 
(0,0192) 

0.6562 
(0.0000) 

Standard 
Error  0.0488  0.0416  0.0530  0.0486  0.0564  0.0521  0.0683  0.0593 

Lower limits 
of Confidence 

interval 

‐0.1974  0.4571  ‐0.0544  0.5216  ‐0.2086  0.5198  0.0261  0.5496 

Upper limits 
of Confidence 

interval 

‐0.0059  0.6210  0.1534  0.7130  0.0283  0.7248  0.2936  0.7835 

Table  4. Estimated GPD parameters for  tail distribution. Values under paranthesis are the P-values 



An important remark about fitting marginal distributions with GPD method is that size of tail 

index is determined by the original distribution. Thus Student distribution with tails 

decreasing as polynomial corresponds to a positive tail index, while Gaussian distribution 

leads to a zero tail index due to its tails that drop exponentially. When the tail index is 

negative, the original distribution behaves as beta distribution in its tails. 

Estimated parameters for distribution of peaks over the selected threshold indicate quite 

different behaviour of tails for the filtered residuals (other results in Appendix III, no. 2,ii). 

Different values of tail index emphasizes the asymmetry of innovations due to some stylized 

fact like leverage effect or volatility clustering. Statistically significant P-values of the tail 

index for EUR/PLN lower tail shows that the original distribution behaves as beta in the 

respective tail, while the upper tail index is insignificant differently from zero. Economically 

speaking the values of tail index recorded for EUR/PLN provides a suitable description for 

the exchange rate evolution in analyzed period: appreciations against euro were isolated, 

while depreciations against European currency followed a Gaussian process due to price 

stabilization. In the same time, significant P-value at 10 % confidence level of EUR/RON 

lower tail index emphasizes that starting with the explosive growth of FDI in 2005-2006 the 

Romanian New Leu began a robust appreciation process against euro. Estimated tail indexes 

for EUR/CZK are insignificant different from zero, while significant shape parameters at 5%, 

respectively 10% of EUR/HUF indicates the effect of leptokurtosis due to financial crisis that 

pushed this currency to historical minima and maxima. 

A very important concern in tails modelling is that estimated parameters reflect the true 

behaviour in tails of original distribution such that GPD fit to be close to the empirical 

distribution. In the sense of parameters estimation’ accuracy, the standard errors which are 

obtained from principal diagonal of the inverse of Fisher’s information matrix tells us that if 

the same estimation   could be repeated for a large number of times on sample with the same 

source, then the parameters estimated with maximum likelihood approach should 

asymptotically converge to the normal distribution. But if the source of data comes from a 

very asymmetric distribution as beta or gamma, then the maximum likelihood estimates 

would not converge to normal distribution. Thus I have tested the asymptotically normal 

assumption for estimated parameters in order to verify if the negative values for some tail 

indexes really arrived from beta distribution, while the positive shape parameters were 



provided by Student distribution. To do this I used a Boostrap10 approach to extract randomly 

a number of 10,000 sub-samples of data distributed in each tail. Once the desired numbers of 

sub-samples were extracted, I computed the maximum likelihood estimation for each sub-

samples and then computed the resulted parameters against the quartile of Normal 

distribution. 

 

Figure 7. Check for maximum likelihood estimation's accuracy 

As we can see the distribution of maximum likelihood estimation for lower tail index  doesn’t 

approximate the normal quartile that means the negative value of tail index really indicates 

the original data behaves  as beta in lower distribution (other results in Appendix III, no. 2,iii). 

 

4.4 Copula estimation 
Once the marginal distributions of filtered residuals were fitted using a GPD approach for 

tails distribution and a Gaussian kernel for the interior of distribution, the next stage was to 

estimate the parameters of dependence structure for the analyzed portfolio. Isolating the 

effects of marginal distribution I have estimated dependence existent among the four 

currencies. In fact this is the copulas’ job: to capture the interaction among the portfolio’ 

assets by isolating the individual behaviour of each asset.  

In this paper I used the Cannonical Maximum Likelihood (CML) approach to estimate the 

parameters of copula. Main advantage of CML method is that allows the estimation of 

                                                            
10 For Bootstraping I recommend  the use of parallel computing approach provided by Matlab as it leads to a 
large increase in processing speed. 



dependence structure without any assumption about the distribution of marginals. Maashal 

and Zeevi et al.(2002) proposed the following formula for estimation of copulas parameters: 

 

where  denotes the transformation of semi-parametric CDFs computed for filtered 

residuals into uniform variates. Once the transformation was made, the following step is to 

estimate the parameters of copula.   

For analyzed portfolio I used two Elliptical copulas to estimate the dependence among 

exchange rates, namely Student, respectively Gaussian copula. Unlike Gaussian, the 

estimation of Student copula was made in two steps: firstly given a fixed value for degree of 

freedom (DoF), the likelihood function is maximized with respect to the dependence 

parameter; secondly once the results from previous maximization were obtained, DoF 

parameter is estimated with respect to dependence parameter.  

The estimated parameters with both Elliptical copulas revealed positive dependence among 

the four currencies (Appendix IV, no. 1). Correlations estimated with Student copula are 

higher than those fitted with Gaussian copula, due to the fact that T copula takes into account 

for fat tails. Another approach to compute the linear correlation matrix is to first estimate the 

rank correlation matrix11. Then given the previous estimate we can use a robust sine 

transformation to obtain a linear correlation matrix (Appendix IV, no. 1). We can observe that 

linear correlation matrix obtained from rank correlation provides higher coefficients of 

correlation than those estimated with Gaussian copula because the former approach accounts 

for tail dependence.  

By studying the resulted correlation coefficients it can be observed that in all three methods 

the highest correlation is recorded between EUR/PLN and EUR/HUF, while the lowest one is 

registered between EUR/CZK and EUR/RON. Another important remark is that each 

currency is most correlated with the EUR/PLN and at least with the EUR/RON. However the 

correlation coefficients are smaller than 0.5 that means a low dependence in the evolution of 

the four currencies. But the empirical events revealed a high dependence among the four 

                                                            
11 Zeevi and Mashal (2002). 

 



exchange rates on depreciation side as the episode from October 2008 showed, when all these 

currencies have sharply decreased against European currency. This fact brings the discussion 

about the existence of both asymmetric dependence and leverage effect as stylized facts and 

also about the contagion of shocks among these countries.  This is very interesting result 

taking also into account that Poland is the largest country by population and the biggest 

economy from CEE zone. Thus a shock of Poland on other countries in the region would have 

the greatest impact on the evolution of portfolio.  

But to study this hypothesis is very suitable to engage an analysis of conditional dependence 

among exchange rates when EUR/PLN plays a pivotal role. From Bayes Law is well-known 

the fact that a multivariate joint distribution can be decomposed using iterative conditioning 

as following: 

 

 Thus we can decompose the first conditional density in terms of copula: 

 

Further we can continue with the second conditional density as: 

 

where   

 

This model of conditional copula are called Canonical Vine Copula and was introduced by Bedford 

and Cooke (2002) and in financial application were firstly used by Aas (2007) and Berg and Aas 

(2007). The notations called here are according those used by Aas (2007). A general form of 

Canonical Vine Copula can be defined as: 

 

 

  Clayton SJC 



Kendall's 
tau 

Upper 
tail 

Lower 
tail 

Pair τ     
EUR/PLN-EUR/CZK 0.1144 0.1403 0.0742 
EUR/PLN-EUR/HUF 0.1462 0.1735 0.1371 
EUR/PLN-EUR/RON 0.0547 0.0219 0.0102 
EUR/CZK-EUR/HUF|EUR/PLN 0.1789 0.2774 0.1286 
EUR/CZK-EUR/RON|EUR/PLN 0.0801 0.0844 0.0183 
EUR/HUF-EUR/RON|EURPLN,EUR/CZK 0.1072 0.1049 0.0566 
Log Likelihood 457.1408 726.1495 

 

Table  5. Estimation of Cannonical Vine Copula 

 

In the computation of Canonical Vine model for the chosen portfolio I selected the EUR/PLN 

returns as pivot. Therefore we can observe that highest dependence was recorded between 

EUR/CZK and EUR/HUF conditioned by EUR/PLN in the lower tail that indicates the 

existence the spill-over of negative shocks in periods of depreciation against Euro. Also from 

estimated result it can be observed that conditional dependences in lower tail are twice than 

those from upper tail. The previous remark underlines the existence of asymmetric 

dependence among the four currencies and leverage effect  

For these reasons we can say that estimated dependence parameters of portfolio with the three 

methods would provide incomplete information about the really dependence among 

currencies due to the rigidity in capture asymmetric dependence. Also have to be mentioned 

that an explanation for much tighter dependency between EURCZK, EUR / HUF and EUR / 

PLN as compared with EUR/RON is that Czech Republic, Poland and Hungary have adopted 

in periods very close one of the other inflation targeting regime. All four countries are 

primarily aimed to accede to ERM II, but they firstly have to satisfy the nominal convergence 

criteria in order to provide a high stability of exchange rate. Different reactions of Central 

Banks to changes in prices or interest rates, lead to asymmetric dependences among the 

analyzed exchange rates’ evolution. The other fundamental explanation of asymmetric 

dependence effect is that all four countries are subject to the same problem: the increasing 

flows of FDIs from lasts years leads to appreciations of local currencies against Euro, but in 

the same time this effect coincides with a loss of external competitiveness.  

For this reasons we have to take into account the existence of asymmetric dependence 

because this is one of the main concern in portfolio management. Thus I proposed the 



decomposition of chosen portfolio in other three bivariate portfolios consisting in EUR/PLN 

and each of other three currencies. As we have seen from the estimation of dependence 

parameters with Elliptical copulas each currency records the highest correlation with 

EUR/PLN, thus supporting the proposal which I made. Another important reason for this 

choice is that Poland is the greatest country by population and largest economy from CEE and 

such a shock from this country shows a high probability of having a significant impact on 

other economies from CEE. Incomplete capture of dependence in the computation of VaR and 

other risk measures could lead to important misalignments In this case the decomposition of 

portfolio in other three bivariate sub-portfolios permits a higher flexibility to choice the most 

suitable copul.s for modelling the dependence in order to obtain a higher accuracy from 

computation of risk measurements. 

In this paper I decomposed the initial portfolio in other three bivariate sub-portfolios 

consisting in EUR/PLN and each of other three currencies. For each sub-portfolio I used a 

number of nine copulas for the estimation of dependence parameters and then I computed the 

information criteria (AIC, BIC). I divided the nine copulas used in two categories: Elliptical 

copulas plus Plackett copula (due to appropriate properties) and Archimedean family. I made 

this split in order to select the best copula by goodness-of-fit criteria from each category and 

then estimate the risks measures and compare the estimation errors with those of the initial 

portfolio and of other sub-portfolios. Additionally I have computed copula-GARCH models 

to capture the evolution of dependence over time. On the base of results from information 

criteria  

For bivariate EUR/PLN-EUR/CZK portfolio the lowest negative log likelihood values and the 

information criteria were recorded by Gumbel and Student copula (see Appendix IV, no. 2, i) 

and ii); red inserted values denotes the minimum AIC and BIC). The lower tail dependence 

between the two currencies was much lower than the upper tail one (see Appendix IV, no. 2, 

iii)).  



 

Figure 8. Modelling tyme-varying dependence with  SJC-copula 

For EUR/PLN-EUR/HUF sub-portfolio it can be observed (see Appendix IV, no. 3, iii)) a 

very strong dependence especially in the upper tail. An interesting remark is that as we can 

see from tyme-varying SJC copula the dependence between two currencies decreased very 

sharply in the end of 2006 and the begin of 2007. But from the evolution of Markov-

Switching regimes for EUR/HUF (see Appendix IV, no. 1) it can be observed a suddenly 

rigidity in transition of exchange rate between states, thus sharply fall of  EUR/HUF due to 

intervention of Central Bank is an important explanation for the empirical events emphasized 

previously. Instead the beginning of financial crisis coincided with a very high dependence 

for the two currencies. Also for this portfolio the goodness-of-fit analysis indicated the choice 

of Student and Gumbel copulas. Other important remark is that unlike the case of EUR/PLN-

EUR/CZK portfolio, for EUR/PLN-EUR/HUF dependence the tyme-varying Gumbel 

provided lowers AIC and BIC than those obtain by dynamic SJC copula that reveal a very 

strong right asymmetry. A very interesting result was obtained for EUR/PLN-EUR/RON sub-

portfolio, where the lowest values of information criteria were obtained by Plackett copula for 

the first category and Frank copula for Archimedean family. The result could be explained by 

the fact that as we can see from the three dynamic copulas, the   (see Appendix IV, no. 4, iii)) 

the upper tail dependence seems very noising, while the lower tail dependence was filled by 



many peaks. Anyway all three sub-portfolios indicate the presence of a sound right 

asymmetric dependence.  

4.5 Estimates of risk measures 
Least but not last I attended the main goal of this paper as to analyze the results of using 

different types of dependence on the VaR models’ accuracy. While the VaR models are not 

very complicated under their original form, the change of several assumptions creates an 

important concern in order to check and to compare the accuracy of involved models.  Once 

the best copulas for the three sub-portfolios were selected by information criteria, the next 

step was to compare the accuracy of the models in order to conclude if my proposal brings 

certain benefits. For this reason firstly I estimated the in-sample VaR and CVaR and secondly 

I computed an out-of sample forecasting. 

In-sample estimates of VaR and CVaR were computed using the Monte Carlo approach to 

simulate the cumulative distribution of each portfolio return for a given horizon with respect 

to the copula parameters and the estimated parameters for whole sample of ARMA GJR 

model (results can be found in Appendix V). Then the resulted risk measures were 

compared with the empirical minimum and maximum returns of portfolio for the respective 

horizon. Also the estimated out-of-time12 VaRs and CVaRs were compared with the realized 

return for each horizon.   

From results it can be observed that overall Student copula provides larger measures of 

potential loss than those computed with Gaussian copula, because the former takes into 

account for tail dependence (see other estimates in Appendix V, no.1,i)). This fact is 

underlined by simulated CDFs which shows a high right skew for T copula. Estimated CVaRs  

are very close minima and maxima recorded by portfolio returns, while out-of-time realized 

returns are within the limits provided by these two risk measures (Appendix V, no.1,ii)).  

For EUR/PLN-EUR/CZK sub-portfolio, the Student copula provides higher values of VaR for 

1% and 5% quantiles and lower ones for 95 % and 99 % because Gumbel is a right 

asymmetric copula (Appendix V, no.2,ii)). This aspect is also observed in the case of  

EUR/PLN-EUR/CZK. An interesting aspect is that for both EUR/ PLN-EUR /CZK and EUR/ 

PLN-EUR/CZK portfolios the 99 % quantile VaR for one month horizon simulated with T 
                                                            
12 Out-of-Time concept denotes here the first period out of sample for a given horizon. As compared with out-of-
sample forecasting that use a rolling-window method within the sample, out-of-time method used the parameters 
estimated for the whole distribution of returns and provides only once estimation of VaR and CVaR. 



copula is lower than this one estimated by Gumbel, while CVARs estimated with T copula are 

higher. In the case of EUR/PLN-EUR/HUF this situation is also available for horizons of 5, 

respectively 10 days (Appendix V, no.2,i)). Thus conclusion we can draw from the previous 

observations is that simulation with Gumbel just facilities the appearance of some peaks for 

short horizons and the density of data in tails is smaller than this one simulated with Student 

copula. Another very interesting remark is that the 99% quantile of Gumbel- CVaR for 

EUR/PLN-EUR/HUF sub-portfolio is much higher than the maximum 3 months cumulated 

returns that conclude Gumbel copula provides over conservative risk measures for long 

horizons.  In the case of EUR/PLN-EUR/RON, the Frank copula provided larger potential 

losses and lower potential gains as compared with those estimated with Plackett copula, 

because Frank is lighter on the right side (Appendix V, no.3,i). This aspect becomes more 

evident in the simulations on longer horizons. 

But these static estimates cannot give full information about the models’ forecasting accuracy 

of maximum potential losses and gains. In this sense I engaged a dynamic process of risk 

measures’ estimation. To do this firstly I split the entire sample in other two: estimation 

sample and forecasting sample. Then I appealed the rolling-window method, as the estimation 

sample is used to provide a VaR for the next period of a fixed number of days. Setting 

constant the size of estimation sample the previous procedure was rolled over the whole 

period, such that obtained a series of VaR which represents the forecasting sample. This is an 

out-of-sample forecasting is used to test accuracy of models over time.  

Therefore I applied a out-of-sample methodology of forecasting with a horizon of 1 day ahead 

to large portfolio and to the three sub-portfolios, using for each of them the related copulas in 

order to compute VaR measures. The forecasting period was between January 2007 and 

January 2010, containing 808 observations, while the estimation sample accounts for 2062 

data. The chosen forecasting horizon is very appropriate to test the accuracy of used Copula-

VaR models because contains both a quiet and a turmoil period determined by the financial 

crisis. 



 

Figure 9. Out-of-Sample forecasts for large portfolio 

 

4.5 Backtesting 
 

Once the out-of-sample forecasts were obtained, I compared the resulted VaRs with empirical 

returns (see Appendix VI, no. 1). The following stage was to take into account those returns 

which exceeded the forecasted values of VaR. Thus to check the accuracy of engaged models 

I compared the number of exceedances with the theoretical levels provided by VaR.  

 

 



Copula 95% VaR 99% VaR 5% VaR 1% VaR

T 7.17% 1.36% 7.29% 1.48%

Gaussian 7.42% 1.61% 7.17% 1.98%

T 5.69% 1.48% 5.69% 2.35%

Gumbel 5.69% 1.36% 7.05% 1.98%

T 5.32% 1.11% 7.42% 1.48%

Gumbel 5.81% 1.36% 8.41% 1.24%

Frank 4.45% 1.48% 4.94% 1.11%

Plackett 4.57% 1.36% 5.19% 1.36%

Large Portfolio

EUR/PLN-
EUR/CZK 
Portfolio

EUR/PLN-
EUR/HUF 
Portfolio

EUR/PLN-
EUR/RON 
Portfolio

Bernoulli Backtest and Calibration to Basel II Traffic 
light

 

Table  6. Bernoulli Backtest for the number of exceedances 

The percent of empirical exceedances over the theoretical levels of VaR resulted from out-of-

sample forecasting for each portfolio and related copulas are found in this Table. A firstly 

indication about the accuracy of Copula-VaR models can be made by comparing the percent 

of exceeses with VaR confidence levels. We can observe that copula Frank and Plackett 

recorded lower percentage of excesses (bolded values from table) than theoretical ones 

provided by VaR. 

But this is not a “robust” tool in testing the accuracy of Copula-VaR models involved here. 

Thus I computed a Bernoulli test under null hypothesis that VaR model is accurate with a 99 

% confidence level. Also it has to be mentioned that regulators admit that in period with 

turmoil the VaR models could produce some misalignments. From this reason I calibrated my 

results to the errors bands proposed by Basel II Traffic light framework. Therefore the green 

bullets indicate the acceptance of Bernoulli null hypothesis, while the yellow ones indicate 

some misalignments in predicting maximum potential losses or gains. However the results 

provided by Copula-VaR models used here gave good results, for which the above table does 

not contains any red bullets. One important requirement for the power of the Bernoulli test is 

that number of observation has to be large. Also the existence of positive autocorrelation of 



exceedances could lead to widening of the confidence interval that affect the power of test 

(see Appendix VI, no. 2) 

From this purposes I have engaged an unconditional test to strengthen and complete the 

conclusions regarding the comparison of models accuracy. Kupiec test under the null 

hypothesis that expected number of exceedances equals the number of empirical VaR’s 

violations is based on the sample principle as Bernoulli. Statistic of the Kupiec test is a 

likelihood ratios statistic, being distributed as  with one degree of freedom. 

  
Kupiec test 

  Copula  95% VaR 99% VaR 5% VaR 1% VaR 

T 7.0987  0.9493***  7.8832  1.6597*** 
Large 

Portfolio 
Gaussian 8.7042  2.5394***  7.0987  6.0736* 

T 0.7681  1.6597***  0.7681***  10.7608 EUR/PLN-
EUR/CZK 
Portfolio Gumbel 0.7681***  0.9493***  6.3514*  6.0736* 

T 0.1657***  0.0996***  8.7042  1.6597*** EUR/PLN-
EUR/HUF 
Portfolio Gumbel 1.0623***  0.9493***  16.5231  0.4232*** 

Frank 0.3181***  1.6597***  0.0053***  0.0996*** EUR/PLN-
EUR/RON 
Portfolio Plackett 0.3181***  0.9493***  0.0617***  0.9493*** 

 

Table  7. Unconditional coverage backtest 

***Denotes the acceptance of null at 10%;  

  **Denotes the acceptance of null at 5%;  

    *Denotes the acceptance of null at 1%;  

Thus Kupiec test as Bernoulli shows that Frank and Plackett copulas provide the best results 

after both copulas accepted the null of unconditional coverage test at 10 % confidence level 

for all the quantiles. In the same time Gaussian copula recorded the most poorly accuracy 

after the null was accepted at 10% was rejected only for 5% quantile of VaR. Also from 

Kupiec backtest we can observe that Gumbel is not an appropriate choice for sample with data 



distributed onto the middle of the tail’s range, as the null was rejected for 5% quantile of VaR  

in the case of EUR/PLN-EUR/HUF portfolio and was accepted only at 1 % confidence level 

in the case  EUR/PLN-EUR/CZK portfolio. Student copula provided similar results as 

Gumbel, indicating the same bad points: low density of data in middle of the tails. 

5. Conclusion 
Recent turbulences from financial markets revealed the inflexibility of traditional risk models 

to capture the observed stylized facts. One of the main concerns in market risk modeling is 

how to account for common trends of the assets. So in this paper I aimed to analyze the use of 

copulas in financial application, namely to investigate the assumption of asymmetric 

dependence and to compute measures of risk. In literature are several methods outside of 

copulas to analyze the common evolution of financial assets but this paper is not subject to 

compare such approaches.  

The analyze of exchange rate returns computed with a logarithmic formula reveals some 

typical stylized facts as autocorrelation, heteroskedasticity or volatility clustering. The use of 

copula requires uniform distributed data so I had to filter the returns series using an ARMA  

GARCH model to compensate for autocorrelation and heteroskedasticity. For this purpose I 

used an asymmetric GARCH (1,1) for conditional variance, called GJR (after the authors’ 

names), because this model incorporate a Boolean function that takes into account for the 

impact of bad news. Instead the conditional mean equation was modeled by an AR(1) process 

for EUR/CZK and EUR/PLN, respectively by an ARMA (1,1) for the other two exchange 

rates.  

Once the filtered residuals were obtained a semi-parametric CDF was fitted for each series. 

The preliminary statistic analysis revealed the need to use EVT approach  for modeling the 

tails of distribution. To do this firstly I computed the Hill-plot for upper and lower tail of each 

series in order to select an appropriate threshold. The high density of extreme values in tails of 

EUR/HUF and EUR/RON indicated the choice of 10%, respectively 90% quantile as 

thresholds. 

The interior CDF for each residual series was fitted by a Gaussian kernel, while GPD method 

was chosen to model the tails of distribution. The estimated tail parameters showed that 

EUR/PLN and EUR/RON behave as beta distribution in lower tail. To test the accuracy of 

parameters estimation I engaged a Bootstrap sampling to check the asymptotic normality. The 



obtained results indicated largely that estimated parameters consist with the tail behavior of 

original data.  

Given the semi-parametric CDFs for residuals series, the following step was to fit the copula 

parameters using CML approach. Results indicated a positive dependence among the four 

currencies, underlining that each currency is most correlated with EUR/PLN and at least with 

EUR/RON. Estimation of conditional dependence using a Canonical Vine Copula with 

EUR/PLN as pivot emphasized the asymmetric dependence among the four exchange rates. 

For this reason I decomposed the large portfolio in three bivariate sub-portfolios consisting in 

EUR/PLN and each of other currencies.  

Student and Gumbel copulas have recorded the lowest values of negative log-likelihood for 

both EUR/PLN-EUR/CZK and EUR/PLN-EUR/HUF sub-portfolios, while for EUR/PLN-

EUR/HUF the information criteria indicated the selection of Frank and Plackett copula as best 

fit models. In the same time Copula-GARCH models emphasized the evidence of a strong 

asymetric deopendence in right tail for each of the three sub-portfolio.   

In-sample estimation of risk measures for large portfolio and each of the three sub-portfolio 

with related copulas for different time horizon revealed some interesting remarks about the 

copula features. However computed CVaRs situated closely to the minimum and maximum of 

empirical returns, even though the 99% quantile of Gumbel-CVaR for EUR/PLN-EUR/HUF 

sub-portfolio is much higher than the maximum of 3 months empirical cumulated returns. 

Out-of-sample forecasting of VaR made possible both an assessment of Copula-VaR models’ 

accuracy and also a comparison between them. Kupiec and Bernoulli backtest shows that  

Frank copula obtained the best results, followed by  Plackett, while the Gaussian copula 

situated at the opposite pole. Student and Gumbel copulas provided satisfactory results, 

performing poorly for the 95 % quantile of VaR. 

An interesting topic for future research is the use Copula-GARCH models to estimate the risk 

measures. Also the use of some GARCH models as FIGARCH or HYGARCH that takes into 

account for the long memory of financial assets could provide consistent improvement of the 

forecasting results.  
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Appendix I  
1. Evolution of exchange rate regimes and estimated parameters. 

 

 

2. Exchange rate returns. 



 

3. Autocorrelation function for exchange rate returns. 

 



 

 

  

   

 
 



4. Testing for stationarity. 

ADF test 

 

 

 

 

KPSS test 

   



 

   

 

Appendix II.  
 

1) ARMA GARCH stats; Nyblom and Pearson tests 
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EUR/RON 

  



 

 

 

2) In-Sample VaR estimation and backtests 
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3)Autocorrelation function for filtered residuals. 

 

 



 

 

 

 

 

 
 



 

Appendix III 
1. Preliminary statistic analyzes of filtered data. 

i) Computation of Mean Excess Function 

 

 

 



 ii) QQ-plot against Exponential distribution. 

 

  

 

 

 



ii) Hill-plot inference for lower and upper tails. 

 

EUR/CZK 

 

 

 

EUR/HUF 

 

 

EUR/PLN 



 

 

EUR/RON 

 

 

2. GPD modelling. 

i) Semi-parametric CDFs of filtered innovations. 



 

 

 

 

 

 

 

 



ii)Inference for GPD parameters 

  EUR/CZK EUR/HUF 
  Lower tail Upper tail Lower tail Upper tail 

Parameters ξ σ Ξ σ ξ σ ξ σ 

ML estimates 
0.0813 
(0.1797) 

0.5934 
(0.0000)

0.0140 
(0.7998) 

0.6307 
(0.0000)

0.1264 
(0.0452)

0.4327 
(0.0000) 

0.1253 
(0.0698) 

0.7151 
(0.0000)

Standard Errors  0.0606  0.0507  0.0552  0.0518  0.0631  0.0373  0.0691  0.0652 

Lower limits of 
Confidence 
interval 

‐0.0375  0.5019  ‐0.0941  0.5370  0.0027  0.3654  ‐0.0102  0.5981 

Upper limits of 
Confidence 
interval 

0.2000  0.7016  0.1222  0.7407  0.2502  0.5124  0.2607  0.8549 

 

iii) Check the Asymptotical Normality 

 

 



 

 

 

 

 



 

 

 

 



 

Appendix IV 
1. Estimation of copula parameters for the four currencies portfolio. 

DoF DoF CI                        

17.3080  12.1811  22.4348                         

  Correlation Matrix for T-copula       Correlation Matrix for T-copula 

  EUR/CZK EUR/HUF EUR/PLN EUR/RON     EUR/CZK EUR/HUF EUR/PLN EUR/RON 

EUR/CZK 1.0000  0.2954  0.3446  0.1453     EUR/CZK 1.0000  0.2816  0.3303  0.1345 

EUR/HUF 0.2954  1.0000  0.4764  0.2332     EUR/HUF 0.2816  1.0000  0.4618  0.2240 

EUR/PLN 0.3446  0.4764  1.0000  0.3388     EUR/PLN 0.3303  0.4618  1.0000  0.3311 

EUR/RON 0.1453  0.2332  0.3388  1.0000     EUR/RON 0.1345  0.2240  0.3311  1.0000 

  
              

  
           

   Empirical Kendall's  tau 
  

  
Theoretical R using Kendall's  tau  

   EUR/CZK EUR/HUF EUR/PLN EUR/RON      EUR/CZK EUR/HUF EUR/PLN EUR/RON 

EUR/CZK 1.0000  0.1882  0.2153  0.0896 
  

EUR/CZK 1.0000  0.2913  0.3317  0.1403 

EUR/HUF 0.1882  1.0000  0.3175  0.1433 
  

EUR/HUF 0.2913  1.0000  0.4783  0.2232 

EUR/PLN 0.2153  0.3175  1.0000  0.2238 
  

EUR/PLN 0.3317  0.4783  1.0000  0.3443 

EUR/RON 0.0896  0.1433  0.2238  1.0000 
  

EUR/RON 0.1403  0.2232  0.3443  1.0000 

  
              

  
           

   Empirical Spearman's rho 
  

  Theoretical R using Spearman'rho 

   EUR/CZK EUR/HUF EUR/PLN EUR/RON     EUR/CZK EUR/HUF EUR/PLN EUR/RON 

EUR/CZK 1.0000  0.2769  0.3135  0.1336 
  

EUR/CZK 1.0000  0.2890  0.3268  0.1398 

EUR/HUF 0.2769  1.0000  0.4561  0.2116 
  

EUR/HUF 0.2890  1.0000  0.4731  0.2211 

EUR/PLN 0.3135  0.4561  1.0000  0.3269 
  

EUR/PLN 0.3268  0.4731  1.0000  0.3407 

EUR/RON 0.1336  0.2116  0.3269  1.0000 
  

EUR/RON 0.1398  0.2211  0.3407  1.0000 

                                

 

 

 

 



2. Estimation of copula parameters bivariate EUR/PLN-EUR/CZK sub-portfolio. 

i) Copula parameters. 

Gaussian
R R DoF θ θ

0.2153 0.3302 0.3424 9.5650 5.6044 13.5255 0.3947 0.3448 0.4447 2.1141 1.8906 2.3376

θ θ θ θ τ‐Lower τ‐Upper

1.2602 1.2267 1.2937 0.4291 0.3792 0.4791 1.2530 1.2195 1.2866 2.8710 2.6475 3.0945 0.1365 0.1879

Ω β α Ω β α Ω-Lower β-Lower α‐Lower Ω-Upper β‐Upper α‐Upper

0.7420 0.1256 ‐1.5428 0.2080 0.4210 ‐0.9072 0.2397 ‐8.1954 1.2386 0.4134 ‐7.9968 ‐1.0793

Tyme‐varying Rotated Gumbel Tyme‐varying Gumbel Tyme‐varying SJC

CI CI CI

Gumbel

CI

Theoretical Rho of 
the sample

0.3317

Rotated Clayton

Kendall's tau

Rotated Gumbel Plackett SJC

T Clayton Frank
CI CI CI

 

ii) Tail Dependence and Information Criteria. 

 

 

 

 

 

 

   Information Criteria 
Copula  NLL  AIC  BIC 

Gaussian  ‐165.6123  ‐331.224  ‐331.222 

Clayton  ‐117.6286  ‐235.257  ‐235.255 

Rotated Clayton  ‐144.4857  ‐288.971  ‐288.969 

Plackett  ‐163.1631  ‐326.326  ‐326.323 

Frank  ‐154.9511  ‐309.902  ‐309.9 

Gumbel  ‐166.6571  ‐333.314  ‐333.311 

Rotated Gumbel   ‐150.4854  ‐300.97  ‐300.968 
T  ‐179.3969  ‐358.792  ‐358.788 

SJC  ‐176.2975  ‐352.594  ‐352.59 

Copula‐GARCH          

Rotated Gumbel  ‐176.0552  ‐352.108  ‐352.102 

 Gumbel  ‐188.9844  ‐377.967  ‐377.96 

Symmetrised Joe‐
Clayton 

‐198.7753  ‐397.546  ‐397.534 

           

   Tail Dependence 

 Copula  Lower  Upper 

Gaussian  0  0 

Clayton  0.1729  0 

Rotated Clayton  0  0.1989 

Plackett  0  0 

Frank  0  0 

Gumbel  0  0.2667 

Rotated Gumbel   0.2612  0 

T  0.0449  0.0449 

SJC  0.1365  0.1879 
       



iii) Copula-GARCH. 

 

   

 

 

 

 



3. Estimation of copula parameters bivariate EUR/PLN-EUR/HUF sub-portfolio. 

i) Copula parameters. 

Gaussian 
R R DoF θ θ

0.3175 0.4618 0.4759 12.6829 6.4495 18.9163 0.5628 0.5085 0.6171 3.2315 2.9968 3.4662

θ θ θ θ τ‐Lower τ‐Upper

1.4293 1.3900 1.4687 0.6929 0.6387 0.7472 1.3893 1.3500 1.4286 4.4910 4.2563 4.7257 0.170839 0.345223

Ω β α Ω β α Ω‐Lower β‐Lower α‐Lower Ω‐Upper β‐Upper α‐Upper

0.336375 0.39426 ‐1.179 0.357299 0.388526 ‐1.1701 ‐1.9619 ‐0.45904 4.0943 0.946996 ‐14.2717 0.844943

Tyme varying Rotated Gumbel Tyme varying Rotated Gumbel Tyme varying SJC

Kendall's 
tau

Theoretical Rho of 
the sample

0.4783

CI CI CI
T‐copula Clayton Frank

Gumbel

CI

Rotated Clayton Rotated Gumbel Plackett SJC

CI CI CI

 

ii) Tail Dependence and Information Criteria. 

   Tail Dependence        Information Criteria 
Copula  Lower  Upper     Copula  NLL  AIC  BIC 
Gaussian  0  0     Gaussian  ‐344.113  ‐688.225  ‐688.223 

Clayton  0.1729  0     Clayton  ‐217.074  ‐434.146  ‐434.144 

Rotated Clayton  0  0.1989     Rotated Clayton  ‐306.968  ‐613.936  ‐613.934 

Plackett  0  0     Plackett  ‐351.701  ‐703.402  ‐703.399 

Frank  0  0     Frank  ‐342.603  ‐685.205  ‐685.202 

Gumbel  0  0.2667     Gumbel  ‐349.786  ‐699.570  ‐699.568 

Rotated Gumbel   0.2612  0     Rotated Gumbel   ‐280.449  ‐560.898  ‐560.896 

T  0.0449  0.0449     T  ‐354.053  ‐708.104  ‐708.100 

SJC  0.1365  0.1879     SJC  ‐339.544  ‐679.087  ‐679.083 

            Copula‐GARCH          

  
     

  
 Gumbel  417.9847  835.9674  835.9611

  
     

  
Rotated Gumbel  339.3431  678.6842  678.6780

  
     

  
Symmetrised 
Joe‐Clayton 

416.8612  833.7181  833.7057

                   
 

 



 

iii) Copula-GARCH. 

 

   

 



3. Estimation of copula parameters bivariate EUR/PLN-EUR/HUF sub-portfolio. 

i) Copula parameters. 

Gaussian 
R R DoF θ θ

0.2238 0.3313 0.3440 16.2281 5.5441 26.9121 0.3815 0.3304 0.4327 2.1826 1.9571 2.4081

θ θ θ θ τ‐Lower τ‐Upper

1.2589 1.2256 1.2923 0.4225 0.3713 0.4737 1.2481 1.2147 1.2815 2.9357 2.7102 3.1611 0.1181 0.1884

Ω β α Ω β α Ω‐Lower β‐Lower α‐Lower Ω‐Upper β‐Upper α‐Upper

0.9591 ‐0.0755 ‐1.4112 ‐0.1557 0.6135 ‐0.4331 1.3151 ‐8.4214 ‐3.5242 ‐0.0334 ‐9.0312 1.5326

CI CI CI CI

Tyme varying Rotated Gumbel Tyme varying Rotated Gumbel Tyme varying SJC

0.3443

Gumbel Rotated Clayton Rotated Gumbel Plackett SJC

Kendall's 
tau

Theoretical Rho of 
the sample

T‐copula Clayton Frank
CI CI CI

 

 

ii) Tail Dependence and Information Criteria. 

   Tail Dependence        Information Criteria 

Copula  Lower  Upper     Copula  NLL  AIC  BIC 

Gaussian  0  0     Gaussian  ‐166.8175  ‐333.634  ‐333.632 

Clayton  0.1627  0     Clayton  ‐112.2710  ‐224.541  ‐224.539 
Rotated 
Clayton  0  0.1939     Rotated Clayton  ‐138.9871  ‐277.974  ‐277.971 

Plackett  0  0     Plackett  ‐172.1960  ‐344.391  ‐344.389 

Frank  0  0     Frank  ‐166.1478  ‐332.295  ‐332.293 

Gumbel  0  0.2657     Gumbel  ‐159.1701  ‐318.339  ‐318.337 
Rotated 
Gumbel   0.2574  0     Rotated Gumbel   ‐142.3737  ‐284.747  ‐284.745 

T  0.0099  0.0099     T  ‐171.8631  ‐343.725  ‐343.721 

SJC  0.1181  0.1884     SJC  ‐163.9774  ‐327.953  ‐327.949 

            Copula‐GARCH          

             Gumbel  ‐172.0255  ‐344.049  ‐344.043 

            Rotated Gumbel  ‐156.7138  ‐313.426  ‐313.419 

  
     

  
Symmetrised Joe‐
Clayton  ‐176.9928  ‐353.981  ‐353.969 

                    

 

 

 



iii) Copula-GARCH. 

 

 

 

 



Appendix V  
1. Portfolio risk measure; i) In-sample estimation of VaR and CvaR 

Horizon Confidence 
level   T-copula 

VaR 

Gaussian-
Copula 

VaR 
  T-copula 

VaR 

Gaussian-
Copula 

VaR 

Min. and max.  
empirical 

return  

Out-of-Time 
realized 
return 

95% 
‐0.7672  ‐0.7458  ‐0.9694  ‐0.9368 

99% 
‐1.0586  ‐1.0424  ‐1.2604  ‐1.2104 

‐2.4476 

5% 
0.6942  0.6876  1.0186  0.9724 

1 day 

1% 

V
aR

 

1.1610  1.0788 
CV

aR
 

1.6193  1.4892 

2.9239 

0.1997 

95% 
‐1.5504  ‐1.5285  ‐1.9738  ‐1.9305 

99% 
‐2.1861  ‐2.1500  ‐2.7503  ‐2.6303 

‐5.3024 

5% 
1.6023  1.5935  2.1388  2.1383 

5 days 

1% 

V
aR

 

2.4294  2.4947 

CV
aR

 

2.8754  3.0795 

6.4693 

‐1.2347 

95% 
‐2.0100  ‐1.9870  ‐2.5471  ‐2.5164 

99% 
‐2.9286  ‐2.8571  ‐3.3710  ‐3.3767 

‐5.6800 

5% 
2.2270  2.2400  3.1834  3.0859 

10 days 

1% 

V
aR

 

3.6803  3.5362 

CV
aR

 

4.9917  4.4554 

7.2602 

‐1.3248 

95% 
‐3.0695  ‐3.1148  ‐3.8660  ‐3.8056 

99% 
‐4.2903  ‐4.3055  ‐5.0748  ‐4.8053 

‐5.1677 

5% 
3.3703  3.4187  4.8860  4.8636 

1 month 

1% 

V
aR

 

5.6392  5.5865 

CV
aR

 

7.5849  7.4142 

9.1040 

‐2.9442 

95% 
‐4.9829  ‐5.0366  ‐6.4952  ‐6.3666 

99% 
‐7.4981  ‐7.2513  ‐8.7605  ‐8.4968 

‐9.2584 

5% 
6.8738  6.8910  10.0183  10.0590 

3 
months 

1% 

V
aR

 

11.9919  11.9431 

CV
aR

 

16.3543  15.5711 

18.7701 

1.2677 



ii)  Monte-Carlo simulation of CDF   

   

   

 

 
 

 

 

2. EUR/PLN-EUR/CZK sub-portfolio risk measure 

i) In-sample estimation of VaR and CvaR 



Horizon Confiden
ce level   T-copula 

VaR 

Gumbel-
Copula 

VaR 
  T-copula 

VaR 

Gumbel-
Copula 

VaR 

Min. and 
max.  

empirical 
return  

Out-of-Time 
realized 
return 

95% 
‐0.9257  ‐0.9279  ‐1.1922  ‐1.2045 

99% 
‐1.3556  ‐1.3499  ‐1.6351  ‐1.6002 

‐2.6805 

5% 
0.8817  0.7710  1.2421  1.2279 

1 day 

1% 

V
aR

 

1.4329  1.4865 

CV
aR

 

1.8942  1.9810 

3.1735 

0.1748 

95% 
‐2.0562  ‐1.9067  ‐2.5697  ‐2.3575 

99% 
‐2.8617  ‐2.6298  ‐3.5580  ‐2.9903 

‐7.2016 

5% 
1.8991  1.7797  2.6586  2.6064 

5 days 

1% 

V
aR

 

3.1737  3.1102 

CV
aR

 

3.9587  3.8942 

8.2211 

‐1.4244 

95% 
‐2.6055  ‐2.7462  ‐3.3623  ‐3.4626 

99% 
‐3.7940  ‐3.7864  ‐4.6173  ‐4.5741 

‐6.6230 

5% 
2.3839  2.5540  3.4456  3.5967 

10 days 

1% 

V
aR

 

3.9764  4.2246 

CV
aR

 

5.1431  5.6460 

8.0561 

‐2.1492 

95% 
‐4.0449  ‐4.0077  ‐5.3040  ‐5.0007 

99% 
‐5.8364  ‐5.6978  ‐7.2352  ‐6.3841 

‐7.6330 

5% 
4.0071  3.7864  5.9100  5.8640 

1 month 

1% 

V
aR

 

6.5271  7.3033 

CV
aR

 

10.1099  9.4476 

10.9775 

‐3.8425 

95% 
‐7.2029  ‐6.8356  ‐8.9414  ‐8.7052 

99% 
‐10.0390  ‐9.8307  ‐11.8241  ‐11.9075 

‐11.0234 

5% 
6.4088  6.6884  9.3623  11.3436 

3 months 

1% 

V
aR

 

11.1877  13.3398 

CV
aR

 

15.0395  20.9592 

22.3665 

0.4159 

ii)  Monte-Carlo simulation of CDF   

 



 

 

 

 

 

2. EUR/PLN-EUR/HUF sub-portfolio risk measure 

i) In-sample estimation of VaR and CvaR 



Horizon Confidence 
level   T-copula 

VaR 

Gumbel-
Copula 

VaR 
  T-copula 

VaR 

Gumbel-
Copula 

VaR 

Min. and 
max.  

empirical 
return  

Out-of-Time 
realized 
return 

95% 
‐1.0888  ‐1.0755  ‐1.4094  ‐1.3781 

99% 
‐1.6011  ‐1.5137  ‐1.9167  ‐1.8433 

‐2.9986 

5% 
0.9821  0.9200  1.3930  1.4393 

1 day 

1% 

V
aR

 

1.6072  1.7173 

CV
aR

 

2.0539  2.3175 

4.1159 

0.5517 

95% 
‐2.2232  ‐2.0826  ‐2.9005  ‐2.6689 

99% 
‐3.2520  ‐3.0598  ‐3.8961  ‐3.4373 

‐9.2020 

5% 
2.1244  2.0942  3.2111  3.0368 

5 days 

1% 

V
aR

 

3.6069  3.5849 
CV

aR
 

4.8605  4.6940 

9.2936 

‐1.5119 

95% 
‐2.9652  ‐3.0645  ‐3.7032  ‐3.8050 

99% 
‐4.2056  ‐4.3303  ‐4.8996  ‐5.0764 

‐7.9383 

5% 
2.9689  3.0843  4.2654  4.3156 

10 days 

1% 

V
aR

 

5.2296  5.3492 

CV
aR

 

6.4678  6.4423 

9.0617 

‐1.4125 

95% 
‐4.5654  ‐4.2590  ‐5.9553  ‐5.4747 

99% 
‐6.8459  ‐6.2733  ‐8.0956  ‐7.2053 

‐7.4851 

5% 
4.5619  4.6203  6.9346  7.1122 

1 month 

1% 

V
aR

 

8.0534  8.3552 

CV
aR

 

11.7663  10.8031 

15.4599 

‐4.0792 

95% 
‐7.3782  ‐7.2217  ‐9.5191  ‐9.3648 

99% 
‐10.4988  ‐10.7371  ‐12.5633  ‐13.4850 

‐11.5424 

5% 
7.8492  8.6982  11.8615  14.2239 

3 
months 

1% 

V
aR

 

13.8947  17.1297 

CV
aR

 

18.6205  25.7856 

21.5802 

2.5407 

ii)  Monte-Carlo simulation of CDF   



 

 

 

 

 

2. EUR/PLN-EUR/HUF sub-portfolio risk measure 

i) In-sample estimation of VaR and CvaR 



Horizon Confidence 
level   

Frank-
copula 
VaR 

Plackett-
Copula 

VaR 
  

Frank-
copula 
VaR 

Plackett-
Copula 

VaR 

Min. and 
max.  

empirical 
return  

Out-of-
Time 

realized 
return 

95% 
‐0.9485  ‐0.9936  ‐1.2759  ‐1.3022 

99% 
‐1.4261  ‐1.4874  ‐1.7752  ‐1.8018 

‐4.0511 

5% 
0.9036  0.9167  1.2445  1.3030 

1 day 

1% 

V
aR

 

1.4666  1.5054 

CV
aR

 

1.7806  2.0016 

5.8615 

0.4116 

95% 
‐2.0450  ‐2.0300  ‐2.7283  ‐2.6029 

99% 
‐3.2014  ‐2.9115  ‐3.7722  ‐3.4631 

‐4.8666 

5% 
1.8590  1.8269  2.5676  2.5472 

5 days 

1% 

V
aR

 

2.9923  2.9373 

CV
aR

 

3.7096  3.7520 

6.5516 

‐1.1141 

95% 
‐2.8445  ‐2.8308  ‐3.7579  ‐3.5763 

99% 
‐4.1471  ‐4.2037  ‐5.2994  ‐4.6958 

‐5.5519 

5% 
2.7004  2.9144  3.7518  3.9300 

10 days 

1% 

V
aR

 

4.4391  4.5338 

CV
aR

 

5.3432  5.4369 

7.5991 

‐1.0764 

95% 
‐4.4102  ‐4.3280  ‐5.6651  ‐5.5022 

99% 
‐6.2009  ‐6.1906  ‐7.6919  ‐7.2893 

‐5.5050 

5% 
4.1188  4.5157  5.7739  6.3479 

1 month 

1% 

V
aR

 

6.7624  7.1696 

CV
aR

 

7.9586  9.6292 

9.6777 

‐3.1584 

95% 
‐7.7137  ‐7.4042 

‐
10.2423  ‐9.8925 

99%  ‐
11.7625  ‐10.9088 

‐
14.9252  ‐14.4789 

‐10.2125 

5% 
7.5080  8.6671  11.7263  13.1176 

3 
months 

1% 

V
aR

 

13.2778  15.5488 

CV
aR

 

18.1708  21.1178 

22.1169 

1.9176 

ii)  Monte-Carlo simulation of CDF   



 

 

   

 

 

 



Appendix VI  
1. Out-of-Sample forecast of VaR against empirical returns 

 

EUR/PLN-EUR/CZK 

 

 

EUR/PLN-EUR/HUF 



 

 

EUR/PLN-EUR/RON 

 

 

 

 

 



2. Evolution out-of-sample forecast’s errors for large portfolio. 
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