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1 Abstract 

 

In this dissertation paper we focus our attention on the tail risk and how different capital 

markets are influencing each other.  Previous studies have detected return and volatility 

across countries during crises periods.  Using the well –know Value at Risk (VaR) 

measure for heavy tailed financial returns, our objective is to detect if the information for 

a negative shock in a foreign market helps the forecast of the behavior of another market. 

We calculate 1 day, 95% and 99% Value at Risk for major US stock indices- S&P 500, 

NASDAQ 100, DJ INDUSTRIALS, and major European stock indices –CAC 40, 

FTSE100, and DAX30 and for Romanian stock index-BET. The VaR for each index is 

calculated the following techniques: Historical Simulation, Variance Approach and 

Extreme Value Theory. 

Spillover effects being the influence of one market on others, is examined using the 

Granger causality, for daily changes of the VAR series. 
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2 Introduction 

 

Recent studies in finance have highlighted the importance of rare events in assets pricing 

and portfolio choice. These rare events might be in the form of a large change in 

investment returns a stock market crash, major defaults or the collapse of risky asset 

prices. 

Potential financial crises always create panic at institutional level. Their impact might be 

catastrophic and the financial institutions will not enough have regulatory or economic 

capital to cover the material risks and potential losses. 

Recent empirical evidence suggests that the financial returns are heavy-tailed. Heavy tails 

is translated in the probability mass is concentrated at the tails of the marginal probability 

distributions. If the heavy tails are not considered, extreme losses occur more frequently 

and the magnitude of losses is larger than expected.  

As a general practice in the financial institutions, the losses are split into three categories 

and each one is covered by a certain protection method: expected loss – covered by 

provisions is risk spread, unexpected losses – covered by the economic capital and 

extreme losses – covered by capital but more over by insurance. If the extreme losses 

occur more frequently and the financial institutions do not expect them, their financial 

costs may increase exponentially.  

In this paper dissertation we focus our attention from risk considered in term of volatility 

to risk considered in term of extreme losses with low probability of being exceeded. This 

means tail risk.  We approach it through Value at Risk measure for risk management. Our 

objective is to determine whether this kind of risk, presents spillover effects across the 

markets. 

An important milestone in the development of VaR models was J.P. Morgan’s decision in 

1994 to develop its VaR methodology. RiskMetrics is a methodology that incorporates in 

a simple way the key facts on time series and risk. Also, Value at Risk is one of the 

methods used to calculate and allocate regulatory and economic capital for all the 
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material risks (e.g. credit risk, market risk, operational risk, liquidity risk, etc) that may 

impact the activity of a financial institution.  

This dissertation paper is organized as follows. Section 3 reviews the literature treating 

financial spillover effects. Section 4 presents the parametric and non-parametric methods 

to estimate and evaluate VaR models. Section 5 describes the spillover methodology. 

Section 6 details the data series used in the calculations and the methodologies their 

selves applied on the data selected. Also, the annexes present daily log returns graphics, 

statistics and histogram and output of GARCH normal and GARCH student. 
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3 Literature review 

 

The global crash of stock markets in October 1987 increased research interest into how 

financial disturbances transmit from one market to another.  

Hamao, Masulis and Ng (1990) studied the existence of price change and price volatility 

effects across three major international stock markets: Tokyo, London and New York.   The 

analysis utilizes daily opening and closing prices. In order to explore these pricing 

relationship they estimate the Nikkei, FTSE, and S&P indexes daily return processes with a 

GARCH-M model. Price volatility spillovers was detected in the period following October 

1987 crash from both  London and New York to the Tokyo stock market and New York to 

London. No price volatility spillover effects in other directions are found for the pre-

October 1987 period.   

Sang Jin Lee, 2006 investigate the volatility spillover effect among six Asian country stock 

markets and the US using GARCH (1,1) model. He found that there are significant 

volatility spillover effects within these countries, especially the regionally close five 

countries Hong Kong, South Korea, Japan, Singapore and Taiwan experienced more links 

among them. Also he observed that the volatility spillover effects increased after Asian 

financial crisis.           

Robert F. Engle, Wen-Ling Lin and Takatoshi Ito, 1994 investigate empirically how returns 

and volatilities of stock indices are correlated between the Tokyo and the New York 

markets. Using intra-daily data to decompose daily returns in daytime and overnight 

returns, they estimated two models (aggregate shock model and signal-extraction mode) 

Then, both models were compared with GARCH-M model of Hamao, Masulis and 

Ng.(1990).They found that cross-market interdependence in  returns and volatilities was bi-

directional Tokyo (New York) daytime returns are correlated with New York (Tokyo) 

overnight returns. 

International stock market have different trading hours and the use of close to close return 

underestimate return correlation. Martin Martens and Ser-Huang Poon, 2000 studied the 

daily correlation dynamics between the US and two European countries: France and the 

UK. First they evaluated two returns synchronization procedure: Riskmetrics method and a 
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GARCH-based method proposed by Burns et al.(1998). Second they studied daily dynamic 

and spillover effects on the conditional variance, correlation and covariance for stock index 

returns. They find that there exists a clear difference between spillover and a 

contemporaneous correlation. Besides volatility spillover effect from the US to another 

countries detected in previous studies, they found a reverse volatility spillover effect from 

the Europe to the US. 
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4 Value at risk 

 

Financial activity is unstable and risky. The risk of losses arising from adverse movements 

in market prices or rates is called market risk. Value at Risk (VaR) provides a different 

approach to market risk: it is a measure of investment portfolio loss potential.  

VaR has been defined as the maximum expected loss over a given horizon period at a given 

level of confidence from adverse market movements. It assumes that the portfolio is not 

managed during this time. The confidence level is the probability that the loss is not greater 

than predicted by VaR. The significance level of VaR is the probability that is associated 

with a VaR measurement. It corresponds to the frequency with which a given level of loss 

is expected to occur. 

More formally, from a statistical point of view, VaR describes the quantile of the projected 

distribution and losses over the target horizon. If “α ” is the selected confidence level, VaR 

correspond to the “1-α ”  lower- tail level. 

Hence, 

hth VaR ,α−<ΠΔPr( )=α  (3.1), 

where the loss or profit for a portfolio that is left unmanaged over a risk horizon of h days 

is: . thth Π−Π=Δ +

Price movements are measure relative to some initial price. Price changes in percent are 

referred to as return. In VaR calculation daily return are typically used. In some cases the 

square root of return is employed so that the h-day VaR is simply taken as h times the 1-

day VaR; 

hVaR = VaR  (3.2) h,α 1,α

One often proposed alternative to VaR is called expected shortfall. Expected Shortfall is 

defined as expected loss in greater than given cutoff level. Cutoff level is often chosen to 

correspond to VaR.  Formally expected shortfall is given by Artzner et al., 1999). 

      ES= -E [ ]VaRxx −≤/  (3.3) 
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Expected shortfall given an idea about the magnitude of losses when losses greater than 

predicted by VaR occur. The recent practices in financial institutions imply that this is more 

accurate method for allocating capital. Instead of using VaR methods to determine 

economic capital for the institution and for the business areas, the risk management has 

been started to use expected shortfall. It is a conservative approach that demonstrates the 

willingness of the institutions to cover better against the potential expected, unexpected and 

extreme losses.  

Approaches to VaR may be categorized to into two large categories: 

• Non parametric methods use no assumptions about the distributions of returns. 

The estimation of VaR is based solely on empirical distributions of return. 

Historical Simulation is classified under this category. 

• Parametric methods make some assumptions about the distributions of return. 

This implies selection and calculation of parameters used, estimation of the 

portfolio distribution and finally VaR calculation. 

 

3.1 Historical Simulation 

This is the most common and the simplest non-parametric method to estimate VaR that 

requires only minimal distributional assumption. 

The basic idea behind historical simulation of VaR is very straightforward: one simply uses 

real historical data to build an empirical density for the portfolio P&L. Historical data are 

collected usually on a daily basic covering several years. The first simulation trial assume 

that the percentage changes in each market variables are the same as those on the first day 

covered by the data base; the second simulation trial assumed that the percentage changes 

are the same as those on the second day and so on.  Finally the historical VaR measure is 

the percentile of the empirical distribution corresponding to the confidence level of these 

distributions. 

The number of data points to be included in the empirical distribution is often referred to as 

“window size”.   
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Advantages of HS include its conceptual simplicity: there is no need to estimate 

distribution parameters such as volatilities and correlations. Regarding to assumptions 

about return distributions, HS is free from model and makes it possible to accommodate 

heavy tails. A drawback with HS is that is cannot predict losses that occur less frequently 

than in the sampling period. This causes high variance in extreme statistics. Therefore 

extreme loss predictions require employing a window size of substantial length. 

Very long historic data periods may contain a number of extreme market events from far in 

the past are not necessarily relevant to “current” normal circumstances. 

 

3.2 Variance /Covariance Approach 

It is a parametric method based on the assumption that the return are normally distributed. 

VaR is defined as: 

tσ tμVaR = Z - , (3.4) h,α α

Where Z is the  percentile of the standard normal density thαα

This method is know as the Delta - Normal Method and it is particularly easy to implement, 

but can be subject a number of criticism. A first problem is the existence of fat tails in the 

distribution of return on most financial assets.. In this situation a model based on a normal 

distribution would underestimate the proportion of outliers and hence the true value at risk. 

Another problem is that the method inadequately measures the risk of non-linear 

instruments such as options and mortgages. For those type of instruments, Delta- Gamma 

(DG) method may be used. We can improve the quality of the linear approximation by 

adding terms in the Taylor expansion of the valuation function. This method takes the 

variance of both sides of the quadratic approximation. 

The standard deviation is calculated using the following three approaches 

• Moving average (MA) technique 

• Exponential Weighted Moving Average (EWMA) technique 

• GARCH techniques. 
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Each of the listed techniques will be detailed in the next subsections.  

 

3.2.1 Moving Average (MA) 

 Simple moving averages of fixed length have also been used to estimate and forecast 

unconditional volatility and correlation. A typical length is 20 trading days (about a 

calendar month) or 60 trading days (about a calendar quarter). 

 The volatility estimated for returns r t  over M days is constructed as follow: 

∑
=

−=
M

i
itt rM

1

22 )/1(σ  (3.5) 

Each day the forecast is updated by adding information from the preceding day and 

dropping information from (M+1) 

Long term predictions should be unaffected by short term phenomena such as volatility 

clustering so it is appropriate to take the average over a long historic period. Short-term 

predictions should reflect a current market condition which means that only the immediate 

past return should be used. 

 

3.2.2 Exponential Weighted Moving Average (EWMA) technique 

It is a more realistic technique that allows measuring small changes in time-series 

parameters. In order to capture the dynamic features of volatility it is use an exponential 

moving average of historical observations, where the latest observations carry the highest 

weight in volatility estimate. 

The variance is given by: 

∑
∞

=

−
−−=

1

212 )1(
i

it
i

t rλλσ  (3.6) 

The RiskMetrics methodology adopted EWMA technique to estimate variance and 

covariance of risk factor.  

The formula above can be written in a recursive form: 
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1
22

1
2 )1( −− +−= ttr λσλσ  (3.7) 

λThe exponential moving average weighted model depends on the parameter - which is 

often referred to decay factor. This parameter determines the relative weight of past 

observations. RiskMetrics chose the optimal decay factor, for the daily data, set 94.0=λ  

and for one month set 97.0=λ . This corresponds to 74 respectively 151 past data points.  

 

3.2.3 GARCH (Generalized Autoregressive Conditional Heteroskedasticity) 

Many financial time series such as stock prices, exchange rate, display volatility clustering, 

that is period in which their prices show wide swings for an extended time period followed 

by periods in which there is relative calm. 

How we can model this “varying variance”? The Autoregressive Conditional 

Heteroskedastic (ARCH) model originally developed by Engle in 1982 explicitly 

recognizes this type of temporal dependence. Heteroscedasticity or unequal variance may 

have an autoregressive structure in that heteroscedasticity observed over different periods 

may be autocorrelated. 

A useful generalization of this model is the GARCH parameterization introduced by 

Bollerslev (1986). As per Engle (2001) this model is also a weighted average of past 

squared residuals, but is has declining weights that never go completely to zero. 

A general GARCH (p,q) model is given by Bollerslev, 1986, and the equations specified 

for this model are: 

ttty εμ +=The conditional mean y it is take as constant  1/ −tt

Conditional variance equation:  

∑∑
=

−

=
− ++=

q

i
jti

p

j
jtjt r

1

2

1

22 ασβϖσ (3.8) 

 

 

Where  
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p and q are the number of lags included in the conditional variance and squared returns 

respectively., 

r t  is the continuously compounded return between day t and t-1 

2σ  is the variance distribution of day t 

qq ααββϖ ,.....,,.......,, 11 are the model parameters. 

Also, the following restrictions apply: 

0α >0, iα ≥  0, jβ 0 and <1 )(
),max(

1
∑
=

qp

i
jiβα≥

The coefficients iα  measure the persistence of returns. If  iα  is high then volatility reacts 

fast to changes in the market.  The jβ  measures the persistence of variance. 

The first number in parentheses “p” refers to how many autoregressive lags, or ARCH 

terms, appear in the equation, while the second number “q” refers to how many moving 

average lags are specified which often called the number of GARCH terms. 

Many previous studies showed that is unnecessary to include more than one lag in the 

conditional variance estimate for financial returns. 

 

3.3 Extreme Value Theory (EVT) 

The motivation for the use of extreme value theory is that the stock distribution is not 

normal. Empirical observations have shown that the distributions is fat-tail; that there are 

significant probabilities for the stock returns to be high or low, much more so than 

predicted by the normal distribution. 

The EVT is concerned with the shape of the cumulative distribution function for the value x 

beyond a cutoff point u. The cumulative distribution function belongs to the following 

family: 

ξ
1−

F(y) =1- (1+ξ y)         0 (3.9) ξ ≠
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  F(y) = 1-exp (-y)               ξ = 0 (3.10) 

The distributions are defined as the generalized Pareto distribution because it subsumes 

other known distributions including the Pareto and normal distributions as special case. 

The normal distribution corresponds to ξ = 0 in which case the tail disappears at an 

exponential speed. For typical financial data ξ > 0 implies heavy tails that disappears more 

slowly. 

In order to determine the VaR, the following necessary steps have to be considered: 

• The standardized portfolio returns are given from the following formula: 

t

tr
σ

z t =  (3.11) 

• It is choose a threshold “u” to represent the 95th, 99th percentile.  

ξ• Let y = x + u; The  is estimated by the simple Hill estimator as defined bellow. 

When the tail parameter ξ  is positive then the return distributions is fat tailed. 

∑
=

=
uT

i

i

u u
y

T
1

ln1ξ (3.12) 

• The VaR from the EVT combined with the variance model is calculated as: 

VaR =

ξ

ασ

−

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

T
T

u
u

t (3.13) t,α
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3.4 Back Testing 

The VaR models estimated should be accompanied by validation. Model validation is a 

general process of checking whether a model is adequate. In the financial institutions this 

process can be carried out in two ways either internally by independent parties from the 

model development or by an external advisor.  

Back testing  is a formal statistical framework that consist of verifying that actual losses are 

in line with projected losses, for  a given back testing period the estimated VaR are 

compared to the observed returns on day to day basis. VaR measure is violated when the 

negative return on portfolio or security exceeds the corresponding VaR measure. 

Suppose that we are calculating a 1- day (1-α %) VaR , where (1-α %) is the confidence 

level. Unconditional coverage back testing involves checking if the fractions of violations 

obtained for the particular VaR model is significantly different from the fraction α %. 

When the model is perfectly calibrated the number of observations falling outside VAR 

should be in line with the confidence level.  

Kupiec (1995) develops approximate 95 percent confidence regions for such a test. The 

choice of the confidence region for the test is not related to the quantitative level α  

selected for VaR. This confidence level refers to the decision rule to accept or reject the 

model. 

These regions are defined by the tail points of the log-likelihood ratio: 

LR = -2ln [ ] [ ]{ }NNTNNT TNTN )/()/(1ln2)1( −− −+− αα  (3.14) uc

Where T is the total number of observations of the sample and N is the number of days that 

a violation is observed.  

The   LR is asymptotically distributed chi-square with one degree of freedom under the 

null hypothesis that

uc

α  is the probability. It is reject the null hypothesis if LR > 3.84 

(critical value). 

uc
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5 Spillover 

5.1 Unit Roots tests 
 

In order to proceed to the implementation of our methodology and examine the spillover 

effects our series must be stationary. 

If a time series is stationary its mean variance and autocovariance (at various lags) remain 

the same no matter at what point we measure them.  In this way we can conclude that the 

series are not depending on time.  

A process Y t is the stationary in the following conditions hold: 

μ1. E(Y t ) = <  (constant mean ); ∞

kγ2. Cov (Y t ,Y )= < (covariance at la “k”, depend on “k” but not on t).  ∞kt−

0γIf k=o we obtain  which is simply the variance of Y (= ). The second condition 

implies that a stationary process has a constant variance. 

2σ

A non- stationary process arises when one of the conditions for stationarity does not hold. 

Testing for unit-roots means testing the hypothesis: 

ρH 0  :  = 1 

Vs H1 :  < 1 ρ

in the following random walk model. 

ρ ρ≤Y t  = Y  +u t ,    -1 1 where u t  is a white noise error term ≤1−t

ρ  = 1, this is, in the case of the unit root. We know that if  

A series Y t  integrated of order “d” it must be differenced at least “d” times in order to 

make it stationary. 
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If a time series is non-stationary we can study its behavior only for the time period under 

consideration. The set of time series data will therefore be for a particular episode. As a 

consequence it is not possible to generalize it to other time period. 

A non-stationarity series is characterized by a drift parameter that increase with time. The 

variance and covariance would also not be stable in time. We want to check if the drift is 

stochastic or deterministic. If the trend in time series is completely predictable and not 

variable we call it a deterministic trend, whereas if it is not predictable we call it a 

stochastic trend. 

The unit root tests can be performed using two methods. The first one takes care of the 

deterministic part, focusing on the existence of a unit root through Augmented Dickey-

Fuller (1981) test. The second methods focus on the stochastic part of the drift trough the 

test of Philips-Perron.  

 

5.2 Granger causality 
Regressions analysis deals with the dependence of one variable on other variables, it does 

not necessarily imply causation, but in regressions involving times series data and the 

situation maybe somewhat different. 

Granger causality is a technique for determining whether one time series is useful in 

forecasting another. Testing Granger causality involves using F –tests to test whether 

lagged information on a variable Y provides any statistically significant information about a 

variable X in the presence of lagged X. 

If variable X (Granger) causes variable Y, then changes in X should precede changes in Y. 

Therefore in a regression of Y on other variables (including its own past value) if we 

include past or lagged value of X and its significantly improves the prediction of Y , then 

we can say that X (Granger) causes Y. A similar definition applies if Y (Granger) causes X. 

It is important to note that the statement “Y Granger causes X” does not imply that X is the 

effect or the result of Y. 

  Page 17 of 37 



In order to test for Granger causality across two variables   X t  and Y t  we run bivariate 

regressions with a lag length set as k. These are called unrestricted regressions: 

X t  = c1  +  +  + ∑
=

−

p

i
iti X

1
1α it

p

i
iY −

=
∑

1
1β t1ε  (5.1) 

Y t =  (5.2) t

p

i
ti

p

i
iti YXc 2

1
12

1
21 εβα +++ ∑∑

=
−

=
−

For the first equation The Granger causality is examined by testing the null hypothesis 

whether all i1β  are equal to zero. 

k1βHo: = =…..= =0 β11β 12

That is we perform a Wald test with Wals statistics: 

)12/(
)(
−−

−
knSSR

SSRSSR

UR

URRW=  which is asymptotically distributed as  under H  2χ 0

t1εIf we assume that errors are independent and identically normally distributed we have an 

exact finite sample F-statistic: 

)12/(
/)(
−−

−
knSSR

kSSRSSR

UR

URR

q
WF= =  

Where SSR UR  - is the residual sum of squares of the unrestricted regression above, SSR  

is the residual sum of square of the restricted regression which is the regression without the 

lags of Y t . If the ADF and PP unit root test have verified that the series on levels are non 

stationary and the first differences are stationary (first integrated) then the Granger 

causality tests are performed across the first differences of the series. 

R
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6 Result and Discussion 

6.1 Data series 
 

In this paper dissertation we studied the major US and European stock indices and 

Romanian representative index: NASADAQ 100, Dow Jones Industrial Average 

DJINDUS, The Standard & Poor’s 500 (S&P 500) for the United States, CAC 40 for 

France, DAX 30 for Germany, FTSE100 for the United Kingdom and BET for Romania. It 

is use daily stock market closing price, daily data for the last ten years 22/09/1997-

30/05/2008 

In order to estimate VaR models it is calculate daily continuously compounded returns of 

each index using the formula: 

1−t

t

P
P

r t = ln (6.1) 

Where r t  is the continuously compounded return between day t-1 and t and P t  is the index 

price at day t.   

Here we should note that the use of daily closing prices leads to an underestimation of the 

true correlations between stock markets and hence underestimates the true risk associated 

with a portfolio of such assets. Also we have mentioned that efficient markets hypothesis 

suggests that information is quickly and efficiently incorporated into stock prices. 

As we can see in the Appendix the diagram of daily log-returns clearly display the volatility 

clustering phenomenon: large changes in index value tend to cluster. 

6.2 Statistics 

The next two tables detail the statistics obtained for the seven stock indexes.  

 BET NASDAQ_100 DJINDUS 
 Mean 0.000791 0.0001511 0.000174 
 Median 0.000435 0.0011926 0.000413 
 Maximum 0.176253 0.1325464 0.061547 
 Minimum -0.2077 -0.1016841 -0.07455 
 Std. Dev. 0.018958 0.0180046 0.011095 
 Skewness -0.04071 0.0498227 -0.20902 
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 Kurtosis 16.86964 6.8307005 6.961061 
    
 Jarque-Bera 20832.44 1645.2417 1777.515 
 Probability 0.000 0.000 0.000 

Table 1: Descriptive statistics for the daily log return of the indices for the period 22/09/1997 -30/05/2008. 

 

 

 S_P_500 CAC_40 DAX_30 FTSE_100 
 Mean 0.000144 0.000192 0.000213 6.91E-05 
 Median 0.000489 0.000459 0.000854 0.000394 
 Maximum 0.055744 0.070023 0.075527 0.059038 
 Minimum -0.07113 -0.07678 -0.07433 -0.05637 
 Std. Dev. 0.011531 0.014265 0.015751 0.011763 
 Skewness -0.07571 -0.12714 -0.1524 -0.13899 
 Kurtosis 5.933356 5.732981 5.548385 5.283189 
     
 Jarque-Bera 966.6401 853.5214 743.5263 594.7102 
 Probability 0.000 0.000 0.000 0.000 

Table 2: Descriptive statistics for the daily log return of the indices for the period 22/09/1997-30/05/2008. 

 

As per the values from the above two tables, we observe that our daily returns of the 

indexes do not follow the normal distribution. This is sustained by the following: 

• Skewness moment is different from 0 and in almost in all the cases being negative. 

The negative values imply the leverage effect – the negative correlation between 

changes in the volatility and the changes in the market price.  

• Kurtosis moment registers values quite high and it exceeds the value of 3 which 

shows the normality of the distribution; 

• Jarque-Bera (JB) statistics must show non-significance in order for the daily 

returns to follow the normal distribution. In our case, as the value of the probability 

from the above tables shows, the JB statistics is significant.  

Therefore, as FAMA mentioned in his 1965 article, our indexes display leptokurtosis, 

meaning that there are too many values near the mean and too many out in the extreme 

tails. This is translated as heavy tail phenomenon. Also, this demonstrates volatility 

  Page 20 of 37 



clustering meaning that large changes may tend to be followed by large changes, but of 

random sign, whereas small changes tend to be followed by small changes.  

In order to study the spillover effect of the tail risk, we estimate the daily VaR series using 

the following non and parametric techniques detailed below and 95% and 99% confidence 

level. 

 

6.3 Historical Simulation 
The method of historical simulation is based on the assumption that the distribution of the 

returns is constant over the sample period and the future is sufficiently like the past. This 

considers also the non-normality of the distribution, fat tail and skewness different from 0.  

In order to calculate the VaR as per the historical simulation, we have used two sizes of 

past observation: 100 and 250 days. The daily VaR is calculated as the percentile of the 

indexes series using the last 100 and 250 daily returns and 95 and 99% confidence level. 

For each index, the process is repeated for all the days using the rolling window of the same 

number of observations (100 and 250).   

 

6.4 Delta-Normal Approach 

Before calculating the Value at Risk we have estimated the volatility using three methods: 

moving average, EWMA and GARCH 

For the moving average technique we have used a moving window of fixed length for 

estimating the volatility over 10 days, 20 days and 60 days.  

We have also estimated the daily volatility following an exponentially weighted moving 

average over the past 74 days using a decay factor of 0.94. According to RiskMetrics a 

decay factor of 0.94 corresponds to a 1% tolerance level and 74 days of historical data. 

We have used the RiskMetrics formula as defined below:   

1
22

1
2 )1( −− +−= ttr λσλσ   (6.2) 
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6.5 GARCH  

The GARCH methods were also used to determine the daily volatility to be included in the 

Delta-Normal VaR.. 

All seven markets have some autocorrelations which are indicated by Ljung –Box statistics 

and ARCH effect which is implied by ARCH LM test, which means that GARCH model is 

appropriate to analyze those series. 

Hence we estimate a GARCH type model that consists of two equations: 

 The first is the conditional mean equation: 

tttr εμ +=  (6.3) 

where  is the daily log return, tr tμ tεis the mean of the return distribution and  is the 

residual value. 

The second equation is the conditional variance equation as it was defined: 

∑∑
=
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=
− ++=
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i
iti
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i
itit r

1

2

1

2
0

2 σβαασ  (6.4) 

r t  is the continuously compounded return between day t and t-1,  is the variance 

distribution of day t and 

2σ

iα iβ and  are the  coefficients that measure the persistence of 

returns and variance. 

In every case the best GARCH model accepted is a GARCH (1, 1) as we can see in the 

appendix. In order to select the most appropriate GARCH higher model have been 

estimated and we have compared the Akaike and Schwarz statistics produced by each 

model for each index. We choose the model that produces the lowest Schwarz statistics. 

Also we estimate two GARCH models for each index one under the assumption that the 

errors of the mean equation follow the Normal distribution and the second under the 

assumption that the errors follow the Student’s t distribution. 

The equation for the GARCH (1,1 ) model is: 

tttr εμ +=• Mean equation:  (6.5) 
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• Variance equation: = (6.6) 2
tσ 2

11
2

110 −− ++ ttr σβαα

.As a result all the coefficients are significant at 5% probability level. In the Appendix we 

detailed the GARCH output estimations.  

Since the variance has been estimated we then calculate 1 day 95% and 99% VaR 

according to the Delta-Normal method. 

 

6.6 EVT 
 

In order to calculate the extreme value theory VaR, the generalized Pareto distribution was 

applied. This distribution counts other distributions including Pareto and normal 

distributions.  

ξ  is a key parameter in our distributions. An ξ  = 0 corresponds to a normal distribution 

while an ξ > 0 entails heavy tails. ξ  is estimated by Hill estimator as described at (3.12) 

formulae.  

As listed bellow,  ξ  for all the indexes and methods is more than 0 demonstrating once 

again the fat tail of the indexes.  

ξS&P  95 ξDJINDUS  99 95 99 
MA(10) MA(10) 0,873739 0,834302 0,609743 0,272561 
MA(20) MA(20) 0,887254 0,334582 0,629297 0,305806 
MA(60) MA(60) 0,946735 0,752213 0,999635 1,123182 
EWMA EWMA 4,826161 2,845424 6,484068 5,481972 

ξNASDAQ  95 ξDAX  99 95 99 
MA(10) MA(10) 0,568145 0,257056 0,528118 0,068633 
MA(20) MA(20) 0,617452 0,29738 0,552788 0,062541 
MA(60) MA(60) 0,954129 0,861468 0,296996 0,087011 
EWMA EWMA 4,766432 2,652726 3,837795 1,507284 

ξFTSE  95 ξCAC  99 95 99 
MA(10) MA(10) 0,557953 0,241958 0,510517 0,194532 
MA(20) MA(20) 0,584293 0,275665 0,535125 0,207019 
MA(60) MA(60) 0,953114 0,859596 0,804967 0,298043 
EWMA EWMA 6,981758 18,63721 3,368116 1,365778 

ξBET  95 99

  Page 23 of 37 



MA(10) 0,873739 0,834302
MA(20) 0,887254 0,334582
MA(60) 0,946735 0,752213
EWMA 4,826161 2,845424

ξTable 3  value for all the indexes 

 

6.7 Back Testing Results  
 

The adequacy of VaR models is verified by means of back testing. It involves comparing 

the measures with the returns. As per Jorrion (2002), the problem is that since VaR is 

reported only at a specified confidence level, it is expected the figure to be exceeded in 

some instances, for example in 5% of the observations at the 95% confidence level. Also a 

6 to 8% could occur and this may be interpreted as bad luck. However, if the frequency of 

deviations is from 10% to 20%, then there is a problem with the VaR model.  

We perform the Kupiec test in order to accept or reject each VaR model. The rate of 

violations are calculated for each back testing period and compared to the target rate of 

violations. For VaR at 95% confidence level the target rate of violations is 5% and for VaR 

99% the target rate of violations is 1%. The rate of violations which differs from the target 

rate of violations indicates that the VaR model is biased. 

All the VaR series determined with the above mentioned methods were backtested for the 

last 250 days.  

The next two tables present the value of the Kupiec test for 95% and 99% confidence level. 

After calculating the tests we choose the series to be used further in the calculations. For 

selecting the series we have applied the following assumption/judgment: 

• If there were more than two accepted VaR models, we have selected the median 

value. The reason behind this decision was related to the capital adequacy decision. 

If the VaR is too high then the capital requirement will be high. Consequently, if the 

accepted VaR is too low, then the capital requirements may be too low and potential 

risks and impact may not be covered.  
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• If there were only two accepted VaR models, we have used a conservative 

approach, meaning that we have selected the highest VaR. 

 

 

95% 
Index Method LR-UC Average VaR 

Delta Normal HS (100) 3.0905329 0.0276308 
Delta Normal MA (10) 1.1382542 0.0320058 
Delta Normal MA (20) 1.1382542 0.0324269 
EVT MA(10) 1.1382542 0.0340828 BET 
EVT MA(20) 1.1382542 0.0325120 
EVT MA(60) 0.0213240 0.0384520 
Delta Normal Garch 1.1382542 0.0337270 
Delta Normal MA (10) 0.4960553 0.0260029 
Delta Normal MA (20) 0.9513567 0.0257010 
EVT MA(10) 0.1971196 0.0281309 CAC 
EVT MA(20) 0.1826969 0.0267166 
Delta Normal Garch 0.5633529 0.0257855 
Delta Normal MA (10) 0.1826969 0.0284093 
Delta Normal MA (20) 0.0213240 0.0280818 
EVT MA(10) 0.0213240 0.0299647 DAX 
EVT MA(20) 0.5633529 0.0290922 

0.0281159 Delta Normal Garch 1.9441361
Delta Normal MA (10) 0.0213240 0.0203952 
Delta Normal MA (20) 0.0213240 0.0201946 
EVT MA(10) 0.1971196 0.0211605 DJINDUS 
EVT MA(20) 0.0213240 0.0203006 
EVT MA(60) 0.5633529 0.0285154 
Delta Normal MA (10) 0.0207919 0.0214809 
Delta Normal MA (20) 0.0207919 0.0213600 
EVT MA(10) 0.0213240 0.0226490 FTSE 
EVT MA(20) 0.0207919 0.0212196 
EVT MA(60) 1.5402866 0.0287126 
Delta Normal MA (10) 1.1382542 0.0322451 
Delta Normal MA (20) 0.5633529 0.0319142 NASDAQ 

EVT MA(20) 0.5633529 0.0301694 
S&P Delta Normal MA (10) 0.1971196 0.0213185 
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95% 
Index Method LR-UC Average VaR 

Delta Normal MA (20) 0.4960553 0.0211155 
EVT MA(10) 0.0213240 0.0200892 
EVT MA(20) 0.1826969 0.0202222 
EVT MA(60) 0.9513567 0.0281317 

Table 4 – 95% VaR Backtesting results 
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99% 
Index Method LR-UC Average VaR 

Delta Normal MA (20) 1.9568098 0.0386976 
EVT MA(60) 1.1764911 0.1593860 BET 

0.0402432 Delta Normal Garch 0.7691384
Delta Normal MA (20) 1.9568098 0.0305890 CAC 
Delta Normal Garch 1.9568098 0.0306895 
Delta Normal MA (10) 1.9568098 0.0338125 DAX 
Delta Normal Garch 0.7691384 0.0334637 
Delta Normal MA (20) 1.9568098 0.0240397 DJINDUS 

0.0428615 EVT MA(60) 1.1764911
EVT MA(60) 1.1764911 0.0744080 FTSE 
Delta Student Garch 1.1764911 0.0503621 
Delta Normal MA (10) 0.7691384 0.0383607 NASDAQ 
Delta Normal MA (20) 0.7691384 0.0379673 

S&P 0.0253649 Delta Normal Garch 0.0207919

Table 5 – 99% VaR Backtesting results 

After calculating the Value at Risk using different techniques we reach the following 

conclusion about these. Extreme Value Theory estimates better the 95% VaR while the 

99% VaR estimation is split between Delta Normal Garch, EVT and Delta Normal Moving 

Average. Also, the GARCH models with normal distributions have much more better 

performance than GARCH models with Student distributions for the residuals.  

In the next two tables we present the statistics of the indexes’ VaR approaches that were 

selected to continue the study. 

VaR 95 FTSE NASDAQ S_P BET CAC DJINDUS DAX 

 Mean -0.02006 -0.03196 -0.02104 -0.03205 -0.0263 -0.01995 -0.02783 
 Median -0.018 -0.02764 -0.01916 -0.0269 -0.02354 -0.01819 -0.02411 
 Maximum -0.00388 -0.01002 -0.00584 -0.00612 -0.01 -0.00705 -0.01235 
 Minimum -0.07076 -0.10775 -0.07067 -0.15358 -0.07893 -0.05714 -0.08308 
 Std. Dev. 0.009954 0.017376 0.010218 0.018121 0.012844 0.009034 0.012739 
 Skewness -1.72562 -1.40808 -1.37807 -2.54379 -1.54594 -1.43645 -1.51809 
 Kurtosis 7.336156 5.116781 5.594731 14.44459 5.48355 5.513321 5.113575 
        
 Jarque-
Bera 3242.813 1310.449 1512.893 16562.03 1660.584 1538.39 1444.972 
 Probability 0 0 0 0 0 0 0 
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Table 6 –1 day VaR 95%  Statistics 

 

Var 99%  BET CAC DAX NASDAQ S_P DJINDUS FTSE 

 Mean -0.03956 -0.03066 -0.03347 -0.03854 -0.02107 -0.04327 -0.07547 
 Median -0.03361 -0.02733 -0.02871 -0.0334 -0.01965 -0.03949 -0.0682 
 Maximum -0.01912 -0.0143 -0.00777 -0.00792 -0.01034 0.030277 0.024931 
 Minimum -0.30017 -0.08382 -0.11508 -0.15043 -0.05512 -0.09354 -0.15724 
 Std. Dev. 0.021337 0.01326 0.018513 0.022203 0.007823 0.016497 0.03043 
 Skewness -3.84977 -1.50508 -1.52248 -1.61881 -1.24881 -0.43668 -0.41739 
 Kurtosis 29.4584 5.18723 5.449221 6.351097 4.806293 3.51433 2.344639 
                
 Jarque-
Bera 80172.56 1461.805 1612.31 2292.423 1003.121 108.4641 118.9238 
 Probability 0 0 0 0 0 0 0 

Table 7–1 day  VaR 99% Statistics 

 

6.8 Spillovers: Results and discussion 
 

6.8.1 Unit Root Test 

 

In order to proceed to the causality and next examinations, we have to see if the series are 

stationary or non-stationary. This issue is studied through Augmented Dickey-Fuller (ADF) 

and Phillips-Perron (PP) tests. More explicitly, the scope of the tests is to identify if the 

mean variance and autovariance are the same no matter the point of measuring. 

The next table details the ADF and PP tests for Unit Root in the 1 day, 95% and 99% VaR 

series of the indexes. The probabilities reported correspond to t-statistics and sustain the 

null hypothesis that a series has a unit root.  

Unit Root 1 day-95 % 
ADF(intercept 
& trend) 

PP(intercept & 
trend)  Index ADF(intercept) PP(intercept) 

BET  0.0001 0.0006 0 0
NASDAQ 
100 0.1049* 0.0905* 0.0062 0.0036
DJINDUS 0 0.0001 0.0001 0.0002
S&P 500 0.0001 0.0001 0.0001 0.0001
CAC40 0.0005 0.001 0.0015 0.0032
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DAX 30 0.0086 0.0203 0.0017 0.0036
FTSE 100 0 0 0 0

Unit Root 1 day-99 % 
ADF(intercept 
& trend) 

PP(intercept & 
trend) Index ADF(intercept) PP(intercept) 

BET  0 0 0 0
NASDAQ 
100 0 0 0 0
DJINDUS 0.8572* 0.995* 0.5873* 0.986*
S&P 500 0.0001 0.0002 0.0001 0.0001
CAC40 0.002 0.006 0.0012 0.003
DAX 30 0.0016 0.0027 0 0.0001
FTSE 100 0.7741* 0.9945* 0.4048* 0.9028*

Table 8 – ADF and PP tests 

Using the ADF and PP tests unit root tests, we came to the following conclusion for the 

95% VaR series: 

• BET, DJINDUS, S&P500, CAC40, DAX30 and FTSE100 present stationary  

• NASDAQ100 are non-stationary since it has a unit root. Therefore the null 

hyphotesis of the existence of a unit root is significant at 5% probability level. 

Also, the results identified for the 99% VaR series are: 

• BET, NASDAQ100, S&P500, CAC40 and DAX30 present stationarity 

• The null hypothesis of root existence is significant for DJINDUS and FTSE100.  

 

6.8.2 Spillovers: Granger Causality 

 
The first way to detect spillover of tail risk across the seven indices is by examining the 

bivariate Granger causality. The VaR series present non-stationary, hence we use the 

changes of VaR in order our series to become stationary. 

With Granger causality we detect that an index faced the previous days causes the tail risk 

of another index the next day. 

We perform the Granger causality test by running bivariate regressions for all possible pairs 

(X,Y): 
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Where ΔX t  si  is the daily change in the 1-day 95%, or 99% VaR from time t-1 to time 

t and 

tYΔ

tε  are residuals. 

The bivariate regressions for all possible pairs are performed in a VAR model. 

We choose the appropriate number of lags k according to Schwarz criterion and accept the 

VAR model that produces the lowest Schwarz statistic. 

 
Bivariate Granger causality tests for daily changes of 1 day, 95% VaR 

Direction of causality Stat−2χ  Lag Probability 

Δ (DAX30)  (CAC40)* Δ 32.3514 1 0.000 
Δ  (CAC40)   (DAX30)* Δ 55.12735 1 0.000
Δ  (DJINDUS)   (CAC40) Δ 3.357153 1 0.0669 
Δ  (CAC)   (DJINDUS)** Δ 4.620183 1 0.0316

1 Δ  (BET)   (CAC40) Δ
0.044183 1 0.8335 

Δ  (CAC40)   (BET) Δ 1.329493  0.2489
Δ  (FTSE100)   (CAC40)* Δ

12.23927 2 0.0022 
Δ  (CAC40)   (FTSE100)* Δ 21.02623 2 0.000
Δ  (NASDAQ100  (CAC40)* Δ 11.7987 2 0.0027 
Δ  (CAC40)   (NASDAQ100) Δ 6.079004 2 0.0479
Δ  (S&P500)   (CAC40) Δ 1.387263 1 0.2389 
Δ  (CAC40)   (S&P5000 Δ 0.003572 1 0.9523
Δ  (DJINDUS)   (DAX30)* Δ 18.9568 2 0.0001 
Δ  (DAX30)   (DJINDUS) Δ 5.720779 2 0.0572
Δ  (BET)   (DAX30) Δ 0.07673 1 0.7818 
Δ  (DAX30)   (BET) Δ 0.027769 1 0.8677
Δ  (FTSE100)   (DAX30) Δ 2.389277 1 0.1222 
Δ  (DAX30)   (FTSE100)** Δ 5.959815 1 0.0146
Δ Δ (NASDAQ100)   (DAX30)** 7.027932 2 0.0298 
Δ  (DAX30)   (NASDAQ100) Δ 4.147972 2 0.1257

0.530851 1 0.4662 Δ  (S&P500)   (DAX30) Δ
0.019988 1 0.8876
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Bivariate Granger causality tests for daily changes of 1 day, 95% VaR 
Direction of causality Stat−2χ  Lag Probability 

Δ  (DAX30)   (S&P500) Δ

Δ  (BET)   (DJINDUS) Δ 0.908031 2 0.6351 
Δ  (DJINDUS)   (BET) Δ 0.928986 2 0.6285
Δ  (FTSE100)   (DJINDUS)* Δ 797.9625 1 0.000 
Δ  (DJINDUS)   (FTSE100)** Δ 6.109692 1 0.0134
Δ Δ (NASDAQ100)    (DJINDUS) 2.098071 1 0.1475 
Δ  (DJINDUS)   (NASDAQ100) Δ 0.159211 1 0.6899
Δ  (S&P500)   (DJINDUS) Δ 0.650056 1 0.4201 
Δ  (DJINDUS)   (S&P500) Δ 0.664697 1 0.4149
Δ  (FTSE100)   (BET) Δ

2.405535 2 0.3004 
Δ  (BET)   (FTSE100) Δ 0.689678 2 0.7083
Δ Δ (NASDAQ100)   (BET) 2.407223 2 0.3001 
Δ  (BET)   (NASDAQ100) Δ 3.92642 2 0.1404
Δ  (S&P500)   (BET) Δ 1.614928 1 0.2038 
Δ  (BET)   (S&P500) Δ 0.441757 1 0.5063
Δ Δ (NASDAQ100)   (FTSE100)** 4.296985 1 0.0382 
Δ  (FTSE100)   (NASDAQ100)* Δ 260.6101 1 0.000
Δ  (S&P500)   (FTSE100) Δ 1.43562 1 0.2308 
Δ  (FTSE100)   (S&P500)* Δ 454.5139 1 0.000
Δ  (S&P500)   (NASDAQ100) Δ 0.716394 1 0.3973 
Δ Δ (NASDAQ100)   (S&P500) 2.209311 1 0.1372
 
Table.10  Bivariate Granger causality between the daily changes of the 1 day, 95% VaR of the 
various indices. The k lags used in each model are specified by Schwarz criterion. Chi-square and 
the respective probability correspond to the null hypothesis, which mwans that ΔY does not 
Granger cause X. * indicates rejection of the null hypothesis and significant Granger causality at 
1% probability level.** indicates rejection of the null hypothesis and significant Granger causality 
at 5% probability level. 

Δ

 
As we can observe from the above regressions among the 95% VaR series 

• at  1% probability level, there is a spillover effect from FTSE100   to CAC 40, 

DJINDUS, NASDAQ100, S&P500; from  FTSE100 to CAC 40; from DAX 30 to 

CAC40 and CAC40 to DAX30, from NASDAQ100  to CAC40 

• at 5% probability level, there is a spillover effect from DAX30 to FTSE100, from 

NASADQ100 to DAX30, FTSE100, from DJINDUS to FTSE 100. 
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The next table details the observations for the 99% VaR series.  
 
 

Bivariate Granger causality tests for daily changes of 1 day, 99% VaR 
Direction of causality Stat−2χ  Lag Probability 

Δ (DAX30)  (CAC40) Δ 0.209 1 0.6475 
Δ  (CAC40)   (DAX30) Δ 0.907344 1 0.3408 
Δ  (DJINDUS)   (CAC40) Δ 0.0063 1 0.9367 
Δ  (CAC)   (DJINDUS) Δ 0.306902 1 0.5796 
Δ  (BET)   (CAC40) Δ 0.2011 1 0.6538 
Δ  (CAC40)   (BET) Δ 0.030373 1 0.8616 
Δ  (FTSE100)   (CAC40) Δ 0.0573 1 0.8109 
Δ  (CAC40)   (FTSE100) Δ 0.002298 1 0.9618 

 Δ  (NASDAQ100  (CAC40) Δ
0.2668 

Δ  (CAC40)   (NASDAQ100) Δ 2.6428 2 0.2363 
 2.885356 2 

Δ  (S&P500)   (CAC40) Δ 0.6456 1 0.4217 
Δ  (CAC40)   (S&P5000 Δ 0.052308 1 0.8191 
Δ  (DJINDUS)   (DAX30) Δ 2.0097 1 0.1563 
Δ  (DAX30)   (DJINDUS) Δ 3.061968 1 0.0801 
Δ  (BET)   (DAX30) Δ 0.2185 1 0.6402 
Δ  (DAX30)   (BET) Δ 0.024298 1 0.8761 
Δ  (FTSE100)   (DAX30) Δ 1.595 1 0.2066 
Δ  (DAX30)   (FTSE100)** Δ 5.3775 1 0.0204 
Δ Δ (NASDAQ100)   (DAX30)* 18.5304 2 0.0001 
Δ  (DAX30)   (NASDAQ100) Δ 0.415055 2 0.8126 

0.5381 Δ  (S&P500)   (DAX30) Δ
1.327055 1 0.4632 

Δ  (DAX30)   (S&P500) Δ  1 0.2493 
Δ  (BET)   (DJINDUS) Δ 0.860197 1 0.3537 
Δ  (DJINDUS)   (BET)* Δ 25.96176 1 0.000 
Δ  (FTSE100)   (DJINDUS)** Δ 5.831881 1 0.0157 
Δ  (DJINDUS)   (FTSE100)** Δ 4.952479 1 0.0261 
Δ Δ (NASDAQ100)    (DJINDUS) 3.410554 2 0.1817 
Δ  (DJINDUS)   (NASDAQ100) Δ 1.02707 2 0.5984 
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Bivariate Granger causality tests for daily changes of 1 day, 99% VaR 
Direction of causality Stat−2χ  Lag Probability 

Δ  (S&P500)   (DJINDUS) Δ 0.99278 1 0.3191 
Δ  (DJINDUS)   (S&P500) Δ 0.753073 1 0.3855 

33.59425 0.000 Δ  (FTSE100)   (BET)* Δ
0.14533 1 0.703 

Δ  (BET)   (FTSE100) Δ   1 
Δ Δ (NASDAQ100)   (BET) 0.938395 2 0.6255 
Δ  (BET)   (NASDAQ100) Δ 0.980291 2 0.6125 
Δ  (S&P500)   (BET) Δ 0.035712 1 0.8501 
Δ  (BET)   (S&P500) Δ 0.358795 1 0.5492 
Δ Δ (NASDAQ100)   (FTSE100) 0.342058 1 0.5586 
Δ  (FTSE100)   (NASDAQ100) Δ 1.288006 1 0.2564 
Δ  (S&P500)   (FTSE100) Δ 2.231709 1 0.1352 
Δ  (FTSE100)   (S&P500)** Δ 4.52143 1 0.0335 
Δ  (S&P500)   (NASDAQ100) Δ 2.442924 1 0.1181 
Δ Δ (NASDAQ100)   (S&P500) 0.469478 1 0.4932 
 
Table.11  Bivariate Granger causality between the daily changes of the 1 day, 99% VaR of the various 
indices. The k lags used in each model are specified by Schwarz criterion. Chi-square and the respective 
probability correspond to the null hypothesis, which mwans that ΔY does not Granger cause ΔX. * 
indicates rejection of the null hypothesis and significant Granger causality at 1% probability level.** indicates 
rejection of the null hypothesis and significant Granger causality at 5% probability level. 
 
 
As we can observe from the above regressions among the 99% VaR series: 

• at  1% probability level there is a spillover effect from NASDAQ100 to DAX 30, 

from DJINDUS and FTSE100 to BET 

• at  5% probability level there is a spillover effect from DAX30 to FTSE100, from 

FTSE100 to DJINDUS, S&P 500 and from  DJINDUS to FTSE100, 
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7 Conclusion 
 
 

In our research we have dealt with spillover of tail risk. We have approach tail risk through 

the risk measure of Value at Risk and  perform an application on seven major stock indices: 

NASADAQ 100, Dow Jones Industrial Average DJINDUS, The Standard & Poor’s 500 

(S&P 500) for the United States, CAC 40 for France, DAX 30 for Germany, FTSE100 for 

the United Kingdom and BET for Romania. 

We have used as data series the daily closing prices of each stock index for the last 10 years 

and we calculated VaR through various methods: historical simulation of the last 100 and 

250 observations, and the variance approach. We have estimated variance as a moving 

average, an exponentially weighted moving average and a GARCH model for each index. 

In addition we have introduced extreme value theory in order to predict the non-normality 

of the distribution of the stock returns. After we had estimated variance we calculated 1 

day, 95% and 99% VaR series for each index. 

We used the back-testing in order to accept or reject the Var methods produced. We finally 

accepted for each index that one which produces the median value of VaR.  

Then, the next step was to detect the spillover effects. 

In order to use the VaR series we have first checked them for unit roots through the 

Augmented Dickey- Fuller and Phillips Perron test. Because the series have proved to be 

non-stationary we have used the first differences in our following research. 

We have performed bivariate Granger causality test for the daily changes of 95% VaR and 

99% VaR. Causality have observed significant across various indices. 

Our results are in concordance with to the results of another study on spillovers: US indices 

have the greatest effect across the indices in particular DJ INDUSTRIALS and 

NASDAQ100 have the greatest effect across the indices. 

Another interesting result is that FTSE100 plays a significant role since it leads many other 

markets. Also we have found a causal relationship between DAC30 and CAC 40 to 
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European market.  Martin Martens and Ser-Huang Poon, 2000 studied the daily correlation 

dynamics between the US and two European countries: France and the UK, and found a 

reverse volatility spillover effect from the Europe to the US. 

Also we observed that there is a spillover effects from US and European market to 

Romanian market, especially from DJINDUS and FTSE 100. 

Comparing the two different levels of risk (95 % and 99%) we observe that the 95% VaR 

has as a result more spillover across the market, on the other hand 99% VaR has as a result 

the spillover effects from US and European market to Romanian market. AS we mentioned 

before the FTSE100 have presented a important influence   to European and US market. 
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Annex I 
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Annex II 
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Annex II 
 
 
Estimate output GARCH (1, 1) model, a Normal distributions for the residuals is 
assumed. The dataset is used the period: 22.09.1997-30.05.2008 
 

Dependent Variable: CAC_40   
Method: ML - ARCH   
Sample: 9/22/1997 5/30/2008   
Included observations: 2719   
Convergence achieved after 10 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.   

C 0.000614 0.000211 2.902937 0.0037 

 Variance Equation   

C 1.85E-06 4.35E-07 4.266316 0.0000 
RESID(-1)^2 0.086682 0.008315 10.42524 0.0000 
GARCH(-1) 0.905647 0.008973 100.9319 0.0000 

R-squared -0.000876     Mean dependent var 0.000192 
Adjusted R-squared -0.001982     S.D. dependent var 0.014265 
S.E. of regression 0.014279     Akaike info criterion -5.952767 
Sum squared resid 0.553580     Schwarz criterion -5.944076 
Log likelihood 8096.787     Durbin-Watson stat 2.015960 

 



 
 
Dependent Variable: DAX_30   
Method: ML - ARCH (Marquardt) - Normal distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2709   
Convergence achieved after 9 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.   

C 0.000797 0.000225 3.548178 0.0004 

 Variance Equation   

C 2.47E-06 5.07E-07 4.865161 0.0000 
RESID(-1)^2 0.095393 0.009372 10.17871 0.0000 
GARCH(-1) 0.895166 0.010085 88.76405 0.0000 

R-squared -0.001374     Mean dependent var 0.000213 
Adjusted R-squared -0.002484     S.D. dependent var 0.015751 
S.E. of regression 0.015770     Akaike info criterion -5.798616 
Sum squared resid 0.672736     Schwarz criterion -5.789898 
Log likelihood 7858.225     Durbin-Watson stat 2.028826 

 
 



 
Dependent Variable: BET   
Method: ML - ARCH   
Sample: 9/22/1997 5/30/2008   
Included observations: 2599   
Convergence achieved after 16 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

C 0.001057 0.000255 4.147628 0.0000

 Variance Equation   

C 1.75E-05 1.26E-06 13.83018 0.0000
RESID(-1)^2 0.239017 0.012819 18.64490 0.0000
GARCH(-1) 0.739899 0.010265 72.07900 0.0000

R-squared -0.000198     Mean dependent var 0.000791
Adjusted R-squared -0.001354     S.D. dependent var 0.018958
S.E. of regression 0.018971     Akaike info criterion -5.418405
Sum squared resid 0.933957     Schwarz criterion -5.409382
Log likelihood 7045.217     Durbin-Watson stat 1.773981

 



 
Dependent Variable: DJINDUS   
Method: ML - ARCH   
Sample: 9/22/1997 5/30/2008   
Included observations: 2689   
Convergence achieved after 10 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 
Coefficien

t Std. Error z-Statistic Prob.  

C 0.000457 0.000175 2.611683 0.0090

 Variance Equation   

C 1.43E-06 2.17E-07 6.597722 0.0000
RESID(-1)^2 0.088605 0.006018 14.72214 0.0000
GARCH(-1) 0.902656 0.006967 129.5651 0.0000

R-squared -0.000650     Mean dependent var 0.000174
Adjusted R-squared -0.001768     S.D. dependent var 0.011095
S.E. of regression 0.011105     Akaike info criterion -6.394447
Sum squared resid 0.331110     Schwarz criterion -6.385675
Log likelihood 8601.333     Durbin-Watson stat 2.050237

 



 
 
Dependent Variable: NASDAQ_100  
Method: ML - ARCH   
Sample: 9/22/1997 5/30/2008   
Included observations: 2689   
Convergence achieved after 13 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.   

C 0.000585 0.000236 2.475148 0.0133 

 Variance Equation   

C 1.93E-06 3.62E-07 5.330591 0.0000 
RESID(-1)^2 0.080760 0.005800 13.92474 0.0000 
GARCH(-1) 0.914563 0.006206 147.3744 0.0000 

R-squared -0.000581     Mean dependent var 0.000151 
Adjusted R-squared -0.001699     S.D. dependent var 0.018005 
S.E. of regression 0.018020     Akaike info criterion -5.579834 
Sum squared resid 0.871863     Schwarz criterion -5.571062 
Log likelihood 7506.086     Durbin-Watson stat 2.006275 

 
 



 
Dependent Variable: S_P_500   
Method: ML - ARCH   
Sample: 9/22/1997 5/30/2008   
Included observations: 2689   
Convergence achieved after 13 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

C 0.000416 0.000181 2.300384 0.0214

 Variance Equation   

C 1.61E-06 2.36E-07 6.839206 0.0000
RESID(-1)^2 0.085452 0.006076 14.06359 0.0000
GARCH(-1) 0.904782 0.007204 125.5935 0.0000

R-squared -0.000556     Mean dependent var 0.000144
Adjusted R-squared -0.001674     S.D. dependent var 0.011531
S.E. of regression 0.011541     Akaike info criterion -6.309421
Sum squared resid 0.357618     Schwarz criterion -6.300649
Log likelihood 8487.016     Durbin-Watson stat 2.078997

 
 



 
Dependent Variable: FTSE_100   
Method: ML - ARCH   
Sample: 9/22/1997 5/30/2008   
Included observations: 2698   
Convergence achieved after 9 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.   

C 0.000343 0.000167 2.060023 0.0394 

 Variance Equation   

C 1.16E-06 3.13E-07 3.694323 0.0002 
RESID(-1)^2 0.093418 0.010155 9.199521 0.0000 
GARCH(-1) 0.899959 0.010211 88.13828 0.0000 

R-squared -0.000544     Mean dependent var 6.91E-05 
Adjusted R-squared -0.001658     S.D. dependent var 0.011763 
S.E. of regression 0.011772     Akaike info criterion -6.351354 
Sum squared resid 0.373359     Schwarz criterion -6.342607 
Log likelihood 8571.977     Durbin-Watson stat 2.071658 

 
 



Annex IV 
 
 
Estimate output GARCH (1, 1) model, a Student’s t distributions for the residuals is assumed. The dataset 
is used the period: 22.09.1997-30.05.2008 
 
 
Dependent Variable: CAC_40   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2719   
Convergence achieved after 15 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

C 0.000683 0.000205 3.332876 0.0009

 Variance Equation   

C 1.53E-06 5.10E-07 2.992211 0.0028
RESID(-1)^2 0.081474 0.010218 7.973883 0.0000
GARCH(-1) 0.912479 0.010530 86.65149 0.0000

T-DIST. DOF 12.93118 2.341526 5.522543 0.0000

R-squared -0.001185     Mean dependent var 0.000192
Adjusted R-squared -0.002661     S.D. dependent var 0.014265
S.E. of regression 0.014284     Akaike info criterion -5.964956
Sum squared resid 0.553751     Schwarz criterion -5.954092
Log likelihood 8114.357     Durbin-Watson stat 2.015337

 
 



 
Dependent Variable: DAX_30   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2709   
Convergence achieved after 18 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

C 0.000885 0.000220 4.026782 0.0001

 Variance Equation   

C 1.81E-06 5.81E-07 3.112627 0.0019
RESID(-1)^2 0.090883 0.011427 7.953289 0.0000
GARCH(-1) 0.903402 0.011666 77.44138 0.0000

T-DIST. DOF 13.15146 2.376775 5.533321 0.0000

R-squared -0.001819     Mean dependent var 0.000213
Adjusted R-squared -0.003300     S.D. dependent var 0.015751
S.E. of regression 0.015777     Akaike info criterion -5.810058
Sum squared resid 0.673035     Schwarz criterion -5.799161
Log likelihood 7874.724     Durbin-Watson stat 2.027925

 
 



 
Dependent Variable: BET   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2599   
Convergence achieved after 14 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

C 0.000747 0.000242 3.093669 0.0020

 Variance Equation   

C 3.32E-05 5.68E-06 5.837365 0.0000
RESID(-1)^2 0.348179 0.046323 7.516302 0.0000
GARCH(-1) 0.620693 0.031896 19.45977 0.0000

T-DIST. DOF 3.971797 0.339789 11.68903 0.0000

R-squared -0.000005     Mean dependent var 0.000791
Adjusted R-squared -0.001547     S.D. dependent var 0.018958
S.E. of regression 0.018973     Akaike info criterion -5.549194
Sum squared resid 0.933777     Schwarz criterion -5.537915
Log likelihood 7216.178     Durbin-Watson stat 1.774323

 



 
 
Dependent Variable: DJINDUS   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2689   
Convergence achieved after 17 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.   

C 0.000477 0.000162 2.939650 0.0033 

 Variance Equation   

C 8.83E-07 3.04E-07 2.904833 0.0037 
RESID(-1)^2 0.070741 0.009502 7.444772 0.0000 
GARCH(-1) 0.923860 0.009920 93.13277 0.0000 

T-DIST. DOF 8.649945 1.088722 7.945041 0.0000 

R-squared -0.000745     Mean dependent var 0.000174 
Adjusted R-squared -0.002236     S.D. dependent var 0.011095 
S.E. of regression 0.011107     Akaike info criterion -6.426224 
Sum squared resid 0.331141     Schwarz criterion -6.415259 
Log likelihood 8645.058     Durbin-Watson stat 2.050044 

 



 
 
Dependent Variable: NASDAQ_100  
Method: ML - ARCH (Marquardt) - Student's t distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2689   
Convergence achieved after 20 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.   

C 0.000669 0.000232 2.882274 0.0039 

 Variance Equation   

C 1.19E-06 4.51E-07 2.636664 0.0084 
RESID(-1)^2 0.068497 0.009005 7.606395 0.0000 
GARCH(-1) 0.929276 0.009088 102.2484 0.0000 

T-DIST. DOF 14.04246 2.274178 6.174739 0.0000 

R-squared -0.000826     Mean dependent var 0.000151 
Adjusted R-squared -0.002318     S.D. dependent var 0.018005 
S.E. of regression 0.018025     Akaike info criterion -5.593231 
Sum squared resid 0.872077     Schwarz criterion -5.582266 
Log likelihood 7525.099     Durbin-Watson stat 2.005782 

 
 



 
Dependent Variable: S_P_500   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2689   
Convergence achieved after 17 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.   

C 0.000485 0.000168 2.885451 0.0039 

 Variance Equation   

C 9.26E-07 3.24E-07 2.856397 0.0043 
RESID(-1)^2 0.072860 0.009800 7.434765 0.0000 
GARCH(-1) 0.922441 0.010066 91.63756 0.0000 

T-DIST. DOF 8.792205 1.090346 8.063682 0.0000 

R-squared -0.000876     Mean dependent var 0.000144 
Adjusted R-squared -0.002367     S.D. dependent var 0.011531 
S.E. of regression 0.011545     Akaike info criterion -6.341298 
Sum squared resid 0.357732     Schwarz criterion -6.330334 
Log likelihood 8530.876     Durbin-Watson stat 2.078334 

 
 



 
Dependent Variable: FTSE_100   
Method: ML - ARCH (Marquardt) - Student's t distribution 
Sample: 9/22/1997 5/30/2008   
Included observations: 2698   
Convergence achieved after 15 iterations  
Variance backcast: ON   
GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) 

 Coefficient Std. Error z-Statistic Prob.  

C 0.000436 0.000167 2.612540 0.0090

 Variance Equation   

C 1.09E-06 3.60E-07 3.028079 0.0025
RESID(-1)^2 0.093246 0.011726 7.952099 0.0000
GARCH(-1) 0.900905 0.011585 77.76587 0.0000

T-DIST. DOF 15.48143 3.768227 4.108411 0.0000

R-squared -0.000971     Mean dependent var 6.91E-05
Adjusted R-squared -0.002458     S.D. dependent var 0.011763
S.E. of regression 0.011777     Akaike info criterion -6.358199
Sum squared resid 0.373518     Schwarz criterion -6.347264
Log likelihood 8582.210     Durbin-Watson stat 2.070774
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