Applications of ARCH modelling in financial time series: the case of Germany

I. Exchange rate volatility modelling.

II. Time varying-premium in the term structure of interest rates.

Research Techniques Project

Florin Ovidiu Bilbiie May 2000 Department of Economics University of Warwick Coventry CV4 7AL Email: <u>f.o.bilbiie@warwick.ac.uk</u>

Introduction

ARCH and GARCH models in empirical finance have gained a wide use since their initial introduction by Engle (1982) to describe different phenomena. Mills (1999) and Bollerslev et al (1994) contain comprehensive surveys of these developments and of applications. This paper approaches two topics. In the first part we model the returns for the DEM/USD rate, more specifically its volatility, by using ARCH and GARCH models. In the second one, we apply the same tools to model a time-varying term premium in the yield curve that might explain failures of the expectation hypothesis.

PART 1 -Exchange rate volatility modelling

The data used in this part consists of weekly spot rates for the German mark over the period 11:10:1983-11:11:1997. The returns (first difference in logs) of the DEM exchange rate are plotted in Graph 1, resembling a white noise process, with the exception of a variable volatility (proxied by the variance), which will be investigated further.

Graph 1: DEM/USD returns

Further insights about the properties of the series can be gained by studying the histogram as plotted in Graph 2.

Graph 2: Histogram

Examination of the histogram and descriptive statistics leads to the rejection of the normality of the series (which is often assumed in theoretical financial models). While the skewness is

reasonably small, the excess kurtosis leads to the rejection of normality. This is indicated by the highly significant Jarque-Berra statistic. More specifically, the distribution is leptokurtic (it has fat tails), which usually generates a 'volatility smile' in the options on exchange rates (different implied volatilities for different exercise prices but same other characteristics). This finding is rather a common result (i.a Diebold and Nerlove (1989)). We also mention that the series is stationary, the ADF tests we performed rejecting the hypothesis of a unit root at 1% critical level (not reported, available at request), making subsequent statistical inference valid.

Correlogram of Y

Sample: 10/11/1983 11/11/1997 Included observations: 735

Autocorrela	tion Parti	al Correlation		AC	PAC	Q-Stat	Prob
. *		. *	1	0.070	0.070	3.6671	0.055
	Í		2	0.023	0.018	4.0583	0.131
			3	0.026	0.023	4.5463	0.208
			4	-0.030	-0.034	5.2062	0.267
			5	0.027	0.031	5.7663	0.330
			6	0.008	0.004	5.8121	0.445
			7	-0.018	-0.018	6.0477	0.534
			8	0.030	0.030	6.7305	0.566
			9	0.026	0.024	7.2347	0.613
		. .	10	0.024	0.020	7.6666	0.661
		. .	11	-0.037	-0.045	8.7043	0.649
		. .	12	0.023	0.030	9.0962	0.695
			13	-0.011	-0.014	9.1878	0.759
			14	0.034	0.036	10.034	0.760
. *	Ì		15	0.066	0.058	13.306	0.579
	Í		16	-0.019	-0.025	13.570	0.631
			17	0.019	0.016	13.852	0.678
			18	-0.042	-0.048	15.166	0.651
			19	-0.003	0.009	15.172	0.712
			20	-0.008	-0.014	15.215	0.764
			21	0.005	0.014	15.237	0.811
	İ	. .	22	-0.005	-0.012	15.255	0.851
		. .	23	0.028	0.028	15.832	0.862
. į.	i _	. .	24	-0.040	-0.049	17.046	0.847

In order to get some insights as to the dynamic data generating process for the Y series, we study the correlogram presented above. Based on this, we may conclude that only the first-order autocorrelation and partial autocorrelation functions are significant with values of 0.07 for both and a Q-statistic of 3.6671 (with an attached probability of 0.055). The other autocorrelations seem not to be significant.

1.1 ARCH and GARCH models

1.1.1 The mean equation

Based on the previous insights we try to estimate first some plausible models for the dynamics of the returns.

Generally, we estimate ARMA(p,q) models of the form:

$$y_t = c + \Phi(L)y_t + \theta(L)\varepsilon_t \tag{1}$$

where Φ and θ are lag polynomials of the p and q order respectively, where Φ does not have a free term.

As there appears to be informational content only for the first lag (judging by the correlograms), we tried to estimate AR(1), MA(1) and ARMA(1,1) models presenting the outputs in Appendix 2¹. Judging by the AIC and the SBC the MA(1) model would seem the most appropriate. On the other hand, the AR(1) term proves to be significant in the ARMA (1,1) equation. We decided not to use the ARMA specification, however, due to the common factor that appears to be present. Testing (by a Wald test) the hypothesis that $\Phi_1=-\theta_1$ we obtained an F Statistic of 1.853856 (0.173755) leading to a non-rejection of the common factor. This would imply that the mean equation would comprise only a constant, which would be consistent with the non-predictability of returns (weak efficiency). However, as there seems to be informational content attached to the first lag (Φ_1 is marginally significant) we use an AR(1) model. This is far easier to manipulate and to use for forecasts and the improvement in the AIC and SBC are, however, marginal. In terms of the residual test, all the models perform similarly, so this cannot be a decision rule we rely upon. Moreover, we find support in Diebold and Nerlove (1989) who use an AR(3) even if they find a random walk to be the best description, arguing that this is a safeguard against specification

We present some of the residual tests for the chosen AR(1) (but not for the ARMA and MA models) model in Appendix 3. The Breusch-Godfrey test does not reject the null hypothesis of no serial correlation (conclusion supported by the plot of the correlogram) with a value of 0.451528 and an attached probability of 0.844079.

However, there is strong evidence of non-normality as indicated by the Jarque-Berra test (rejects normality at 0.00000 significance level) and the histogram plot.

An ARCH LM test indicates strong ARCH effects for the first three lags, consistent with the conclusion from the correlogram of the squared residuals. Thus the residuals are, although uncorrelatted, not independent. Finding and modelling ARCH effects help explaining contiguous periods of volatility and stability. Secondly, they are consistent with the unconditional leptokurtosis we found in the returns' distribution. Thirdly, they provide a parsimonious description of the evolving conditional variance. Fourthly, it would help forecasting the changing variance, i.e. to obtain time-varying confidence intervals for the point forecasts of the returns. This leads us to the next step, i.e. using ARCH models to explain the changing variance.

I.1.2 Modelling the conditional variance

Following Engle (1982), we estimate the model:

 $y_{t} = c + \Phi_{1} y_{t-1} + \varepsilon_{t}$ $h_{t} = A(L)\varepsilon_{t}^{2} \qquad (2)$ $where \varepsilon_{t} / \Omega_{t-1} \sim N(0, h_{t})$

A(L) is a lag polynomial of order m.

The first step is, as indicated by the ARCH test, the estimation of an $ARCH(3,0)^2$, i.e. m=3. As we can see from Appendix 4, the coefficients attached to all the ARCH terms (except the ARCH(1)) are statistically significant. There is however strong evidence of non-normality of residuals (excess Kurtosis) as indicated by the Jarque Berra test bellow.

As we want to base our further tests on the standard errors of these residuals, we would have to use corrected standard errors in the subsequent estimations by using the Bollerslev-Wooldridge correction³. The estimation output with this correction is shown also in Appendix 4. We will use this correction in all the subsequent models.

We observe that using the corrected covariance matrix makes the a_2 and a_3 coefficients insignificant. Testing for non-captured ARCH effects by an LM test for four lags does not indicate the presence of any such effects (Appendix 4), not rejecting the null of all the coefficients of the squared residuals being jointly zero (F-stat=1.069770(0.3703)). However, we may observe the marginal significance of the fourth lag.

In light of this, we estimate an ARCH(4,0) and compare it with the previous one. As resulting from Appendix 5, the a_4 coefficient is significant. A Wald test for $a_4=0$ rejects the null hypothesis.

Wald Test:				
Equation: AR1				
Null Hypothesis:	C(7)=0			
F-statistic	3.768717	Probability	0.052606	
Chi-square	3.768717	Probability	0.052220	

¹ I apologise for the rather huge number of Appendices but there was a trade-off between covering my statements with statistical output and providing a reasonably thin paper. I preffered to choose the first alternative

² All the GARCH estimation were carried in Eviews3.1 using the BHHH algorithm

³ Alternatively, we could use the t distribution

As any ARCH model might have a more parsimonious GARCH representation (Bollerslev 1986, Boero 2000), the next step was to incorporate a GARCH term and test for its significance, as well as observing how the significance of the ARCH terms modifies. We thus estimated models that allow the conditional variance to be an ARMA process:

$$y_{t} = c + \Phi_{1} y_{t-1} + \varepsilon_{t}$$

$$h_{t} = A(L)\varepsilon_{t}^{2} + B(L)h_{t} \qquad (4)$$

$$where \varepsilon_{t} / \Omega_{t-1} \sim N(0, h_{t})$$

where B(L) is a lag polynomial of order n.

The first GARCH model we estimate has m=4 and n=1 (i.e. there is a GARCH(4,1))⁴ and we present the estimation output in Appendix 6. Observing that judging by the t-statistics the ARCH terms appear to be non-significant, we performed a Wald test for their joint significance (H₀: all $a_i=0$). The hypothesis is rejected at the 10% level but not at the 5% level.

Wald Test:			
Null Hypothesis:	a _I =0 for all i		
F-statistic	2.001979	Probability	0.092497
Chi-square	8.007914	Probability	0.091289

We thus try to adopt a general-to-specific approach in reducing the number of lags in the ARCH process. Testing for $a_4 = 0$ is not rejected.

Wald Test:			
Null Hypothesis:	a4=0		
F-statistic	0.058716	Probability	0.808605
Chi-square	0.058716	Probability	0.808536

We thus move to estimating GARCH(3,1) presenting the results in Appendix 6 together with a Wald test for $a_3=0$ which cannot be rejected even at 10% significance.

In light of this, we estimate a GARCH(2,1) (Appendix 7). The hypothesis $a_2=0$ is now rejected at a 0.0238 level.

Wald Test:			
Null Hypothesis:	a2=0		
F-statistic	5.124232	Probability	0.023888
Chi-square	5.124232	Probability	0.023594

As the whole chain of tests led us to this last model, we would choose it as representing the dynamics of the series. Using the AIC and SBc as decision rules, we synthesize this information for all the estimated models in the next table

⁴ By a GARCH(m,n) process we mean a process with m ARCH terms. We use this notation to be consistent with the Eviews output, although iti is different from the usual one

	ARCH(3,0)	ARCH(4,0)	GARCH(4,1)	GARCH(3,1)	GARCH(2,1)
JB*	14.60274	12.10750	12.28501	12.16835	14.26392
ARCH(4)**	0.370396	0.987807	0.992430	0.997868	0.702314
AIC	3.724227	3.717924	3.716284	3.713582	3.714152
SBC	3.761817	3.761779	3.766404	3.757437	3.751742

Tests for AR(1) - GARCH(m,n) models, QML estimation, Bolerslev-Wooldridge Corrected Std Errors

*test values, ** significance levels

Not surprisingly, the conclusion from the AIC is different from the one based on SBC as the last one penalizes for the extra lags. However, since based on the Wald test we could reject the 3rd-order term in the ARCH we choose the GARCH(2,1) model to describe the dynamics as it is more parsimonious. We will thus use this model in the subsequent analysis.

Further analysis

In terms of forecasting, we again tried to compare the GARCH(2,1) and GARCH(3,1) models, presenting the results in Appendices 7A and 7B. The forecasts are made over the period 11:10:1995-11:11:1997 with the corresponding models⁵. Again, the GARCH(2,1) model performs better in terms of forecasting (static), judging by the RMSE of 1.194558 compared to 1.196235 for GARCH(2,1). For the dynamic method the values are 1.188447 as opposed to 1.189657 respectively.

We observe that the sum $a_1+a_2+b_1=0.892$ implying that the volatility shocks are persistent in the returns of the exchange rate, which comes as no surprise for the chosen high-frequency series. The IGARCH hypothesis has been tested and reported below:

Wald Test:			
Equation: AR1			
Null	C(4)+C(5)+C(6)=1		
Hypothesis:			
F-statistic	3.507739	Probability	0.061483
Chi-square	3.507739	Probability	0.061083

This fact makes also the forecast of the conditional variance converge to the steady state rather slowly (appendices 7ab). However, the process does not explode (sum of coefficients=1 rejected at 10%), which is consistent with the results rejection of a unit root. We also observe that $a_1<0$, but the conditional variance may still be well specified since it is of a rather small magnitude and is not significant statistically (the probability of the t-statistic is 0.6483).

For the chosen model we perform residual tests: there is no serial correlation as indicated by the correlogram and the Q-statistic.

⁵ We adopt this due to space constraints, although a rigorous procedure would imply performing the same algorithm for the subsample for estimation, insuring that the models give the best description

Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelatio	on Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	0.009	0.009	0.0562	
		2	0.034	0.034	0.9021	0.342
		3	0.035	0.034	1.7915	0.408
		4	-0.027	-0.028	2.3126	0.510
		5	0.020	0.018	2.5980	0.627
		6	0.018	0.019	2.8422	0.724
		7	-0.010	-0.009	2.9117	0.820
		8	0.028	0.025	3.5034	0.835
		9	0.006	0.006	3.5320	0.897
	. .	10	0.025	0.024	3.9831	0.913
	. .	11	-0.034	-0.038	4.8227	0.903
	. .	12	0.019	0.019	5.1010	0.926
	. .	13	-0.009	-0.009	5.1619	0.952
	. .	14	0.025	0.026	5.6147	0.959
	. .	15	0.059	0.056	8.2415	0.876
	. .	16	-0.031	-0.033	8.9773	0.879
	. .	17	0.018	0.013	9.2090	0.905
		18	-0.032	-0.035	9.9716	0.905
		19	0.002	0.008	9.9733	0.933
		20	-0.004	-0.009	9.9836	0.953
		21	0.004	0.009	9.9959	0.968
		22	0.004	0.001	10.010	0.979
		23	0.041	0.040	11.292	0.970
	İ İ	24	-0.041	-0.043	12.568	0.961

The ARCH LM test indicates that there are no ARCH effects not captured by the model. (please see Appendix 7), the probability attached to the TR^2 being 0.8346 and thus not rejecting the 'no-further-ARCH' hypothesis.

However, we did not obtain normality, the Jarque Berra test strongly rejecting the normality hypothesis as shown below.

Even with non-normal residuals, the estimates are still consistent under QML estimation assumptions.

We can plot the graph of the one-step ahead conditional standard deviation

Conditional Standard Deviation vs Returns

Comparing it with the plot of the returns, we see that indeed increases in the conditional standard deviation are associated with clustering of large (in absolute value) observations in the original series. This is the usual volatility-clustering phenomenon observed in the behaviour of this series (i.a Diebold and Nerlove 1989) and other exchange rates.

Conclusions I

The univariate GARCH approach we tried up to now seems satisfactory in describing exchange rate movements. Notably, the forecasts of the variance improve and these are important in option pricing as traders actually 'trade volatility'. This is a rather common result in early ARCH modelling. However, for a better description of the dynamics a multivariate approach proves necessary. Covariances among exchange rates should be modelled as risk premia depend on them. They are likely to be non-zero and the conditional ones may vary over time (Diebold and Nerlove 1989). Moreover, latent variable considerations (presence of news) should lead to a multivariate specification.

PART TWO - The Expectations Hypothesis of the term structure and GARCH-M modelling

In this part we attempt to test the expectations hypothesis (EH, as opposed to the pure expectation hypothesis that says that expected excess return on long over short-term bonds is zero) for the term structure of interest rates for the case of Germany. By contrast, EH postulates that the expected excess returns are constant over time. While we do not attempt to give an account of the financial theory underlying it, a review of this can be found in Campbell et al (1997). Many attempts have been made to explain possible failures of the EH, a review of these being made in, e.g. Campbell et al. (1997). What we try in this part is to assess the explanatory power of ARCH and GARCH modelling for the potential failure of EH, i.e. to see whether the expected excess holding yield of a bond depends on its conditional variance. We follow the approach of, i.a. Engle et al (1987), Taylor (1992) or Engle and Ng(1993) to test for time-varying premia as a possible explanation.

The data used consists of weekly observations on bid Euro-interest rates for 1, 3 and 6 months maturity from the Bank of International Settlements, observed on Friday each week, 10 a.m. Swiss time.

The equations we estimate are approximations for weekly data of the theoretical versions of the EH for one and three month maturities as formulated in Boero (2000)

$$\frac{2}{3}(r_{t+4}^{1} - r_{t}^{1}) + \frac{1}{3}(r_{t+9}^{1} - r_{t+4}^{1}) = a + b(r_{t}^{3} - r_{t}^{1}) + \varepsilon_{t+9}$$
(5)
$$r_{t+4}^{3} - r_{t}^{3} = a + b\frac{1}{2}(r_{t}^{3} - r_{t}^{1}) + \varepsilon_{t+4}$$
(6)

II.1 Testing the EH with rational expectations.

Equations (5) and (6) can be estimated by OLS⁶. The outputs of these regressions are presented in Appendices 8 and 9.⁷. Investigation of the residuals (diagnostic tests reported in the appendices 8 and 9) of the equations reveals a few immediate problems. We expect the errors to be autocorrelated having the structure MA(i) where i is 9-1=8 and 4-1=1, respectively, due to overlapping expectational errors in the changes in the future short rates. Moreover, if there is a time-varying term premium, the errors are likely to display serial correlation, conditional heteroskedasticity and be correlated with the term spread (Tzavalis and Wickens 1997).

⁶ the variables were found to be I(0); the tests are not reported but are available at request

⁷ Note that the names of the constructed variables are VDE and SPDE for eq. 5 and LRDE, respectively HSPDE for (6)

Inspecting the diagnostic tests we find confirmation of the expected results: there are strong serial correlation and ARCH effects as well as non-normality. Moreover, the correlograms of the residuals resemble the structure of MA(8) and MA(3) data generating processes, as expected. In order to perform the subsequent analysis we will thus have to use a correction of covariance matrix, consistent with the presence of heteroskedasticity and serial correlation of unknown form, as the Newey-West correction provided by EViews. Estimation outputs using the corrected standard errors are presented in the final sections of Appendices 8 and 9. These are the representations we will use further.

In order to test for the Rational Expectations Hypothesis of the Term structure we perform Wald tests (which are valid using the robust standard errors) for testing the null hypothesis H0: b=1 in both equations, presenting the results in the table bellow:

Table: Tests of the REHTS

Wald Test:				
Equation 5				
Null Hypothesis:	C(2)=1			
F-statistic	7.988228	Probability	0.004893	
Chi-square	7.988228	Probability	0.004708	
Wald Test:				
Equation: 6				
Null Hypothesis:	C(2)=1			
F-statistic	1.421523	Probability	0.233701	
Chi-square	1.421523	Probability	0.233153	

For equation 5, the hypothesis is strongly rejected. For equation 6 the Wald test cannot reject the null. However, this does not mean that the EH is accepted. A careful look at the coefficient and its standard error leads us believe that there is such a great uncertainty attached to the estimated coefficient that the hypothesis b=0 is not rejected either (judging by its t-statistic). Thus, the conclusion is rather that the estimate is imprecise.

The rejections of the EH for Germany are in contrast with the findings of Hardouvelis (1994), who nevertheless used a different data set and differently constructed variables.

II.2 ARCH-M and GARCH-M models

Many attempts have been made to explain the failures of EH (either the varying premia or by modelling irrational expectations), involving a wide variety of methods, both uni- and multivariate.

Here we just follow one of them, i.e. using ARCH in mean and GARCH in mean processes to take into account a time varying term premium as pioneered by Engle et al(1987).

The argument for estimating such models runs as follows: variables with apparent explanatory power for the dynamics of the spread (useful in forecasting excess returns) may be correlated with the risk premia and thus would use their significance when a risk measure is included in the regression.

We would estimate models of the form:

$$y_{t} = a + bx_{t} + f(h_{t}) + \varepsilon_{t}, \varepsilon_{t} / \Omega_{t} \sim N(0, h_{t}^{2})$$

$$h_{t} = A(L)h_{t} + B(L)\varepsilon_{t}^{2}$$
(7)

where y and x are the corresponding spreads and f is either the variance or the standard deviation. For ARCH-M processes A(L) will be identically zero.

Looking at the ARCH test for equations 5 and 6 we try to model the documented ARCH effects. The 'algorithm' we followed is identical to the one in Part 1, but we decided not to present it in detail due to space constraints. For (5), we tried ARCH(1,0) but there were still non-captured ARCH effects. We moved to testing ARCH(2,0) and GARCH (1,1) and we have chosen the latter due to the AIC of -1.113283

as compared to -1.111797 for ARCH(2,0). For equation 6, following the same reasoning we also decided on a GARCH(2,1) model with an AIC of -0.297251 as compared to GARCH(1,1), having an AIC of -0.278928 and to -0.255415 for the ARCH(1,0). Estimation results are given in Appendix 10.

Diagnostic tests (Appendix 11) show that we have normality (for equation 5) and no further ARCH effects, but we still have the serial correlation, probably generated by the overlapping expectational errors. We mention that we use the Bollerslev-Wooldridge corrected standard errors.

However, the time-varying risk premium is swept into the error term and generates misspecification (ELR 1987 p. 400). We thus move to incorporate a measure of risk in the mean equation by estimating the described GARCH-M models. For both cases we included the standard deviation h_t in the mean equation. The statistical reason is that trying the variance this was not significant (for (6) it was but just at the 10% level)⁸. The economic reason is that changes in the variance are reflected less than proportionally in the mean. The estimation results are presented in Appendix 12 and summarised bellow.

⁸ we do not report the results for using the variance

Model (7) for: Equation (5) with GARCH (1,1)

	Coefficient	Std.	z-Statistic	Prob.
		Error		
SQR(GARCH)	-0.183494	0.072013	-2.548069	0.0108
С	0.005996	0.008530	0.702975	0.4821
SPDE	0.528680	0.026858	19.68459	0.0000
	Variance Equati	ion		
С	0.002650	0.000560	4.735286	0.0000
ARCH(1)	0.822579	0.116609	7.054179	0.0000
GARCH(1)	0.219254	0.056620	3.872360	0.0001

Equation (6) with GARCH(2,1)

	Coefficient	Std.	z-Statistic	Prob.
		Error		
SQR(GARCH)	-0.287861	0.083936	-3.429532	0.0006
С	0.042036	0.015671	2.682440	0.0073
HSPDE	0.534857	0.077924	6.863794	0.0000
	Variance Equati	on		
С	0.002408	0.000750	3.208853	0.0013
ARCH(1)	0.745117	0.109748	6.789330	0.0000
ARCH(2)	-0.535463	0.100888	-5.307508	0.0000
GARCH(1)	0.768512	0.060411	12.72140	0.0000

First of all, we observe that the sum of the estimated coefficients in the variance equation is greater than one in each situation, indicating that the unconditional variance of the yields is infinite and its distribution has fat tails. Shocks in its level thus have permanent effects, which is not an unusual result for yield curve modelling. Tests for the IGARCH hypothesis in both cases are reported below:

IGARCH test - equation 5

Wald Test: Equation: EQ2A			
Null Hypothesis:	C(5)+C(6)=1		
F-statistic Chi-square	0.225290 0.225290	Probability Probability	0.635243 0.635038
IGARCH test - Wald Test: Equation: EQ3A	equation 6		
Null Hypothesis:	C(5)+C(6)+C(7)	=1	
F-statistic Chi-square	$\begin{array}{c} 0.682465 \\ 0.682465 \end{array}$	Probability Probability	0.409125 0.408739

For completion, we also estimated TARCH and EGARCH models for the same specification in order to take into account any asymmetric effects that are present⁹. While in all cases the asymmetric terms are statistically significant, they do not change the main conclusions (estimation outputs are presented in Appendix 13). Moreover, there is even a loss of statistical significance in (6) of the standard deviation in the mean equation if we are to choose the TARCH model as indicated by the AIC and SBC (Appendix 13).

Conclusions II

In contrast with the findings of ELR(1987), in our case introduction of a measure of risk does not do a good job in explaining the time varying term premium. The coefficient on the spread in (5) falls with 0.7 but its t-statistic actually rises. In equation (6) things are worse, the fall being of 0.05. However, the most important is the high statistical significance of the spread as opposed to the uncertainty in the OLS case. These results are hardly consistent with the 'dramatic' fall in ELR paper. However, the risk premium is statistically significant in explaining the time-varying term premium. Nevertheless, the unsuccess in explaining the EH failure does not exclude the possibility that another specification of the risk premium can do a better job (e.g. by taking into account only systematic risk by using a time-varying beta CAPM for the term structure as suggested by Taylor(1992)).

The failure of these simple models to explain why EH does not hold comes as no surprise. Even in this univariate case, any omitted variable has been swept into the disturbance and thus all the statistics are biased. In trying to explain failures of the EH it has been shown that multivariate models can do a better job as in Campbell and Shiller (1987) or Taylor (1992). Moreover, as the interest rates are also a policy variable, the relation between policy and the term spread needs to be modelled (Boero and Torricelli, 1998). Thus, a system estimation in which a policy rule is specified may prove necessary.

⁹ Presence of such effects can be more plausible in analysing interest rates on corporate bonds. However, we present the results for completion

Appendix 2: different models for the mean equation

AR(1) Dependent Variable: Y

Method: Least Squares

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 3 iterations

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	-0.056041	0.061995	-0.903958	0.3663
AR(1)	0.070505	0.036873	1.912117	0.0563
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.004970 0.003611 1.561178 1784.087 -1367.453 2.001929	Mean depe S.D. deper Akaike info Schwarz c F-statistic Prob(F-sta	endent var ndent var o criterion riterion tistic)	-0.055973 1.564004 3.731480 3.744010 3.656190 0.056251
Inverted AR Roots	.07		/	

MA(1)

Dependent Variable: Y Method: Least Squares

Sample(adjusted): 10/18/1983 11/11/1997 Included observations: 735 after adjusting endpoints Convergence achieved after 4 iterations Backcast: 10/11/1983

Variable	Coefficient	Std. Error	t-Statistic	Prob.
	-0.055922	0.061464	-0.909837	0.3632
MA(I)	0.000095	0.030034	1.047711	0.0030
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.004791 0.003433 1.560256 1784.414 -1368.883 1.997202	Mean dep S.D. depe Akaike info Schwarz c F-statistic Prob(F-sta	endent var ndent var o criterion rriterion atistic)	-0.055870 1.562941 3.730294 3.742811 3.528396 0.060723
Inverted MA Roots	07			

ARMA(1,1)

Dependent Variable: Y Method: Least Squares

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 15 iterations Backcast: 10/18/1983

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.012954	0.017225	-0.752040	0.4523
AR(1)	0.802950	0.177154	4.532506	0.0000
MA(1)	-0.766333	0.191243	-4.007111	0.0001
R-squared	0.006529	Mean depend	dent var	-0.055973
Adjusted R-squared	0.003811	S.D. depende	ent var	1.564004
S.E. of regression	1.561022	Akaike info c	riterion	3.732637
Sum squared resid	1781.292	Schwarz crite	erion	3.751432
Log likelihood	-1366.878	F-statistic		2.401922
Durbin-Watson stat	1.939587	Prob(F-statis	tic)	0.091258
Inverted MA Roots	.77			

Appendix 3: tests for AR(1)

Histogram of residuals

Correlogram of squared residuals

Sample: 10/25/1983 11/11/1997 Included observations: 734 Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. .	. .	1	-0.015	-0.015	0.1748	
. *	.i* i	2	0.068	0.068	3.6277	0.057
. *	. *	3	0.079	0.082	8.2545	0.016
.j. j	.j. j	4	0.058	0.057	10.754	0.013
.i. i	. . İ	5	0.051	0.043	12.676	0.013
.i. i	.i. i	6	0.019	0.007	12.941	0.024
.j. j	.j. j	7	-0.004	-0.019	12.951	0.044
.i. i	.i. i	8	0.052	0.040	14.990	0.036
.j. j	* .	9	-0.057	-0.062	17.435	0.026
.i. i		10	0.024	0.014	17.871	0.037
.İ* İ	.i* i	11	0.078	0.081	22.415	0.013
.i. i	i. i	12	0.023	0.030	22.811	0.019

LM test for serial correlation

Breusch-Godfrey Serial Correlation LM Test:

Breacen Ceaney C	enal eenelation Em 10	51.	
F-statistic	0.451528	Probability	0.844079
Obs*R-squared	2.728839	Probability	0.842029

Test Equation: Dependent Variable: RESID Method: Least Squares

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.001912	0.062184	-0.030751	0.9755
AR(1)	14.61580	20.71762	0.705477	0.4807
RESID(-1)	-14.61586	20.71772	-0.705476	0.4807
RESID(-2)	-1.014079	1.461163	-0.694022	0.4879
RESID(-3)	-0.046562	0.109488	-0.425267	0.6708
RESID(-4)	-0.039859	0.037929	-1.050883	0.2937
RESID(-5)	0.028373	0.037250	0.761702	0.4465
RESID(-6)	0.007647	0.037264	0.205224	0.8375
R-squared	0.003718	Mean depend	lent var	-2.21E-17
Adjusted R-squared	-0.005888	S.D. depende	ent var	1.560113
S.E. of regression	1.564699	Akaike info ci	riterion	3.744104
Sum squared resid	1777.454	Schwarz crite	erion	3.794224

Log likelihood	-1366.086	F-statistic	0.387024
Durbin-Watson stat	_2.001730	Prob(F-statistic)	0.910188

ARCH Test:

7410111000			
F-statistic	2.707074	Probability	0.029360
Obs*R-squared	10.74253	Probability	0.029615

Test Equation: Dependent Variable: RESID^2 Method: Least Squares

Sample(adjusted): 11/22/1983 11/11/1997 Included observations: 730 after adjusting endpoints

	, <u> </u>			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	1.999293	0.232183	8.610857	0.0000
RESID ² (-1)	-0.024856	0.037083	-0.670287	0.5029
RESID ² (-2)	0.065177	0.036969	1.763008	0.0783
RESID ² (-3)	0.082937	0.037078	2.236820	0.0256
RESID^2(-4)	0.057166	0.037198	1.536823	0.1248
R-squared	0.014716	Mean depe	endent var	2.437385
Adjusted R-squared	0.009280	S.D. deper	ndent var	4.223914
S.É. of regression	4.204270	Akaike info	o criterion	5.716904
Sum squared resid	12815.02	Schwarz c	riterion	5.748364
Log likelihood	-2081.670	F-statistic		2.707074
Durbin-Watson stat	2.004755	Prob(F-sta	itistic)	0.029360

Appendix 4 ARCH and GARCH models - estimation results

ARCH (3,0) Dependent Variable: Y Method: ML - ARCH

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 14 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1)	-0.030130 0.059383	0.060166 0.036443	-0.500775 1.629498	0.6165 0.1032
	Variance	Equation		
C ARCH(1) ARCH(2) ARCH(3)	2.027690 -0.018993 0.057829 0.131412	0.153828 0.025629 0.032991 0.038958	13.18152 -0.741078 1.752870 3.373148	0.0000 0.4586 0.0796 0.0007
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.004603 -0.002233 1.565750 1784.745 -1360.791 1.978786	Mean depen S.D. depend Akaike info c Schwarz crit F-statistic Prob(F-statis	dent var ent var rriterion erion stic)	-0.055973 1.564004 3.724227 3.761817 0.673348 0.643770
Inverted AR Roots	.06			

ARCH(3,0,) with corrected standard errors

Dependent Variable: Y Method: ML - ARCH

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 14 iterations Bollerslev-Wooldrige robust standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.
C AR(1)	-0.030130 0.059383	0.059346 0.034433	-0.507697 1.724626	0.6117 0.0846
	Variance	e Equation		
C ARCH(1) ARCH(2) ARCH(3)	2.027690 -0.018993 0.057829 0.131412	0.196954 0.022351 0.046158 0.060814	10.29525 -0.849773 1.252838 2.160892	0.0000 0.3955 0.2103 0.0307
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.004603 -0.002233 1.565750 1784.745 -1360.791 1.978786	Mean dep S.D. depe Akaike inf Schwarz c F-statistic Prob(F-sta	endent var ndent var o criterion criterion atistic)	-0.055973 1.564004 3.724227 3.761817 0.673348 0.643770
Inverted AR Roots	.06			

ARCH Test:

F-statistic	1.069770	Probability	0.370396
Obs*R-squared	4.283311	Probability	0.369020

Test Equation: Dependent Variable: STD_RESID^2 Method: Least Squares

Sample(adjusted): 11/22/1983 11/11/1997 Included observations: 730 after adjusting endpoints

White Heteroskedasticity-Consistent Standard Errors & Covariance

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.937338	0.082663	11.33933	0.0000
STD_RESID^2(-1)	-0.003648	0.031911	-0.114316	0.9090
STD_RESID^2(-2)	-0.002302	0.040474	-0.056881	0.9547
STD_RESID^2(-3)	-0.005143	0.042772	-0.120237	0.9043
STD_RESID^2(-4)	0.076692	0.045436	1.687926	0.0919
R-squared	0.005868	Mean dependent var		1.002594
Adjusted R-squared	0.000383	S.D. depende	ent var	1.645197
S.E. of regression	1.644883	Akaike info c	riterion	3.840041
Sum squared resid	1961.588	Schwarz crite	erion	3.871500
Log likelihood	-1396.615	F-statistic		1.069770
Durbin-Watson stat	2.004306	Prob(F-statis	tic)	0.370396

Appendix 5 ARCH(4,0)

Dependent Variable: Y Method: ML - ARCH

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 14 iterations Bollerslev-Wooldrige robust standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.
C	-0.017370	0.058566	-0.296592	0.7668
AR(1)	0.070180	0.034785	2.017532	0.0436
	Variance	e Equation		
C	1.766096	0.194403	9.084700	0.0000
ARCH(1)	-0.021175	0.025352	-0.835213	0.4036
ARCH(2)	0.061157	0.049106	1.245409	0.2130
ARCH(3)	0.147761	0.061345	2.408677	0.0160
ARCH(4)	0.097071	0.050003	1.941318	0.0522
R-squared	0.004441	Mean dependent var		-0.055973
Adjusted R-squared	-0.003776	S.D. dependent var		1.564004
S.E. of regression	1.566954	Akaike info criterion		3.717924
Sum squared resid	1785.036	Schwarz criterion		3.761779
Log likelihood	-1357.478	F-statistic		0.540453
Durbin-Watson stat	2.000203	Prob(F-statistic)		0.777606
Inverted AR Roots	.07			

Appendix 6

GARCH (4,1)

Dependent Variable: Y Method: ML - ARCH

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 19 iterations Bollerslev-Wooldrige robust standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.
C	-0.024296	0.057501	-0.422539	0.6726
AR(1)	0.073170	0.035122	2.083275	0.0372
	Variance	e Equation		
C	0.725906	0.330051	2.199378	0.0279
ARCH(1)	-0.023305	0.027665	-0.842389	0.3996
ARCH(2)	0.074520	0.051329	1.451794	0.1466
ARCH(3)	0.117683	0.072115	1.631887	0.1027
ARCH(4)	0.017066	0.070430	0.242315	0.8085
GARCH(1)	0.523556	0.190585	2.747108	0.0060
R-squared	0.004608	Mean dependent var		-0.055973
Adjusted R-squared	-0.004989	S.D. dependent var		1.564004
S.E. of regression	1.567901	Akaike info criterion		3.716284
Sum squared resid	1784.735	Schwarz criterion		3.766404
Log likelihood	-1355.876	F-statistic		0.480174
Durbin-Watson stat	2.006640	Prob(F-statistic)		0.849312
Inverted AR Roots	.07			

GARCH(3,1)

Dependent Variable: Y Method: ML - ARCH

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 26 iterations Bollerslev-Wooldrige robust standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.
С	-0.023574	0.057319	-0.411278	0.6809
AR(1)	0.072331	0.035136	2.058603	0.0395
	Variance	e Equation		
С	0.629986	0.279026	2.257807	0.0240
ARCH(1)	-0.022974	0.027554	-0.833779	0.4044
ARCH(2)	0.075566	0.051110	1.478490	0.1393
ARCH(3)	0.114736	0.070143	1.635737	0.1019
GARCH(1)	0.580713	0.156551	3.709420	0.0002
R-squared	0.004595	Mean dep	endent var	-0.055973
Adjusted R-squared	-0.003620	S.D. deper	ndent var	1.564004
S.E. of regression	1.566833	Akaike info	o criterion	3.713582
Sum squared resid	1784.759	Schwarz c	riterion	3.757437
Log likelihood	-1355.885	F-statistic		0.559360
Durbin-Watson stat	2.004898	Prob(F-sta	itistic)	0.762804
Inverted AR Roots	.07			

Wald Test:

Equation: AR1			
Null Hypothesis:	C(6)=0		
F-statistic Chi-square	2.675637 2.675637	Probability Probability	0.102327 0.101895

Appendix 7 GARCH(2,1)

Dependent Variable: Y Method: ML - ARCH

Sample(adjusted): 10/25/1983 11/11/1997 Included observations: 734 after adjusting endpoints Convergence achieved after 20 iterations Bollerslev-Wooldrige robust standard errors & covariance

	Coefficient	Std. Error	z-Statistic	Prob.	
C AR(1)	-0.016055 0.067497	0.057546	-0.279001 1.897329	0.7802	
	Variance	Variance Equation			
C ARCH(1) ARCH(2) GARCH(1)	0.270859 -0.014293 0.112061 0.794662	0.144147 0.031340 0.049504 0.084935	1.879048 -0.456074 2.263677 9.356087	0.0602 0.6483 0.0236 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.004392 -0.002446 1.565916 1785.124 -1357.094 1.994662	Mean dep S.D. depe Akaike inf Schwarz c F-statistic Prob(F-sta	endent var ndent var o criterion criterion atistic)	-0.055973 1.564004 3.714152 3.751742 0.642277 0.667506	
Inverted AR Roots	.07				

ARCH Test:

F-statistic	0.462372	Probability	0.836320
Obs*R-squared	2.790431	Probability	0.834653

Test Equation: Dependent Variable: STD_RESID^2 Method: Least Squares

Sample(adjusted): 12/06/1983 11/11/1997 Included observations: 728 after adjusting endpoints White Heteroskedasticity-Consistent Standard Errors & Covariance

White Heteroskedasticity Scholstern Standard Enois & Sevanance						
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	1.013793	0.096752	10.47832	0.0000		
STD_RESID^2(-1)	-0.004259	0.035387	-0.120366	0.9042		
STD_RESID^2(-2)	-0.019039	0.035936	-0.529808	0.5964		
STD_RESID^2(-3)	0.052185	0.064812	0.805185	0.4210		
STD_RESID^2(-4)	-0.001052	0.030228	-0.034789	0.9723		
STD_RESID^2(-5)	-0.020828	0.031164	-0.668334	0.5041		
STD_RESID^2(-6)	-0.018512	0.034258	-0.540359	0.5891		
R-squared	0.003833	Mean depe	endent var	1.002101		
Adjusted R-squared	-0.004457	S.D. deper	ndent var	1.642468		
S.E. of regression	1.646124	Akaike info criterion		3.844293		
Sum squared resid	1953.712	Schwarz criterion		3.888431		
Log likelihood	-1392.323	F-statistic		0.462372		
Durbin-Watson stat	2.000571	Prob(F-sta	tistic)	0.836320		

Appendix 7A - Static Forecasts

GARCH(3,1) - static

GARCH(2,1)-static

Appendix 7B Dynamic Forecasts

GARCH(3,1)-static

Appendix 8

Equation 5 Dependent Variable: VDE Method: Least Squares

Sample(adjusted): 11/16/1985 9/09/1995 Included observations: 513 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
C SPDE	-0.037569 0.602385	0.009267 0.046152	-4.054215 13.05212	0.0001 0.0000	
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.250027 0.248559 0.202392 20.93186 92.62894 0.310656	Mean depe S.D. deper Akaike info Schwarz c F-statistic Prob(F-sta	endent var ndent var o criterion riterion tistic)	-0.005536 0.233478 -0.353329 -0.336798 170.3578 000000	

Correlogram and Q Statistics

Sample: 11/16/1985 9/09/1995 Included observations: 513

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. ******	. ******	1	0.845	0.845	368.06	0.000
. *****	.i. I	2	0.705	-0.029	625.10	0.000
. ****	* .	3	0.548	-0.139	780.90	0.000
. ***	* .	4	0.378	-0.154	855.21	0.000
. **	. **	5	0.321	0.283	908.65	0.000
. *	** .	6	0.190	-0.306	927.51	0.000
. *		7	0.095	-0.018	932.19	0.000
. .	. .	8	0.012	-0.049	932.26	0.000
* .		9	-0.077	0.042	935.38	0.000
* .	. *	10	-0.063	0.123	937.45	0.000
* .	· ·	11	-0.067	-0.017	939.79	0.000
<u>.i. i</u>	i. i	12	-0.056	-0.042	941.47	0.000

ash Codfroy Sorial Correlation I M T _

Breusch-Godfrey Serial Correlation LM Test:						
F-statistic	144.7192	Probability		0.000000		
Obs*R-squared	398.4967	Probability		0.000000		
Test Equation:						
Dependent Variable: RESID)					
Variable	Coefficient	Std. Error	t-Statistic	Prob.		
С	-0.001257	0.004434	-0.283417	0.7770		
SPDE	0.023393	0.022447	1.042164	0.2978		
RESID(-1)	0.965306	0.044686	21.60196	0.0000		
RESID(-2)	-0.000840	0.062144	-0.013521	0.9892		
RESID(-3)	-0.024455	0.061841	-0.395445	0.6927		
RESID(-4)	-0.365769	0.061806	-5.917990	0.0000		
RESID(-5)	0.494642	0.063752	7.758801	0.0000		
RESID(-6)	-0.241420	0.067470	-3.578194	0.0004		
RESID(-7)	0.045410	0.067522	0.672519	0.5016		
RESID(-8)	-0.103292	0.063785	-1.619388	0.1060		
RESID(-9)	-0.075664	0.061865	-1.223053	0.2219		
RESID(-10)	0.136963	0.061906	2.212430	0.0274		
RESID(-11)	0.022515	0.062219	0.361860	0.7176		
RESID(-12)	<u>-</u> 0.043608	0.044783	<u>-</u> 0.973754	0.3307		
ARCH Test:						
F-statistic	63.91295	Probability		0.000000		
Obs*R-squared	306.1819	Probability		0.000000		

Test Equation: Dependent Variable: RESID²

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.011823	0.003274	3.611249	0.0003
RESID^2(-1)	0.859547	0.045263	18.98993	0.0000
RESID ² (-2)	-0.033491	0.059674	-0.561235	0.5749
RESID ² (-3)	-0.146249	0.058822	-2.486318	0.0132
RESID ² (-4)	0.021093	0.058453	0.360852	0.7184
RESID ² (-5)	0.086703	0.058396	1.484731	0.1383
RESID^2(-6)	-0.036984	0.058289	-0.634490	0.5261
RESID ² (-7)	-0.118097	0.058278	-2.026426	0.0433
RESID^2(-8)	0.059136	0.058376	1.013009	0.3116
RESID ² (-9)	0.206505	0.058429	3.534275	0.0004
RESID^2(-10)	-0.224557	0.058797	-3.819202	0.0002
RESID^2(-11)	0.029097	0.059649	0.487809	0.6259
RESID^2(-12)	0.013301	0.045247	0.293964	0.7689

Normality

Equation 5 with corrected standard errors

Dependent Variable: VDE Sample(adjusted): 11/16/1985 9/09/1995 Included observations: 513 after adjusting endpoints Newey-West HAC Standard Errors & Covariance (lag truncation=5)

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C SPDE	-0.037569 0.602385	0.017799 0.140682	-2.110720 4.281906	0.0353 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.250027 0.248559 0.202392 20.93186 92.62894 0.310656	Mean depe S.D. deper Akaike info Schwarz ci F-statistic Prob(F-sta	endent var ndent var o criterion riterion tistic)	-0.005536 0.233478 -0.353329 -0.336798 170.3578 _0.000000

Appendix 9

Equation 6 Dependent Variable: LRDE Method: Least Squares

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C HSPDE	-0.019900 0.540194	0.013025 0.130302	-1.527851 4.145717	0.1272 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.032234 0.030359 0.285971 42.19817 -85.54220 0.463649	Mean depen S.D. depend Akaike info c Schwarz crite F-statistic Prob(F-statis	dent var ent var riterion erion tic)	-0.005676 0.290413 0.338001 0.354410 17.18697 0.000040

Correlogram

Sample: 11/16/1985 10/14/1995 Included observations: 518

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. *****	. *****	1	0.768	0.768	307.43	0.000
. ****	* .	2	0.532	-0.142	454.98	0.000
. **	** .	3	0.274	-0.208	494.14	0.000
.j. j	* .	4	0.022	-0.187	494.39	0.000
. .	- ***	5	-0.002	0.370	494.39	0.000
. .	* .	6	-0.044	-0.158	495.40	0.000
. .	* .	7	-0.045	-0.068	496.48	0.000
. .	.i. i	8	-0.028	-0.037	496.90	0.000
. .	. **	9	-0.013	0.226	496.99	0.000
. .	* .	10	0.019	-0.095	497.17	0.000
. .	* .	11	0.026	-0.064	497.54	0.000
.i. i		_12	0.029	-0.008	497.98	0.000

Breusch-Godfrey Serial Correlation LM Test:

F-statistic	103.2125	Probability	0.000000
Obs*R-squared	368.1782	Probability	0.000000

Test Equation: Dependent Variable: RESID Method: Least Squares

Presample missing value lagged residuals set to zero.

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	-0.002635	0.007135	-0.369306	0.7121
HSPDE	0.097259	0.078159	1.244377	0.2139
RESID(-1)	0.946663	0.044490	21.27798	0.0000
RESID(-2)	0.028210	0.061237	0.460669	0.6452
RESID(-3)	-0.089621	0.061258	-1.463023	0.1441
RESID(-4)	-0.631853	0.059955	-10.53879	0.0000
RESID(-5)	0.666396	0.065004	10.25162	0.0000
RESID(-6)	-0.086835	0.071371	-1.216669	0.2243
RESID(-7)	-0.084026	0.071394	-1.176933	0.2398
RESID(-8)	-0.258571	0.065157	-3.968450	0.0001
RESID(-9)	0.313342	0.059919	5.229380	0.0000
RESID(-10)	-0.032726	0.061386	-0.533124	0.5942
RESID(-11)	-0.058876	0.061402	-0.958868	0.3381
RESID(-12)	-0.013136	0.044830	<u>-</u> 0.293011	0.7696

ARCH Test:			
F-statistic	76.38041	Probability	0.000000
Obs*R-squared	243.5844	Probability	0.000000

Test Equation: Dependent Variable: RESID^2 Method: Least Squares Date: 04/30/00 Time: 17:26 Sample(adjusted): 12/28/1985 10/14/1995 Included observations: 512 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	0.028428	0.007434	3.824152	0.0001
RESID^2(-1)	0.771410	0.044471	17.34647	0.0000
RESID ² (-2)	-0.167628	0.056161	-2.984800	0.0030
RESID ² (-3)	0.015757	0.056481	0.278972	0.7804
RESID ² (-4)	0.099482	0.056479	1.761405	0.0788
RESID ² (-5)	-0.028760	0.056159	-0.512119	0.6088
RESID^2(-6)	-0.036549	0.044469	-0.821895	0.4115

Normality

Equation 6 with corrected standard errors

Dependent Variable: LRDE Method: Least Squares

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints Newey-West HAC Standard Errors & Covariance (lag truncation=5)

Variable	Coefficient	Std. Error	t-Statistic	Prob.		
C HSPDE	-0.019900 0.540194	0.021632 0.385654	-0.919957 1.400724	0.3580 0.1619		
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.032234 0.030359 0.285971 42.19817 -85.54220 0.463649	Mean depen S.D. depend Akaike info d Schwarz crit F-statistic Prob(F-statistic	ndent var dent var criterion rerion stic)	-0.005676 0.290413 0.338001 0.354410 17.18697 <u>0</u> .000040		

Appendix 10

ARCH modelling for equation 5 Dependent Variable: VDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 9/09/1995 Included observations: 513 after adjusting endpoints Convergence achieved after 16 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
С	-0.015885	0.004560	-3.483816	0.0005		
SPDE	0.521266	0.024946	20.89558	0.0000		
	Variance	e Equation				
С	0.003780	0.000663	5.699912	0.0000		
ARCH(1)	0.854450	0.115073	7.425259	0.0000		
ARCH(2)	0.195038	0.057516	3.391026	0.0007		
R-squared	0.239947	Mean depe	endent var	-0.005536		
Adjusted R-squared	0.233962	S.D. deper	ndent var	0.233478		
S.E. of regression	0.204348	Akaike info	o criterion	-1.111797		
Sum squared resid	21.21319	Schwarz c	riterion	-1.070469		
Log likelihood	290.1760	F-statistic		40.09358		
Durbin-Watson stat	0.309033	Prob(F-sta	tistic)	0.000000		

Dependent Variable: VDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 9/09/1995 Included observations: 513 after adjusting endpoints Convergence achieved after 16 iterations

Convergence achieved after to iterations						
	Coefficient	Std. Error	z-Statistic	Prob.		
C	-0.015705	0.004511	-3.481696	0.0005		
SPDE	0.517079	0.025997	19.00990	0.0000		
	Variance Equation					
С	0.002809	0.000571	4.915303	0.0000		
ARCH(1)	0.841089	0.108601	7.744757	0.0000		
GARCH(1)	0.201328	0.047108	4.273779	0.0000		
R-squared	0.239494	Mean depend	dent var	-0.005536		
Adjusted R-squared	0.233506	S.D. depende	ent var	0.233478		
S.E. of regression	0.204409	Akaike info c	riterion	-1.113283		
Sum squared resid	21.22583	Schwarz crite	erion	-1.071955		
Log likelihood	290.5572	F-statistic		39.99410		
Durbin-Watson stat	0.309060	Prob(F-statis	tic)	0.000000		

ARCH modelling for equation 6 ARCH(1,0)

Dependent Variable: LRDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints Convergence achieved after 26 iterations

Convergence achieved alter 20 iterations						
	Coefficient	Std. Error	z-Statistic	Prob.		
C	-0.009704	0.009295	-1.043957	0.2965		
HSPDE	0.538849	0.082029	6.568981	0.0000		
Variance Equation						
C	0.019779	0.001302	15.19362	0.0000		
ARCH(1)	0.744679	0.114251	6.517906	0.0000		
R-squared	0.031008	Mean dependent var		-0.005676		
Adjusted R-squared	0.025352	S.D. dependent var		0.290413		
S.E. of regression	0.286708	Akaike info criterion		-0.255415		
Sum squared resid	42.25166	Schwarz criterion		-0.222597		

Log likelihood	70.15250	F-statistic	5.482650
Durbin-Watson stat	0.462995	Prob(F-statistic)	0.001029

GARCH(1,1) Dependent Variable: LRDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints Convergence achieved after 25 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
C	-0.016730	0.008147	-2.053475	0.0400		
HSPDE	0.494479	0.077264	6.399851	0.0000		
Variance Equation						
C	0.009013	0.001455	6.195797	0.0000		
ARCH(1)	0.645768	0.094218	6.853990	0.0000		
GARCH(1)	0.292287	0.032615	8.961623	0.0000		
R-squared	0.031958	Mean dependent var		-0.005676		
Adjusted R-squared	0.024410	S.D. dependent var		0.290413		
S.E. of regression	0.286847	Akaike info criterion		-0.278928		
Sum squared resid	42.21024	Schwarz criterion		-0.237905		
Log likelihood	77.24241	F-statistic		4.233871		
Durbin-Watson stat	0.461290	Prob(F-statistic)		0.002216		

GARCh(2,1)

Dependent Variable: LRDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints Convergence achieved after 31 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
C	-0.014409	0.008137	-1.770661	0.0766		
HSPDE	0.539041	0.080909	6.662347	0.0000		
Variance Equation						
C	0.004036	0.001923	2.098994	0.0358		
ARCH(1)	0.732548	0.113441	6.457506	0.0000		
ARCH(2)	-0.457894	0.145174	-3.154111	0.0016		
GARCH(1)	0.683127	0.144011	4.743563	0.0000		
R-squared	0.031880	Mean dependent var		-0.005676		
Adjusted R-squared	0.022426	S.D. dependent var		0.290413		
S.E. of regression	0.287138	Akaike info criterion		-0.297251		
Sum squared resid	42.21363	Schwarz criterion		-0.248023		
Log likelihood	82.98792	F-statistic		3.372010		
Durbin-Watson stat	0.463422	Prob(F-statistic)		0.005243		

Appendix 11: Diagnostic tests

Equation 5 with GARCH (1,1)

Normality

Serial Correlation

Sample: 11/16/1985 9/09/1995 Included observations: 513

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
- * * * * - * * * - * * - *	- **** - * - - * -	1 2 3 4	0.590 0.447 0.321 0.147	0.590 0.152 0.013 -0.134	179.58 282.87 336.31 347.53	0.000 0.000 0.000 0.000
- **	- **	5	0.244	0.258	378.54	0.000
. * *	* .	6	0.122	-0.130	386.31	0.000
· ^	. . *	/	0.074	-0.035	389.15	0.000
- - *	. *	8	0.000	-0.104	309.17	0.000
- 	- *	9 10	-0.135	-0.100	390.74	0.000
		10	-0.018	0.053	399.42	0.000
		12	0.011	0.006	399.48	0.000
F-statistic Obs*R-squared	0.667733 2.011074	Probabil Probabil	ity ity		0.572 0.570	2154)111
Test Equation: Dependent Variable: STD_RESID^2 Sample(adjusted): 12/07/1985 9/09/1995 Included observations: 510 after adjusting endpoints Newey-West HAC Standard Errors & Covariance (lag truncation=5)						
Variable	Coefficient	Std. Error	t-S	statistic	Prob.	
C STD_RESID^2(-1) STD_RESID^2(-2)	1.013164 0.023764 0.020890	0.102998 0.031319 0.028878	9.8 0.7 0.7	336742 758772 723380	0.000 0.448 0.469)0 33 98
STD_RESID^2(-3)	-0.054966	0.024762	-2.	219781	0.026	69

Equation 6 with GARCH(2,1)

Normality

Serial Correlation

Sample: 11/16/1985 10/14/1995 Included observations: 518

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
. ****	. ****	1	0.549	0.549	157.29	0.000
***	. *	2	0.392	0.129	237.60	0.000
**	* .	3	0.200	-0.086	258.43	0.000
* .	** -	4	-0.066	-0.270	260.74	0.000
·ĺ· ĺ	. **	5	0.017	0.214	260.90	0.000
	i. I	6	-0.011	0.035	260.96	0.000
		7	0.012	-0.010	261.04	0.000
	*].	8	0.017	-0.102	261.19	0.000
	· *	9	0.014	0.084	261.29	0.000
		10	0.001	-0.015	261.29	0.000
	.i. i	11	-0.014	-0.015	261.40	0.000
<u>.i. i</u>	i. i	12	-0.026	-0.053	261.77	0.000

ARCH LM Test

F-statistic	0.806633	Probability	0.490562
Obs*R-squared	2.427345	Probability	0.488565

Test Equation: Dependent Variable: STD_RESID^2 Method: Least Squares

Sample(adjusted): 12/07/1985 10/14/1995 Included observations: 515 after adjusting endpoints Newey-West HAC Standard Errors & Covariance (lag truncation=5)

Variable Coefficient Std. Error t-Statistic Prob.	_
C 0.965089 0.110658 8.721343 0.0000	
STD_RESID^2(-1) 0.061561 0.036793 1.673165 0.0949	
STD_RESID^2(-2) 0.004737 0.027252 0.173835 0.8621	
STD_RESID^2(-3)0.030136 _0.0216931.389196 _0.1654	

Appendix 12: GARCH-M models

Equation 5 - GARCH-M(1,1) Dependent Variable: VDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 9/09/1995 Included observations: 513 after adjusting endpoints Convergence achieved after 46 iterations

Convergence achieved after 40 fieldlons						
	Coefficient	Std. Error	z-Statistic	Prob.		
SQR(GARCH)	-0.183494	0.072013	-2.548069	0.0108		
С	0.005996	0.008530	0.702975	0.4821		
SPDE	0.528680	0.026858	19.68459	0.0000		
Variance Equation						
С	0.002650	0.000560	4.735286	0.0000		
ARCH(1)	0.822579	0.116609	7.054179	0.0000		
GARCH(1)	0.219254	0.056620	3.872360	0.0001		
R-squared	0.210791	Mean depe	endent var	-0.005536		
Adjusted R-squared	0.203008	S.D. deper	ndent var	0.233478		
S.E. of regression	0.208436	Akaike info criterion		-1.120415		
Sum squared resid	22.02694	Schwarz criterion		-1.070821		
Log likelihood	293.3865	F-statistic		27.08303		
Durbin-Watson stat	0.301035	Prob(F-sta	atistic)	0.000000		

Equation 6 - GARCH(2,1) Dependent Variable: LRDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints Convergence achieved after 41 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
SQR(GARCH)	-0.287861	0.083936	-3.429532	0.0006		
C	0.042036	0.015671	2.682440	0.0073		
HSPDE	0.534857	0.077924	6.863794	0.0000		
Variance Equation						
С	0.002408	0.000750	3.208853	0.0013		
ARCH(1)	0.745117	0.109748	6.789330	0.0000		
ARCH(2)	-0.535463	0.100888	-5.307508	0.0000		
GARCH(1)	0.768512	0.060411	12.72140	0.0000		
R-squared	-0.029574	Mean dep	endent var	-0.005676		
Adjusted R-squared	-0.041663	S.D. depe	ndent var	0.290413		
S.E. of regression	0.296401	Akaike info criterion		-0.312964		
Sum squared resid	44.89325	Schwarz c	-0.255532			
Log likelihood	88.05765	Durbin-Wa	atson stat	0.448140		

Appendix 13: Asymmetric GARCH Models

TARCH(1,1)- equation 5 Dependent Variable: VDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 9/09/1995 Included observations: 513 after adjusting endpoints Convergence achieved after 98 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
SQR(GARCH)	-0.361893	0.081294	-4.451648	0.0000		
C	0.022711	0.008407	2.701404	0.0069		
SPDE	0.536169	0.026655	20.11530	0.0000		
Variance Equation						
C	0.002601	0.000531	4.901595	0.0000		
ARCH(1)	0.540528	0.094657	5.710389	0.0000		
(RESID<0)*ARCH(1)	0.597623	0.219534	2.722236	0.0065		
GARCH(1)	0.233454	0.051109	4.567762	0.0000		
R-squared	0.202952	Mean dependent var		-0.005536		
Adjusted R-squared	0.193501	S.D. dependent var		0.233478		
S.E. of regression	0.209676	Akaike info criterion		-1.136851		
Sum squared resid	22.24573	Schwarz criterion		-1.078992		
Log likelihood	298.6023	F-statistic		21.47372		
Durbin-Watson stat	0.310445	Prob(F-statistic)		0.000000		

EGARCH(1,1)-equation 5

Dependent Variable: VDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 9/09/1995 Included observations: 513 after adjusting endpoints Convergence achieved after 58 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
SQR(GARCH)	-0.380394	0.087986	-4.323321	0.0000		
С	0.022463	0.008146	2.757468	0.0058		
SPDE	0.541346	0.024363	22.22030	0.0000		
Variance Equation						
С	-1.654720	0.245451	-6.741542	0.0000		
RES /SQR[GARCH](1)	1.073453	0.134661	7.971499	0.0000		
RES/SQR[GARCH](1)	-0.139625	0.066562	-2.097682	0.0359		
EGARCH(1)	0.806380	0.043277	18.63313	0.0000		
R-squared	0.222925	Mean dep	endent var	-0.005536		
Adjusted R-squared	0.213711	S.D. depe	ndent var	0.233478		
S.E. of regression	0.207032	Akaike info criterion		-1.138876		
Sum squared resid	21.68828	Schwarz o	-1.081016			
Log likelihood	299.1217	F-statistic	24.19329			
Durbin-Watson stat	0.323744	Prob(F-sta	atistic)	0.000000		

TARCH(2,1)- equation 6

Dependent Variable: LRDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints Convergence achieved after 36 iterations

	Coefficient	Std. Error	z-Statistic	Prob.		
SQR(GARCH) C HSPDE	-0.102610 0.010574 0.545877	0.099803 0.016429 0.078911	-1.028127 0.643622 6.917618	0.3039 0.5198 0.0000		
Variance Equation						
C ARCH(1)	0.002274 0.785764	0.000659 0.121999	3.450332 6.440755	0.0006 0.0000		

ARCH(2) (RESID<0)*ARCH(1) GARCH(1)	-0.546531 -0.108757 0.798179	0.099627 0.044138 0.052312	-5.485765 -2.464016 15.25802	0.0000 0.0137 0.0000
R-squared	0.019768	Mean dependent var		-0.005676
Adjusted R-squared	0.006314	S.D. dependent var		0.290413
S.E. of regression	0.289495	Akaike info	-0.345082	
Sum squared resid	42.74177	Schwarz criterion		-0.279445
Log likelihood	97.37617	F-statistic		1.469263
Durbin-Watson stat	0.458750	Prob(F-sta	itistic)	0.175789

EGARCH(2,1) Dependent Variable: LRDE Method: ML - ARCH

Sample(adjusted): 11/16/1985 10/14/1995 Included observations: 518 after adjusting endpoints Convergence achieved after 74 iterations

	Coefficient	Std. Error	z-Statistic	Prob.
SQR(GARCH)	-0.398103	0.091658	-4.343334	0.0000
C	0.060420	0.014898	4.055432	0.0001
HSPDE	0.414916	0.075729	5.478930	0.0000
Variance Equation				
C	-1.356985	0.175145	-7.747776	0.0000
RES /SQR[GARCH](1)	1.026911	0.102717	9.997514	0.0000
RES/SQR[GARCH](1)	-0.104128	0.078385	-1.328428	0.1840
RES /SQR[GARCH](2)	-0.067393	0.115088	-0.585580	0.5582
RES/SQR[GARCH](2)	0.147571	0.067806	2.176379	0.0295
EGARCH(1)	0.816661	0.036794	22.19525	0.0000
R-squared	-0.085069	Mean dependent var		-0.005676
Adjusted R-squared	-0.102123	S.D. dependent var		0.290413
S.E. of regression	0.304882	Akaike info criterion		-0.323086
Sum squared resid	47.31303	Schwarz criterion		-0.249245
Log likelihood	92.67939	Durbin-Watson stat		0.437216

References

- **Boero G., Torricelli, C.,** 1998, Tests of the Expectations Hypothesis and Policy Reaction to The Term Spread: Some Comparative Evidence, Warwick Economic Research Papers, No. 512.
- **Boero, G.**, 2000, Research Techniques Financial Time Series Models, MSc Course, University of Warwick
- **Bollerslev, T.,** 1986, Generalised Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 31, 307-28
- **Bollerslev, T., Engle, R ad Nelson, D.,** 1994, ARCH models, in Engle, R. and McFadden, D., Handbook of Econometrics, vol. 4, 2959-3038
- Campbell, J. Y. and Shiller, R. J., 1987, Cointegration and Tests of Present Value Models, The Journal of Political Economy, 95, No. 5., pp. 1062-1088.
- **Campbell, J.,** 1995, Some Lessons from the Yield Curve, The Journal of Economic Perspectives, 9, No. 3., pp. 129-152.
- **Campbell, J.; Lo, A. and MacKinlay, A.,** 1997, The econometrics of financial markets, Princeton University Press
- Diebold F. X. and Marc Nerlove, 1989: The Dynamics of Exchange Rate Volatility: A Multivariate Latent Factor Arch Model, Journal of Applied Econometrics, Vol. 4, No. 1, pp. 1-21.
- Enders, W., 1995, Applied econometric time series, Wiley
- Engle R. F.; Ng, V., 1993, Time-Varying Volatility and the Dynamic Behavior of the Term Structure, Journal of Money, Credit and Banking, Vol. 25, No. 3, Part 1., pp. 336-349.
- Engle, R. F., Ng, V. K., 1993, Measuring and Testing the Impact of News on Volatility, Journal of Finance, Vol. 48, No. 5. (Dec., 1993), pp. 1749-1778.
- Engle, R., 1982, Autoregressive conditional heteroskedasticity with estimates of the variance of the UK inflation, Econometrica, 50, 987-1008
- **Engle, R; Lillien, D. and Robins, R.,** 1987, Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model, Econometrica, 55, 2, pp. 391-407.

- **Hardouvelis, G.,** 1994, The term structure spread and future changes in long and short rates in the G7 countries: is there a puzzle?', Journal of Monetary Economics, 33, 255-83
- Lastrapes, W., 1989, Exchange Rate Volatility and U. S. Monetary Policy: An ARCH Application, Journal of Money, Credit and Banking, 21, No. 1., pp. 66-77.
- Mills, T., 1999, The econometric modelling of financial time series, 2nd ed, CUP
- Taylor, M.P., 1992, Modelling the yield curve, The Economic Journal, 102, 524-537
- **Tzavalis, E. and Wickens, M.,** 1997, Explaining the failures of the term spread models of the rational expectations hypothesis of the term structure, Journal of Money, Credit and Banking, 29, 3, 364-80