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1. Introduction

In this paper we study the effects of a disinflationary monetary policy when

policy makers are committed to price stability in the strict sense of achieving and

maintaining a constant price-level. The analysis takes place in an environment

where the supply-side of the economy is characterized by monopolistically

competitive firms, and where there is rigidity in the setting of prices. Recent

research has revealed much about the effects of monetary contraction in such an

environment.

For our purpose, three broad results stand out from this work. First, in the

periods following a contraction in the money stock, real output is likely to fall

below its (now altered) long-run equilibrium level. Second, a gradual disinflation

may actually result in output, after its initial decline, rising above its new steady-

state level, and remaining so for some time. And finally, it is optimal to end

high inflations quickly, low inflations gradually, and maintain inflation at or near

zero, thereafter. The key papers that develop these results are due to Ball (1994),

Ireland (1997), King and Wollman (1999) and Khan, King and Wollman (2002).

Important precursors to the analytical foundations of these results are contained

in Danziger (1988), Benabou and Konieczny (1994) and Lucas and Stokey (1983),

while the contributions of Sargent (1982) and Gordon (1982), as emphasized by

Ireland, provide an important focus on policy implications of differential speeds

of disinflation.

The theoretical papers just mentioned, and many others besides, assume

perfect foresight (or rational expectations). For some purposes this assumption

is obviously appropriate: what other assumption makes sense when one wishes

to analyze an economic model in, or in a close neighborhood of, an unchanging

steady state? However, the assumption of perfect foresight may be less attractive
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when one wishes to analyze the effects of ‘large’ changes in policy. For one thing,

the steady state of the model may well be changing. In addition, policymakers

may not enjoy complete credibility. In this paper we examine the effects of a

disinflationary monetary policy when policymakers initially do not enjoy complete

credibility, and where the steady state of the economy is changing. We model the

monetary policymakers as doggedly pursuing the goal of price stability in the face

of this imperfect, but improving, credibility.

Two important recent contributions address some of the issues we do. The

first is Ball (1995). He demonstrates that if credibility is sufficiently low, a period

of disinflation may lead to expected output losses. In his model agents harbour

a nagging suspicion that the authorities will renege and give up on the path of

disinflation. He models agents’ scepticism as a constant conditional probability of

reneging. This may be a somewhat rigid way of modelling the evolution of agents’

priors. On the one hand, as the disinflation proceeds it is plausible that agents

accord increasing weight to the announced path for the money supply. On the

other hand, perhaps as the disinflation proceeds and the extent of nominal rigidity

in the economy optimally rises, the authorities may be more likely to renege (to

exploit a flattening of the Phillips curve). Ex ante both of these cases seem

intuitively plausible, and so we propose an ‘expectations updating rule’ that nests

these alternatives. The distinction between these two cases can be important, as

we demonstrate below. In addition, Ball (1995) leaves to one side the issue of the

optimal speed of disinflation under imperfect credibility, a topic we take up here.

The second related paper is by Ireland (1995). He also finds that higher

output losses are the price of imperfect credibility during a period of disinflation.

However, the attainment of price stability is desirable (i.e., welfare enhancing) in

general, except when the loss of seigniorage is replaced in the low inflation state

by a rise in other distortionary taxes. Again, his modelling of the expectations
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formation process misses the effects to which we have just referred. In addition,

we examine the issue of a lack of credibility in a more complex, but now standard,

supply-side with a continuum of monopolistically competitive producers. This

set up leads to some computational complexities related to the optimal choice of

prices by firms who not only have to forecast future demand and cost conditions,

but also have to forecast their covariances. This may be why these other authors

employ somewhat simpler supply-sides in their set-ups. We also extend Ireland’s

(1997) calculation of the optimal speed of disinflation to the case of imperfect

credibility, and enquire whether or not imperfect credibility materially impacts

on the optimal speed of disinflation, as compared to the situation under perfect

foresight. This is a question of first-order policy importance but which, to our

knowledge, has not been addressed hitherto in the class of models employed here,

and which is proving popular for policy-oriented analyses.

1.1. Outline of the Paper

In the next section we outline our model and discuss its salient features. In

section 3 we display some benchmark results that demonstrate the three key

points we mentioned above. In section 4 we propose our expectations updating

rule. In section 5 we analyze the impact of imperfect credibility during a period

of disinflation. In section 6 we use our model to analyse the Volcker disinflation.

Given the actual course of disinflation during this period, we back out the implied

speed of learning of agents in the economy (by matching the output gap of our

model to a measure of the actual US output gap during this period). Given the

implied speed of learning, we then compare the speed of the Volcker disinflation

with the optimal speed of disinflation. In Section 7 we discuss our results and

offer some thoughts on areas for future research.
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2. The Model

2.1. The Representative Agent

Our basic framework extends the perfect foresight model of Ireland (1997).

Its component parts are now familiar in the literature and so we can develop

the key equations somewhat briskly. The economy consist of many identical

consumers. Each period a representative agent makes plans for consumption

and leisure/labour such that (expected) present discounted value of utility is

maximised. This measure of utility is given by

E0

∞X
t=0

βt
½
C1−α
t − 1
1− α

− γNt

¾
α, γ > 0, (2.1)

and is separable in consumption, Ct, and labour supply, Nt. β ∈ (0, 1) is a discount
factor. Following Dixit and Stiglitz (1977), Ct is defined over a continuum of

goods,

Ct =

∙Z 1

0

ct(i)
b−1
b di

¸ b
b−1

b > 0, (2.2)

where ct(i) denotes, in equilibrium, the number of units of each good i from firm i

that the representative agent consumes. b is the price elasticity of demand. pt(i)

is the nominal price at which firm i must sell output on demand during time t.

The Dixit-Stiglitz aggregate price level, Pt, at time t is given by:

Pt =

∙Z 1

0

pt(i)
1−bdi

¸ 1
1−b

. (2.3)

Let Nt be given by:

Nt =

Z 1

0

nt (i) di,
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where nt(i) denotes the quantity of labour supplied by the household to each firm

i, at the nominal wage Wt, during each period. This assumption means that

households effectively supply a portion of labour to all firms. The reason why we

need such an assumption (and the one below regarding the representative agent’s

share portfolio) is to ensure that the marginal utility of wealth equalizes across

agents.

Each period, the representative agent faces a budget constraint of the following

sort:Z 1

0

[Qt (i) st−1 (i) + Φt (i) +Wtnt (i)] di ≥
Z 1

0

[pt (i) ct (i) +Qt (i) st (i)] di. (2.4)

Here Qt (i) denotes the nominal price of a share in firm i, st denotes the quantity

of shares, Φt (i) di = Dt(i)st(i), where Dt(i) is the dividend associated with a unit

share, and
R 1
0
pt (i) ct (i) di = PtCt denotes total nominal expenditure. We assume

that for t = 0, s−1(i) = 1, for all i ∈ [0, 1]. In effect, then, we are assuming that
each household owns an equal share of all the firms. The constraint (2.4) says

that each period (and, under uncertainty, in each state of nature) income (financial

plus labour) can be worth no less then the value of expenditure (on non-durable

consumption plus financial investment). The household problem, then, is to choose

ct(i), nt(i), st(i) and total consumption, Ct, such as to maximize (2.1) subject

to the sequence of constraints (2.4), and the relevant initial and transversality

conditions. Optimal household behaviour is described by the requirement that

household consumption spending must be optimally allocated across differentiated

goods at each point in time (i.e., the optimal ct(i)). It can be shown that the

Dixit-Stiglitz preference relation requires that purchases of each good i satisfies:

ct(i) = Ct

µ
pt(i)

Pt

¶−b
. (2.5)

As in Ireland (1997) it will simplify things somewhat if we let aggregate nominal
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magnitudes be determined in equilibrium by a quantity-type relation:

Mt =

Z 1

0

Pt (i) ct (i) di = PtCt. (2.6)

An interior optimum for the agent’s problem will include (2.4) with equality, (2.5)

for all i, (2.6) and the following conditions:

C−αt = λtPt; (2.7)

γ = λtWt. (2.8)

And for all i

Qt(i) = Dt(i) + βEt(λt+1/λt)Qt+1(i), (2.9)

where λt is an unknown multiplier associated with (2.4).

2.2. The Corporate Sector

There is a continuum of firms indexed by i over the unit interval, each of them

producing a different, perishable consumption good. So, goods may also be

indexed by i ∈ [0, 1], where firm i produces good i.

Each firm i sells shares, at the beginning of each period t, at the nominal

price Qt(i), and pays, at the end of the period, the nominal dividend Dt(i). The

representative household trades the number of shares that it owns, st(i), in each of

the firms at the end of each period t. Under market clearing, st(i) = 1,∀i ∈ [0, 1],
in each period. Firms are able to change prices each period, subject to a fixed

cost. As a consequence, in equilibrium firms will not necessarily be willing to

change prices in each period. The criterion for the price-setting decision at time

t is to maximise the return to shareholders.
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At time t we assume that firms are divided into two categories, such that

firms from the first category can freely change their prices, p1,t(i), while the firms

belonging to the second must sell output at the same price set a period before,

p2,t(i) = p2,t−1(i), unless they pay the fixed cost k > 0, measured in terms of

labour. We may think of this cost as being associated with information collection

and decision making. At time t+1, the roles are reversed and the first set of firms

keep prices unchanged, p1,t+1(i) = p1,t(i) unless they are willing to pay the fixed

cost k, while the second set of firms can freely set new prices.

The model assumes, then, that firms are constantly re-evaluating their pricing

strategy, weighing the benefits of holding prices fixed versus the alternative of

changing prices and incurring the fixed penalty. However at moment t the firms

belonging to the set of firms that can freely change price are able to choose between

two strategies, depending on whether the inflation rate is moderate or high. At

moderate rates of inflation, or in the face of gradual changes in the monetary

stance, they are more likely to keep their prices constant for two periods and

hence avoid the cost k (single price strategy). On the other hand, in the case of

a high inflation, or in the face of sharp changes in the monetary stance, firms are

more likely to choose a new price and pay the cost k (two price strategy).

We assume a simple linear production technology yt(i) = lt(i), where yt(i) and

lt(i) are output of firm i and the labour used to produce it, respectively. Let us

denote aggregate output as Yt, then equilibrium profits at time t for firm i are

given by,

Dt(i) = [pt(i)−Wt]

µ
pt (i)

Mt

¶−b
Ct − It(i)Wt(i)k. (2.10)

While, in equilibrium, the units of labour supplied to each firm at nominal wage

Wt are given by:
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nt(i) = Y 1−b
t

µ
pt (i)

Mt

¶−b
+ It(i)Wt(i)k,

where

It(i) =

½
1, if the firm pays the cost of price adjustment k at moment t;
0, if the firm does not pays the cost k at moment t.

2.3. Single price strategy

Under this strategy we may think of firm i choosing pt(i) so as to maximize the

following expression:

Πt(i) = Dt(i) + βEt (λt+1/λt)Dt+1(i), (2.11)

which follows from (2.9), and implies that prices are set to maximize market value.

We then set γ = 1, substitute (2.7), (2.8), the quantity equation and goods market

equilibrium into (2.10). It then follows that the price for firm i that will be used

for two consecutive time periods is:

pt(i) =
b

b− 1
M b

t Y
b−1
t + βEtM

b
t+1Y

b−1
t+1

M b−1
t Y b−α

t + βEtM
b−1
t+1 Y

b−α
t+1

. (2.12)

This equation is familiar from the New Keynesian economics. It basically says that

the optimal price will be a function of current and future anticipated demand and

costs conditions, and where in steady state price will be a fixed mark-up over

marginal costs. As is familiar in models of monopolistic competition based on

Dixit-Stiglitz preferences, the markup is constant and determined by the elasticity

of demand (that is, tied down via the preference side of the model), the lower the

elasticity, the higher the mark-up.
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2.4. Two price strategy

In this case the firm chooses the price pt(i) to maximise profits in each period

Πt(i) = Dt(i). (2.13)

The optimising price in this case is given by:

pt(i) =
b

b− 1
Mt

Y 1−α
t

. (2.14)

Here we see that prices are a mark-up as before; now it is only current period

demand and cost conditions that are relevant.

3. Model Calibration and Benchmark Results Under
Perfect Foresight

The calibration of the model follows Ireland (1997). We set α = 0.1 so that the

intertemporal elasticity of substitution follows Ball, Mankiw and Romer (1988).

As in Rotemberg and Woodford (1992) b = 6, corresponding to a benchmark

value of 1.2 for the steady-state markup. Following Ball and Mankiw (1994), each

interval of time in the model corresponds to a period of six months, determining

the choice of β = 0.97, consistent with an annual discount rate of 5 percent. k, the

inflation rate at which the rigidity of individual goods prices vanishes, (i.e., firms

switch from the single price strategy to the two price strategy) is set at 0.1075.

Finally, we assume γ = 1.

We study the effect of a monetary policy that brings money growth to zero over

some horizon. This was the approach adopted in Ireland (1997), following Ball

(1994). Specifically, at period 0, the authorities make a surprise announcement

about the path for the money supply,
©
MA

s

ªT
s=0

, such that by time period T

inflation will be zero. The superscript A indicates the ‘announced’ level of the
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money supply. This announced path for the money supply, in turn, implies a

gradual decrease in the growth rate of the money supply. Let θt denote the growth

rate of the money stock at time t. We study, then, processes for the money growth

rate of the following sort:

θt = θt−1 −
θ − 1
T

, (3.1)

for any value of t from 0 to T −1,where θ−1 is equal to the initial rate of inflation,
and where θt > T = 1. So, a horizon of time T = 1 entails immediate disinflation,

while for T > 1 the policymakers engineer a more gradual path towards price

stability.

Figure 3.1 shows the effect of an immediate disinflation on output when the

initial inflation rate is 3% (the dashed line) and when the initial rate is 200%

(the solid line, which is coincident with the x-axis). We see that at relatively

low rates of inflation, this is quite costly as firms follow a single-price strategy.

The ‘hump-shaped’ response is due to the fact that the first set of firms to set

new prices increase their price; past inflation has eroded their relative real price

and now they face a relatively large increase in demand for their products (since

the firms that don’t re-price have relatively high prices and hence relatively low

demand). At higher rates of initial inflation, firms re-price every period (two-price

strategy) and hence disinflation can proceed with no relative-price distortion.

Figures 3.2 and 3.3 show the effects of a gradual disinflation from 3% and

200% respectively. After the initial drop in output, a gradual disinflation leads

to a boom in output—a relatively prolonged period of above steady state output.

Agents set prices for two periods, and because inflation will be lower in the future,

they set lower prices today, causing a boom. At high initial rates of inflation, the

loss in output in the initial periods can be substantial. The problem is that with

gradual disinflation from high rates of inflation, firms do not initially change their

prices.
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Effects of Immediate Disinflation on Output under Perfect Foresight
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Figure 3.1:

Output Effects of Gradual Disinflation under Perfect Foresight. 
Initial Annual Inflation Rate 3%. T=6. 
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Figure 3.2:
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Output Effects of Gradual Disinflation under Perfect Foresight. 
Initial Annual Inflation Rate 200%. T=6. 
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Figure 3.3:

Finally, figure 3.4 shows the optimal speed of disinflation for initial inflation

rates of between 1% and 20%. From various initial levels of inflation we calculate

the level utility associated with different speeds of disinflation. During big

inflations firms are more likely to follow a two price strategy and hence under

perfect foresight disinflation is costless. On the other hand, at relatively low

rates firms are more likely to follow a single-price strategy and rapid disinflation

is more likely to be costly. It turns out that the optimal equilibrium strategy

for each initial inflation reported is the single price strategy (although two price

strategies were employed along a number of sub-optimal disinflation paths). At

very high rates of inflation (not reported) the two price strategy is optimal. We

return to what determines the optimal speed of disinflation below.
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Optimal Speed of Disinflation
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4. Imperfect Credibility

In this section we consider what might happen when credibility is imperfect, but

nevertheless improving through time. We run variants of the above experiments

in an environment where the probability mass characterising agents’ subjective

expectations is shifting through time onto the central bank’s announced money

supply path. Introducing uncertainty into our framework results in some

computational complexity which an appendix discusses1. Again the policy

employed is to lower money growth linearly to zero over some time horizon, T ≥ 1.
To retain computational manageability, we assume that agents perceive of only

two possible outcomes. One outcome is the monetary authority’s announced path

for the money supply. The other outcome is a reversion to an alternative, more

inflationary, path for the money supply. There are two obvious choices for this

1This appendix is available on Nolan’s website:
http://www.st-andrews.ac.uk/~cn14/home.htm
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alternative path: First, agents perceive the authorities as reverting to the previous

steady state inflation rate. Second, alternatively, they fear the government will

‘run out of steam’ such that at time t (for 0 < t < T ) the growth rate of the

money stock will be equal to the growth rate between t− 1 and t. Algebraically,

we can characterize these alternate expectations as follows:

Et+j−1Mt+j = ρt+jθ−1Mt+j−1 + (1− ρt+j)M
A
t+j; (4.1)

Et+j−1Mt+j = ρt+jθt−1Mt+j−1 + (1− ρt+j)M
A
t+j. (4.2)

We will assume that the authorities stick to the announced path of disinflation,

so in practice (4.1) and (4.2) may be rewritten as

Et+j−1Mt+j = ρt+jθ−1M
A
t+j−1 + (1− ρt+j)M

A
t+j;

Et+j−1Mt+j = ρt+jθt−1M
A
t+j−1 + (1− ρt+j)M

A
t+j.

In characterizing {ρs}T+Js=0 we need to decide on ρ0, a measure of the initial level of

credibility, the time it takes until ρT+J = 0, for J ≥ 0, and the path of ρs in the
transition between these extrema. One option is simply to let ρs converge linearly

to zero in the following way:

ρt = ρt−1 − α
ρ0
N

t ≥ 1, (4.3)

where N is the period of the disinflation (measured in half-years) and α ∈ (0, 1).
α captures the time it takes for agents to believe completely the central bank’s

announcements—i.e., for a perfect foresight equilibrium to obtain. However, there

may be more plausible characterizations2. The following function is useful for

capturing such paths:

2This linear path for ρ leads to results intermediate between those which we label below as
‘concave’ and ‘convex’. The results showing this are available on request.
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ρt = (−1)δ k(a2 − (t− δa)2)
1
2 + δρ0, (4.4)

where δ = 0 or 13. In the event that δ = 0 it can be shown that ρt follows the

simple recursive process:

ρt/k =
n¡

ρt−1/k
¢2
+ (1− 2t)

o 1
2
. (4.5)

On the other hand, if δ = 1 then we have that

ρt/k =
n¡¡

ρt−1 − ρ0
¢
/k
¢2
+ [1− 2(t− a)]

o1
2
+ ρ0/k. (4.6)

Given ρ0, (4.5) plots the path {ρs}Ts=0 as a concave function. This captures

the intuitive idea that agents may be reluctant to update their priors initially.

However, as time goes by and the central bank sticks to its announced money

supply targets, they increasingly come to believe the announced target path. We

shall refer to this case as concave (expectations) updating4. On the other hand,

(4.6) reflects a population, although happy to accept that the monetary authority

dislikes the current relatively high rate of inflation, nevertheless worries that as

the slope of the short-run Phillips curve flattens the monetary authority may be

tempted to renege. The importance of the exploitability of the Phillips curve has

been emphasized by Ball, Mankiw and Romer (1988) and is a crucial factor in

high inflation equilibria in games of the Barro and Gordon (1983) sort.5 We refer

to this as convex (expectations) updating.

3It can be shown that a = N and k = N/ρ0.
4That is, ρ plots as a concave function of time on the x−y plane, where the x−axis measures

time.
5Intermediate cases are possible to imagine, such as a truncated bell-shaped path for ρ.

This would capture a situation in which agents initially place little weight on the authority’s
announcements, as in (4.5). However, after some time (characterised by an inflexion in the path
of ρ), agents once again become more sceptical, as in (4.6). We ignore these alternate paths.
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We still have two difficult questions to answer. First, what is a reasonable

value for ρ0, and at what point T do we have that ρs≥T = 0,∀s; how credible is
the authority’s announcement at date zero, and how long does it take for agents

to ‘arrive’ at perfect foresight? We know of no studies that we can easily draw on

to parameterize functions (4.5) and (4.6), so our approach has been to analyze the

outcome of various thought experiments under many different parameterizations

and to present the results we believe to be robust. For now we assume that

ρ0 = 1,6 and that ρT = 0 after three years7. In Section 6 we shall attempt to

parameterize our learning rules using the experience of the US in the early 1980s.

5. The Effect of Imperfect Credibility

5.1. Concave Expectations Updating Under (4.1)

In all of the charts that follow the dashed line is the perfect foresight case, and

the solid line is the imperfect credibility case. Figure 5.1 compares the path of

output under perfect foresight and concave expectations updating, given an initial

inflation rate of 3%.

The contraction in output is more pronounced and more protracted under

imperfect credibility. And even though by period 6 agents in both economies have

the same information, the effects of imperfect credibility remain for some time

due to the overlapping nature of price setting.

One of the potentially counterfactual implications of the perfect foresight case,

as emphasized by Ball (1994, 1995), is the implication of the ‘disinflationary

boom’: i.e., the tendency for output to rise above its new steady state level under

6We experimented with a number of different initial values for ρ0. The results were virtually
unchanged for values of ρ0 as low as 0.5.

7If ρ takes a longer time to reach zero, output obviously also takes a longer time to
reach its new steady state level. Our assumption implies agents finally believe completely the
anouncement when, and only when, price stability is actually achieved.
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Output Effects of Immediate Disinflation under Concave Learning. 
Initial Annual Inflation Rate 3%. 3 Years to Perfect Foresight. 
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Figure 5.1:

a gradual disinflation as agents anticipate lower future price-levels.

Figure 5.2 shows that under concave updating this effect may vanish as output

falls more sharply and does not rise above its new steady state value along the

transition path. Agents only gradually come to realise that the price-level is

to grow at a zero rate—a realization that is all the more tardy because of the

gradualness of the disinflationary process itself. For very high initial inflation

rates, the fall in output following an immediate disinflation is catastrophic as

figure 5.3 demonstrates and it is also of a similar order of magnitude under a

more gradual disinflation, as figure 5.4 shows.

Given the extra cost imposed by imperfect credibility, what is the quantitative

impact on the optimal speed of disinflation? Figure 5.5 reveals that a good ‘rule-

of-thumb’ is that disinflations from initial rates between 2%-11% should take an

extra year, as compared with the perfect foresight case. In contrast for inflation

rates above 12% and less than or equal to 1% the optimal speed of disinflation is

18



Output Effects of Gradual Disinflation over 3 Years under Concave Learning. 
Initial Annual Inflation Rate 3%. T=6. 3 Years to Perfect Fresight. 
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Figure 5.2:

Output Effects of Immediate Disinflation under Concave Learning. 
Initial Annual Inflation Rate 200%. 3 Years to Perfect Foresight. 
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Figure 5.3:
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Output Effects of Gradual Disinflation under Concave Learning. 
Initial Annual Inflation Rate 200%. T=6. 3 Years to Perfect Foresight. 
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Figure 5.4:

indistinguishable from the perfect foresight case.

The key reason that gradual disinflations are attractive is that, with some

price stickiness and under perfect foresight, they often imply prolonged periods

of above trend output and consumption. However, as the initial inflation rate

rises the contraction in output in the early periods of the disinflation is more

pronounced, increasingly offsetting the utility gain from the subsequent boom—

the optimal speed of disinflation rises.

Under imperfect credibility, the initial contraction in output is more severe for

any initial inflation rate than is the case under perfect foresight. Furthermore,

the utility gain from the disinflationary boom may be absent. It turns out that

a more gradual period of disinflation is optimal up until an initial inflation rate

of around 12%. For initial inflation rates greater than 12% the optimal speed of

disinflation is the same as under perfect foresight.

In short, therefore, under perfect foresight gradual disinflations are primarily

20



Optimal Speed of Disinflation

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Annual Inflation Rate

Ti
m

e

pf
ro0=1

Figure 5.5:

about reaping the utility from output gains following an initial contraction in

activity, while under imperfect credibility a primary concern is avoiding over-

sharp contractions in activity in the early period of the disinflation.
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Output Effects of Immediate Disinflation under Convex Learning. 
Initial Annual Inflation Rate 3%. 3 Years to Perfect Foresight. 
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Figure 5.6:

5.2. Convex Expectations Updating Under (4.1)

Many of the same qualitative results found under concave updating are present

with convex updating. However, as is apparent from Figures 5.6-5.9, the outturns

look closer to the case of perfect foresight compared with concave updating. The

reason for this is that the convex path of ρ means that agents avoid some of the

more costly mistakes early on in the disinflation that may occur under concave

updating.

Figure 5.6 shows that the drop in output under immediate disinflation leads

to a drop in output more severe than, but close to, that under perfect foresight.

This tendency for agents to believe the authorities when they announce

decreases in the rate of growth of money also permits disinflationary booms to

occur, as figure 5.7 shows, for ‘moderate’ rates of inflation whilst such booms are

absent for higher initial rates of inflation, as figure 5.8 demonstrates.

The optimal speed of disinflation, figure 5.9, is closer to the case of perfect
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Output Effects of Gradual Disinflation under Covex Learning. 
Initial Annual Inflation Rate 3%. T=6. 3 Years to Perfect Foresight. 
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Figure 5.7:

foresight than under concave expectations updating.

5.3. Concave and Convex Expectations Updating Under (4.2)

Under (4.2) agents expect the disinflation policy to stall such that there is some

probability that next period’s inflation will equal this period’s. We found that

because the initial expectational errors are smaller than under (4.1), the results

tend to be closer to those found under perfect foresight; deflationary booms are

more likely to occur under (4.2). As before, concave updating tends to make these

booms disappear,8although this is now less likely to occur than under (4.1). For

example, Figure 5.10 compares the effects of gradual disinflation under perfect

foresight (dashed line) with concave learning under (4.1), the bottom line; and

with concave learning under (4.2), the middle line.

8We do not present the results in detail, but they are, in chart form, available upon request.
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Output Effects of Gradual Disinflation under Convex Learning. 
Initial Annual Inflation Rate 200%. T=6. 3 Years to Perfect Foresight. 
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Figure 5.8:
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Output Effects of Gradual Disinflation under Concave Learning. 
Initial Annual Inflation Rate 3%. T=6. 3 Years to Perfect Foresight. 
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Figure 5.10:

6. The Volcker Disinflation and the Optimal Speed of
Disinflation9

In sections 4 and 5 we adopted a number of different expectations updating rules.

In this section we attempt to use the experience of the US in the early 1980s to

look at, for this period at least, what might be an empirically plausible version of

the expectations updating rule.

Between late 1979 and 1985 inflation in the US fell, broadly speaking, from

10% to 4%, and has subsequently fallen further. This reduction in the inflation

rate was costly, as measures of the output gap from this period indicate. In this

section, we take a first pass at the issue: might the Volcker disinflation have been

too rapid? To do this we assume that the initial steady state inflation was 10%

(around the highest level that actual US inflation reached before coming down),

9We would like to thank an anonymous referee for suggesting the analysis that we undertake
in this section.

25



and that Volcker intended to reduce inflation to 2% (close to the average inflation

rate since 1984). We use the currency component of M1 from 1979 until 1984

as the path for the money stock during the disinflation. Given this path and

assuming perfect foresight we calculate the flexible price level of output of our

model. We then back out a learning process such that the output gap in our

model tracks the actual US output gap. Given that learning process we can then

calculate the optimal speed of disinflation.

The dashed line in figure 6.1 is the US output gap as measured by the OECD.

The solid line is the output gap of our model. To generate such a sharp contraction

in output we had to adopt a somewhat extreme form of concave learning, where

agents to not believe the ‘announced’ money supply growth rates for almost the

whole course of the disinflation ( 5 years), and then in the course of year six,

believe entirely the announced path. And even then we cannot quite generate the

sharpness of the contraction indicated in the OECD data; although both measures

of the output gap bottom out in 1982, the model ouput gap at the trough is 1%

less than the OECD estimate.

The optimal speed of disinflation from an initial rate of inflation of 10% to

2% under perfect foresight is three and half years. In contrast the optimal speed

under the learning process implied above is seven years. Our calculations suggest

that even had the disinflation taken longer than it actually did the output losses

would have been only marginally lower.

Clearly one needs to be cautious in an exercise such as this as we are squeezing

real world data into a highly simplified framework, but we think these results

are indicative. It appears that once inflation has risen substantially, imperfect

credibility makes sizeable output losses in the transition to price stability highly

likely, even when the speed of disinflation is ‘optimal’. In a related analysis

Erceg and Levin (2003) come to some similar conclusions. They examine the
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Figure 6.1:

Volcker disinflation under the assumption that agents use optimal filtering to

disentangle persistent changes in the inflation target from temporary shocks to

the monetary policy rule. Unlike in the current set up, in their model the steady

state is unchanged throughout this period. However, leaving aside this important

difference10, they also find as we do that sizeable output losses may be the price

of imperfect credibility.

10The difference may be important for the sorts of reasons discussed in Albanesi, Chari and
Christiano (2003).
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7. Discussion and Conclusions

We think two results stand out from our investigation. First, we find that

imperfect credibility and price stickiness are jointly neither necessary nor sufficient

for monetary contractions to cause lengthy recessions, at least for the relatively

modest initial levels of inflation under scrutiny here. In this sense our results

conflict with Ball (1995).

Second, in our model imperfect credibility need not be an overriding concern to

the policymaker initiating a period of disinflation; under imperfect credibility the

optimal speed of disinflation is quite similar to the case of perfect foresight. That

said, under concave expectations updating initially sharp falls in output were a

concern for the policymaker. Under convex updating, and perfect foresight, the

optimal speed of disinflation was driven to a large extent by the protracted period

of above steady state output.

What is central to both of these results is the size of the expectational errors

early on the regime shift relative to the degree of price stickiness. For a given

level of imperfect credibility longer nominal contract length will generally imply

sharper recessions following a monetary contraction. Under convex updating these

initial errors are relatively small while under concave updating they are somewhat

larger.

Future research might investigate three issues. First, how large does the initial

fall in output have to be before it is optimal for the policymaker to renege on the

announcement to attain price stability. We accommodated this issue by focussing

on situations where the initial rate of inflation was relatively modest. For countries

with very high initial inflation rates, however, reneging might well be optimal, as

Figure 5.3 strongly suggests.

A second issue concerns the interaction between monetary and fiscal policy.
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We side-stepped this issue altogether by ignoring distortionary taxation of real

activity. Again, so long as initial inflation, and hence seigniorage, is relatively

modest the fiscal implications of disinflation are probably limited. As initial

inflation rises, the public sector budget constraint is likely to play an increasing

role in the welfare calculus.

A final issue concerns how quickly agents actually take to learn about regime

shifts. In this paper we picked what we thought were sensible scenarios. In

truth, we know relatively little about such issues, although in section 6 we make

a tentative first step in this direction as do Erceg and Levin (2003). Given its

importance to our results, this is an important topic for future research.
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8. Appendix: Solving the model

In this appendix we set out our approach to solving the model. We do this in two

steps. The first step entails mapping the non-linear stochastic problem into a form

more convenient to work with numerically. The second step then constructs the

equilibrium solution to that simpler problem. The solution to the model under

perfect foresight requires only the second of these steps and hence we do not spell

this out in detail.

8.1. Step 1

In what follows let xt denote the vector of endogenous variables excluding

the control variables; st denotes the vector of control variables; θ denotes the

parameters of the model; Et(y|Ω) denotes the expectation of y conditional on the
information set Ω at time t. We need to solve a stochastic non-linear expectations

model of the following general form:

fEt (xt+1, xt, st+1, st; θ|Ω) = 0, (8.1)

where f : Rdx+dx × Rds+ds × Rdθ → Rdx is the equilibrium function, and dx, and

ds are the dimensionalities of the x, s, and θ spaces respectively. In what follows

we shall generally denote the conditional expectation using the shorthand, Et(y).

The expectation operator is given by a discrete distribution that takes on value

vt+j with probability wj as follows:

Et [f(vt)] '
kX

j=0

wjfj(vt+j). (8.2)

In the current set up k = 1. So applying (8.2), the expected money supply is

calculated as follows:
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E [st+1] = [z(st+1)] =
1X

j=0

wjzj(st+j) = w0z0(st) + w1z1(st+1),

where the weights reflect agents’ perceptions as to the likelihood of the possible

outturns: w0 = ρ0 is the probability that money supply (z0(Mt) = θ−1Mt)

will revert to its previous steady state growth rate, while with probability

w1 = (1 − ρ0) the money supply is expected to follow its announced path:¡
z1(Mt+1) =MA

t+1

¢
, ρt ∈ [0, 1], t = 0, 1, 2, ... The path of ρt through time is

determined by (4.4) in the main text. This means that we may re-write equation

(8.1) as follows:

f (Et [xt+1] , xt, Et [st+1] , st, Zt+1; θ) = 0,

where Zt+1 ∈ Rdx is the expectation variable Zt+1 given by:

Zt+1 = Et [h(xt+1, st+1)] , (8.3)

and where the expectation function h : Rdx ×Rds → Rdx takes the form:

hi(xt+1, st+1) = xat+1s
b
t+1. (8.4)

The expectation variable Zt+1 :

Zt+1 = Et

£
hi
¡
xat+1s

b
t+1

¢¤
,

may be written as:

Zt+1 = Et

£
xat+1

¤
+Et

£
sbt+1

¤
+ cov

¡
xat+1, s

b
t+1

¢
where we have used the fact that

E [XY ] = E [X]E [Y ] + cov (X,Y ) .
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The covariance may be calculated as

cov
¡
xat+1, s

b
t+1

¢
= E

£
z
¡¡
xat+1 −E

£
xat+1

¤¢ ¡
sbt+1 − E

£
sbt+1

¤¢¢¤
.

Consequently, we may write,

cov
¡
xat+1, s

b
t+1

¢
=

1X
j=0

wjzj
¡¡
xat+1−j − E

£
xat+1

¤¢ ¡
sbt+1−j −E

£
sbt+1

¤¢¢
. (8.5)

Further, we note that E
£
xat+1

¤
=

P1
j=0wjzj

¡
xat+1−j

¢
,and E

£
sbt+1

¤
=P1

j=0wjzj
¡
sbt+1−j

¢
,where wj , are probabilities associated to the distribution

function zj : R
n → Rn which in this case is the identity function, for all j = 0, 1.

As a result, system (8.2) may be re-written as

E [xt+1] = f
¡
E [xt+1] , E

£
xat+1

¤
, xt, E

£
xbt+1

¤
, E [st+1] , st, cov

¡
xat+1, s

b
t+1

¢
; θ
¢
.

(8.6)

8.2. Step 2

In order to solve (8.6), we apply an iterative Jacobi method. For the case of

perfect foresight, the expectations variables are redundant as are the covariance

terms; otherwise the solution algorithm is identical across the problems. Starting

from an initial guess E [xt+1]
0 = x , each iteration q, q = 1, Q generates a new

vector of values E [xt+1]
q based on the previous iteration. Convergence is achieved

when

max
i

¯̄
E [xit+1]

q −E [xit+1]
q−1¯̄ < ε,

where i = 1, 202 is the index of an element in the vector E [xt+1] and ε is

chosen precision. The initial guess is given by the previous steady state for
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all the variables except the covariance term. To find cov [st+1, xt+1] the model

is first solved assuming that there is no correlation between the control and

endogenous variables st and xt. We do this under the assumption of perfect

foresight (corresponding to w0 = 0 and w1 = 1) and then assuming a complete

lack of credibility (w0 = 1 and w1 = 0). Given this information we may construct

an initialization for the covariance term. The expected value of the price E
£
xat+1

¤
is calculated as described in step 1 given that at the first iteration , z0(xat ) obtained

under the first assumption and z1(x
a
t+1) under the second one.

After the settings for the initial point are realized, the iterative process starts

and continues until convergence of the following mapping is reached.

E
£
xmaxt+1

¤q
= φf

³
E
£
xmaxt+1

¤q−1
, xt, E

£
xbt+1

¤
, E [st+1] , st, cov

¡
xat+1, s

b
t+1

¢q−1
; θ
´

+ (1− φ)E
£
xmaxt+1

¤q−1
During this process, at each new iteration, we find the profit maximising price

and calculate the new covariance terms, based on the outcome from the previous

iteration.

The scalar φ ∈ (0, 1) is a relaxation parameter which reduces the change

between the iterations in order to speed the process of convergence.
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