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Abstract 

 

More than forty years ago researchers started to reconsider the behavior of financial data. 

Since then, stylized facts about financial returns have become common knowledge in 

economics. Characteristics as fat-tailedness, leptokurtosis and serial dependence have been 

extensively analyzed. As the financial world became focused on risk management and 

prudential supervision, various risk models have been developed. However, the first 

generation of risk models is highly dependent on rough assumptions, empirically 

contradicted, but embraced by practitioners as they benefit from a fairly easy implementation. 

In the context of market risk, such a proxy was developed under the name of Value at Risk, 

which rapidly became a standard measure for both risk managers and supervisors. The 

current state of affairs brings us one step closer to the death of VaR. The need for a new 

approach is imperative.  

This paper aims to bring new evidence to the limited performance of Value at Risk and test 

the fit of Extreme Value Theory as a complementary risk management tool for stressed 

market conditions, in the context of exchange rate risk. We use exchange rate returns of four 

currencies against the Euro and analyze the relative performance of several VaR models and 

Extreme Value Theory, respectively. We show that in extreme market conditions, extreme 

measures are required, and that no single measure can perform proper for both the centre and 

the tails of an exchange rate distribution.       
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1 Introduction 

Reality brings forward stressed market conditions and empirically proved stylized facts, as 

suggested in the early work of Mandelbrot (1963) or Fama (1963) or in the more recent work 

of Manganelli and Engle (2001): financial returns, especially exchange rate and interest rate 

returns, are not normally distributed, but fat-tailed, leptokurtic and skewed, suffer from 

volatility clustering and are not independent. Movements of 4-6 sigmas are rather common in 

financial markets, while normal distribution concentrates on movements of 2-3 sigmas1. 

Using Gaussian as a reference distribution in assessing market risk, one assumes that the 

probability of an extreme event is considerably lower than it is in fact, thus underestimating 

the true risk of an asset or portfolio. 

Risk management is a key function within financial institutions and during the last decade 

financial markets have realized the importance of monitoring risks. Recent years brought 

significant instability in financial markets worldwide, mainly because of excessive risk 

appetite of market participants. In the context of current crisis, financial risk management has 

been very much challenged. The triggers of the crisis are various and still not fully known but 

the rapid spreading of the effects was the whistleblower of both risk managers and 

supervisory authorities. The development of high risk behaviour in financial markets, 

especially in the banking system and real estate (subprime lending, securitization, toxic 

assets, complex derivatives and deregulation) led to huge bankruptcies, bailouts and 

takeovers (e.g. Lehman Brothers U.S., Northern Rock U.K., Bear Stearns U.S., Merrill Lynch 

U.S.), and also to a generalized liquidity crisis, declining stock market prices and real estate 

values, numerous insolvencies and economic recession. The common lesson of financial 

disasters is that unbearable losses can occur because of poor supervision and risk 

management of financial risks.        

One of the most affected sectors in the global economy is the banking system. The crisis has 

also put a very difficult charge on regulators. The advent of Basel Capital Accord back in 

1996 brought into view the concern about quantifying risks, but its further amendments2, 

although incorporating new risks in risk management, also proved laxer, allowing internal 

risk management models for prudential capital requirements calculation. Under Basel II, 

                                                 
1 Blum, Dacorogna (2002) specifically consider daily fluctuations in FX returns up to 5% as highly significant.  
2 Followed by The Amendment to the Capital Accord in 1997 and the New Basel Capital Accord of 2006 (Basel 
II) issued by Basel Committee on Banking Supervision. 
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market risk became one of the priorities of risk management. The most widely used approach 

to measure market risk is Value at Risk (VaR). The directives ask for losses in trading 

portfolios to be covered over a 10-day time horizon, 99% of time. In practice, the calculation 

requires operating with minimum one year P&L historical data. The measure has become 

popular among practitioners, due to its simple implementation. 

VaR is formally defined as the potential loss of a portfolio that would result if relatively large 

adverse price movements were to occur, over a certain time horizon, with a given probability. 

Historical VaR does not make any assumptions concerning the underlying distribution but it 

highly depends on historical data, ignoring out-of-sample events, thus implying that the 

future will be similar to the past. Various alternatives have been proposed. Some of these 

alternatives refer to the use of ARCH models introduced by Engle (1982) and Bollerslev 

(1986)3, with normal or Student-t distribution4, J.P. Morgan RiskMetrics (1996) 

Exponentially Weighted Moving Average volatility models, complementary Conditional VaR 

models, popularized by Rockafeller and Uryasev (1999, 2002), and others.  

As recently suggested by researchers and practitioners5, VaR-based risk management 

framework must be reviewed. The presence of high volatility in financial markets and the 

occurrence of extreme events result into the need to develop new products and methods to 

deal with these issues. Risk managers and supervisors become more concerned with events 

occurring under extreme market conditions, events that produce huge, unexpected losses, that 

could affect their capital (i.e. solvency) and also lead to bankruptcies and hence, systemic 

risk. 

In the last years financial risk modelling has easily incorporated a new framework for 

measuring risks, Extreme Value Theory, traditionally used in fields like hydrology and 

meteorology. A wide literature has been recently devoted to the study of extreme events in 

finance and insurance6. In practice, the framework has been adopted in operational risk and 

insurance loss modelling. EVT describes the behaviour of extreme returns rather than 

describing the behaviour of all returns. Unlike most VaR methods, there are no assumptions 

                                                 
3 Further developed by Nelson – EGARCH (1991), Glosten, Jagannathan and Runkle – GJR-GARCH (1993), 
Zakoian – TGARCH (1994), and others. 
4Jorion (1996), and Yang and Brorsen (1995). 
5 See for example Colander et al. (2009), Einhorn (2008), Bernanke (2009); The High-Level Group on Financial 
Supervision in the EU (2009); Sir John Gieve (2008). 
6 See McNeil (1997a, 1997b, 1998, 1999), Huisman et al. (1998), Gencay et al. (2003), Embrechts et al. (1997) 
for instance. 
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about the nature of the underlying distribution. However, inference for very high quantiles is 

done at the expense of not modelling correctly moderate movements, precisely where VaR 

estimation intervenes, thus the two approaches are rather complementary. There are two 

general approaches under EVT: first, Block Maxima, stemming from the behaviour of the k 

largest order statistics within a block, which are assumed to follow a Generalized Extreme 

Value (GEV) distribution, and second, Peaks over Threshold, originating in observations 

exceeding a high threshold, which are considered to follow a Generalized Pareto Distribution 

(GPD). Most researchers are in favour of POT method since it uses data more efficiently.  

The use of a certain proxy for market risk is somewhat reduced to a trade-off: regulators 

would prefer more conservative measures, which diminish systemic risk but results into 

inefficient supplementary capital allocation, and bank managers would prefer underestimated 

losses, with high risks but low capital requirements.  This paper aims to test the performance 

of Extreme Value Theory (EVT) as a complementary risk measure for the analysis of extreme 

events, in the context of exchange rate risk7, using EUR/CHF, EUR/GBP, EUR/RON and 

EUR/USD exchange rate returns and underline the existing trade-off between coverage and 

efficiency. Our objectives are: i) analyze the presence of stylized facts in the data, ii) produce 

point estimates of potential losses from exchange rate positions using VaR and EVT, iii) 

modelling VaR to incorporate EVT and determine dynamic VaR measures, iv) backtest the 

results and conclude on the specific performance of employed measures.  

The rest of the paper unfolds as follows: Section 2 makes a quick overview of the most 

referenced literature in the field of VaR and EVT; Section 3 presents the theoretical 

framework of different Value at Risk approaches and Extreme Value Theory; Section 4 

describes the methodology; Section 5 deals with data analysis and empirical results and 

Section 6 states the concluding remarks and some directions for further research.   

 

2 Literature Review 

A wide literature has been produced addressing market risk modelling, and most of the work 

refers to VaR modelling approaches. Hendricks (1996) analyses the performance of twelve 

different VaR models using historical data on exchange rate returns and finds that historical 

                                                 
7 Engel, Gizycki (1999) found that for four of the largest banks in Australia, FX risk accounts for over one third 
of market risk. This finding also applies to many Romanian banks, large and small. 
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simulation performs better at 95% than at 99% or higher confidence levels and Exponentially 

Weighted Moving Average is more reliable with 0.94 decay factor for daily returns. Duffie 

and Pan (1997) give a theoretical overview of VaR models applicable to market risk and their 

econometric and practical implications, without empirical evidence. Jorion (2001) offers a 

complete and detailed study of Value at Risk, of its application to different types of risks and 

portfolios, and also states the pitfalls of such models, although he very much supports the 

general approach. Engel and Gizycki (1999) develop the work of Hendricks and propose new 

tests for the performance, accuracy and efficiency. Rockafellar and Uryasev (2002) approach 

Conditional Value at Risk, as a measure who deals with some of the shortcomings of VaR, 

mainly the lack of subadditivity (coherence) and the limited information provided by VaR – it 

tells nothing about losses exceeding a certain threshold. Rockafellar and Uryasev (2000) also 

propose a method to optimize the CVaR measure. Alexander (2001) offers a very 

comprehensive overview of market risk models and also exemplifies their application using 

different software. Kaplanski and Levy (2009) approach VaR and underline the idea that 

existing regulation, allowing internal risk models, may induce excessive risk taking of banks 

and also distort capital allocation. 

Standard VaR risk measures are generally derived by making distributional assumptions, the 

most common one being normality. The normality assumption imposes several restrictions on 

the underlying distribution of returns like symmetry and, most importantly, lack of excess 

kurtosis. However, many studies, like those of Mandelbrot (1963), Fama (1963), Mussa 

(1979), Andersen et al. (1999) and Manganelli and Engle (2001) have shown that this 

hypothesis is fairly unrealistic. Accordingly, papers like those of Hols and De Vries (1991), 

Huisman et al. (1997), Huisman et al. (1998), Wagner and Marsh (2003) and others have 

shown that financial data are fat-tailed and tested and proved the superior performance of 

EVT methodology in estimating tail risk. Moreover, financial data suffer from volatility 

clustering. In the sense of Mandelbrot (1963), this means that large changes in returns are 

followed by large changes of either sign and, correspondently, small changes are followed by 

small changes. This implies that, although raw returns may be uncorrelated, absolute or 

squared returns display a positive autocorrelation. In order to deal with some of these 

features, several alternative VaR approaches have been studied, like Student-t distribution, 

ARCH-GARCH models, pioneered by Engle (1982) and Bollerslev (1986) or mixtures of 

normal, also approached by Duffie and Pan (1997).    
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However, many authors have oriented their work towards more efficient tail-oriented models 

of risk, namely Extreme Value Theory (EVT) approach. The superiority of EVT has been 

extensively demonstrated by many researchers, in fields like insurance or financial risk 

management. Embrechts, Kluppelberg and Mikosch (1997) employ EVT tools for assessing 

fat tails of different time series, like hydrologic, insurance and financial data, supported by a 

very detailed and complex mathematical framework. Similar work is found in Resnick 

(2007), who studies extreme events in data networks, finance and insurance. McNeil (1997a, 

1997b, 1998, 1999) also studies the performance of the methods in insurance and finance. His 

work focuses on the POT method8, i.e. fitting a Generalized Pareto Distribution to excesses 

over a high threshold. He also applies Block Maxima to financial time series (BMW 

returns)9. POT method is also preferred in the studies of Matthys and Beirlant (2000), Blum 

and Dacorogna (2002), Wagner and Marsh (2003), who compare the performance with 

Student-t and GARCH-t volatility models, Brooks et al. (2003), who employ GPD 

distribution to future contracts, and Gonzalo and Olmo (2004), who use simulated data to 

bootstrap for an optimal threshold. Block Maxima is preferred in papers of Caserta and De 

Vries (2003), who differentiate their analysis for minima and maxima of AEX index, Cotter 

and Dowd (2007), who apply the method to compare tail risks of limit and market orders 

considering the distribution of FX returns, Robert, Segers and Ferro (2008), who analyze the 

tail thickness of FTSE100 index return data. Many of these studies and others use Value at 

Risk to incorporate EVT framework, thus calculating higher quantiles than those computed 

for regular VaR methods. The general agreement is that EVT proves superior in analysing 

extreme movements in data.  

Ample literature has also been dedicated to more specific issues of Extreme Value Theory, 

e.g. tail index and graphical tools of the framework, like mean excess function plot, Hill plot, 

QQ plots etc. Tail index estimation is yet a very widely debated problem of EVT. Starting 

with the work of Hill (1975) and Pickands (1975), many studies have tried to establish a 

measure of the tail thickness of fat-tailed distributions. Alternatives or improved approaches 

are offered in Dekkers et al. (1989), who extend the Hill estimator and prove consistency and 

asymptotic normality. Huisman et al. (2001), Segers (2005) and others offer different tail 

index estimators using Monte Carlo simulation, bootstrap methods or regressing Hill 

estimator on the number of order statistics. Despite the dedicated work, the literature is 

                                                 
8 McNeil (1997a), Mc Neil(1997b) and McNeil (1999). 
9 McNeil (1998). 
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divergent with respect to tail index estimation, especially since some of the underlying steps 

for the computation of such indexes (e.g. the choice of a threshold) are still subject to 

arbitrary methods and their relative efficiency depends on the characteristics of the data used 

for empirical analysis.     

Researchers have also studied the behaviour of some usual graphical tools used in the 

preliminary analysis of data. Remarkable work has been done by Kratz and Resnick (1995), 

who analyze the information provided by QQ-plots, Embrechts et al. (1997), who offer a very 

detailed analysis of Hill plots, Mean Excess Plots and QQ plots, Drees et al. (1998), who 

approach Hill plot and several extensions. Similar work is found in Sousa and Michailidis 

(2004), and Embrechts and Resnick (2007). We will refer to some of the underlying methods 

and results in the following sections. 

 

3 Theoretical Background  

The purpose of this section is to offer an overall view on VaR measures and a more detailed 

presentation of basic EVT framework.  

3.1 Value at Risk  

VaR is generally defined as the maximum potential loss on a portfolio or asset that would 

result over a time horizon, with a given probability, if relatively large adverse movements in 

market variables (price, interest rate, exchange rate) were to occur. More formally, the VaR 

of a portfolio at a confidence level α∈(0;1) is the smallest number l such that the probability 

of a loss L exceeding l over a certain time horizon is smaller than or equal to (1-α): 

{ } )()1()(/inf)( ασμαα ZlLPRlVaR ≤ − = − +>∈=    (1) 

where μ is the mean value of the portfolio/asset, σ the respective standard deviation and Zα is 

the α-percentile of normal distribution. Following J.P. Morgan RiskMetrics framework, most 

financial firms compute 5% VaR over a one-day holding period. For regulatory purposes, 

Basel proposed the calculation of 1% VaR for a ten-day period, based on a historical 

observation period of at least 1 year of data, which should then be multiplied by a safety 

factor of 3 in order to compute capital adequacy requirement. The safety factor was 
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introduced because the normal hypothesis for the P&L distribution is widely recognized as 

unrealistic but may lead to an overestimation of risk for medium movements in market 

variables, which results into significantly higher capital buffer, i.e. significant loss of 

efficiency or, on the contrary, to underestimated risk of very small or very large movements, 

affecting the solvency of the bank and even putting at risk an entire system. 

3.1.1 Parametric Models 

Models like RiskMetrics EWMA, launched in 1996 by J.P. Morgan and ARCH-GARCH, 

introduced by Engle (1982) and Bollerslev (1986), require a specific parameterization for the 

behaviour of prices.  

Under RiskMetrics approach, the volatility is derived from the Exponentially Weighted 

Moving Average model, taking into account past information on returns and variance: 

2
1

2
1

2 )1( −− −+= ttt rλλσσ     (2) 

where:  - variance at time t, - return at time t, 2
tσ tr λ  - decay factor, usually set at 0.94 or 

0.9710. This approach uses the assumption of normally distributed standardized residuals. 

The EGARCH(1,1,1) model, proposed by Nelson (1991), derives from the basic 

GARCH(1,1) of Engle (1982) and Bollerslev (1986) and incorporates the asymmetric 

response to shocks in the equation of conditional variance. The model has the following 

specification for the conditional mean and conditional variance, respectively:     

tttt rr εεβββ +++= −− 12110  

13112
2

110
2 |])[||(|loglog −−−− +−++= ttttt zzEz αασαασ    (3) 

where: zt = εt/σt and α3 measures the asymmetric impact of information, which is considered 

exponential and not quadratic. The model can be used in the general form, to include more 

AR or MA terms in the equation of the mean and more GARCH or ARCH terms in the 

equation of the variance. The i.i.d. assumption is needed in order to estimate the parameters 

of the model. The standard normal distribution of residuals can be replaced by alternatives 

like Student-t, a more appropriate approximation for financial data, or generalized error 

distribution (GED).  

                                                 
10 recommended values:  0.94 for daily data and 0.97 for monthly data. 
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Both normal EGARCH and RiskMetrics tend to underestimate the VaR measure for large 

movements in the data as the normality assumption is not consistent with the behaviour of 

financial returns. The main advantages of these methods are the fairly simple implementation 

and the fact that they allow a complete characterization of the distribution of returns. The use 

of Student-t approximation for innovations can also prove useful to improve the performance 

and we will use this specific method in this paper. On the other hand, disadvantages stem 

from three sources: specification of variance equation, assumptions on underlying 

distribution and the i.i.d. hypothesis on residuals. The impact of these flaws on VaR measure 

is highly dependent on empirical data and results. 

3.1.2 Non-parametric Models 

This class of methods requires no parameterization of price behaviour. The most common 

non-parametric approach is the Historical Simulation (HS). The procedure doesn’t make any 

assumption on the underlying distribution of returns, this being one of its major advantages, 

apart from the very simple implementation. Basically, HS implies the choice of a window of 

observations for portfolio returns, which are then sorted in ascending order. The α-quantile of 

interest is then chosen as the return that leaves α% of the observations under the respective 

value and (1-α)% above.  

Historical VaR does not make any assumptions concerning the underlying distribution and 

eliminates the need of approximations that introduce inaccuracies into calculation. Although 

the measure can incorporate fat tails, it highly depends on historical data, ignoring out-of-

sample events, thus implying that the future will be similar to the past. There are several other 

problems with this approach. First, the methodology is clearly inconsistent. Second, the 

quantile estimator is consistent only if the length of the chosen time window approaches 

infinity. Third, the choice of the time window implies the same distribution for all historical 

data, while there are several volatility clustering periods, which cannot be easily identified. 

So there is a trade-off between the choice of a large window which would make the estimator 

significant and a shorter window which would avoid the risk of taking observation outside the 

volatility cluster. Finally, HS is considered flawed since it puts the same weight on all 

observations, specifically not taking into account the clustering aspect. 

In order to deal with this last disadvantage, a Hybrid Approach between HS and RiskMetrics 

EWMA was developed by Boudoukh, Richardson and Whitelaw (1998). The model applies 
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exponentially declining weights to past returns of the portfolio. Accordingly, to each return rt, 

rt-1, … , rt-k+1 in a k-length time window a weight is assigned in the range: 

kkk

k

λ
λλ

λ
λλ

λ
λ

−
−

−
−

−
−

1
)1(,...,

1
)1(,

1
1 −1

. Then the returns are ordered in ascending order. To compute 

the α-quantile of the portfolio, the weights are summed until α% is reached and the 

corresponding return is considered. 

The significant improvement of this approach is that it incorporates a more flexible 

specification of the data, thus resulting into more reliable figures for the VaR measure. 

Some other models are also used in literature for the computation of tail risk. We remind 

Conditional Value at Risk (CVaR or Expected Shortfall), which is basically the mean size of 

losses exceeding VaR threshold and the semi-parametric model of VaR using Extreme Value 

Theory. We will consider the latter separately, as it is the approach that this paper focuses on 

and several technical issues have to be detailed. 

3.2 Extreme Value Theory     

The fundamental role that Extreme Value Theory plays in the modelling of maxima of a 

random variable is comparable to the role of Central Limit Theorem in modelling sums of 

random variables. More precisely, in both cases theory gives us the limiting distributions.  

There are two main approaches when identifying extremes in real data. Let us consider the 

distribution of daily returns/losses. The first approach – under the generic name of Block 

Maxima – considers the maximum (minimum) values that returns take over successive 

periods of same length (blocks). The selected values (one maximum/minimum for each 

period in the time span of time series) are considered extreme events that constitute block 

maxima (minima). The second approach – Peaks over Threshold (POT) - focuses on returns 

that exceed a given high threshold. The two approaches are illustrated in Figure 1 below. 

Block Maxima is generally used in fields with seasonal data e.g. hydrology and has the 

disadvantage that it could overlook extreme events in the same block, as it only uses the 

largest observation in each block. Also, the choice of block length is subject to 

misspecification. POT method has the advantage to more efficiently use data but, on the other 

hand, relies on the choice of the high threshold, which is fairly subjective. Until the present 

day, no general agreement has been reached upon the best method for threshold selection nor 

have researchers developed a fully parametric algorithm. 
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         1       2         3        4 observations 

value 

value 

obs. in blocks  

Figure 1. Block Maxima (left) and Peaks over Threshold (right) 

3.2.1 Block Maxima. Distribution of Maxima (GEV)  

Reconsider the sequence of daily returns with X1, X2, …, Xn i.i.d. and denote by Mn=max(X1, 

X2, … , Xn) the block maxima, with n the size of the block. The limit law for the distribution 

of maxima is given by one of the two fundamental theorems of EVT – Fisher-Tippett 

Theorem, formally proved by Gnedenko. 

Theorem 1. Fisher-Tippett (1928), Gnedenko (1943) 

Let (Xn) be a sequence of i.i.d. random variables. If there exist constants cn > 0, dn
11  ∈ ℜ and 

some non-degenerate function H such that 

H
c

d

n

nn ⎯→⎯
dM −

, 

then H belongs to one of the three standard extreme value distributions: 

Fréchet:    α > 0                                                          (5) 
⎩
⎨
⎧

>
=Φ −− 0,

)(
xe

x x αα

≤ 0,0 x

−− )( x α

                                                

Weibull:   α > 0                                                          (6) 
⎪⎩

⎪
⎨
⎧

>
≤=Ψ

0,1
0,)(

x
xexα

 
11 Embrechts et. al (1997) state the common practice of taking dn equal to 0. 
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Gumbel:   x∈ℜ                                                                                   (7) 
xe−−

− /1 ξ

                                                

ex =Λ )(

The Fisher-Tippett theorem suggests that the asymptotic distribution of maxima belongs to 

one of the three distributions above, regardless of the original distribution of observed data. 

By taking the reparameterisation α=1/ξ, von Mises (1936) and Jenkinson (1955) represented 

the three distributions in one unified model with a single parameter, thus introducing 

Generalised Extreme Value Distribution (GEV):   

⎪⎩

⎪
⎨
⎧

=
≠= −−

+−

0,
0,)(

)1(

ξ
ξξ

ξ xe

x

e
exH                                                       (8) 

where 1+ξx > 0, ξ = 1/α is the shape parameter and α is the tail index. In practice, the name 

of tail index is mostly used for ξ, this being merely a convention, since if we have one of the 

values of α or ξ we can immediately compute the other. Tail index α represents the number 

of finite moments in the sample12, while shape parameter measures the degree of fatness in 

the tail. The smaller the tail index (less existing finite moments) the fatter the tails of the 

distribution.   

The general form of GEV implies the three classes of functions mentioned above, considering 

the value of the shape parameter:  

 ξ<0 - Weibull, corresponding to short-tailed distributions, like the uniform, where the tail 

is bounded and has a finite right endpoint;  

 ξ=0 – Gumbel, corresponding to thin-tailed distributions, including the normal and 

exponential, with tails decaying exponentially; 

 ξ>0 – Fréchet or heavy-tailed distributions, like Cauchy, Student-t and Pareto, with tail 

values decaying like a power function (slower than the Gumbel class).  

The latter, corresponding to heavy-tailed distributions, are more appropriate for financial 

data. Following the results of Gnedenko (1943), if the tail of the distribution decays like a 

 
12 Huisman et al. (1998) 
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power function13, then the distribution is said to be in the maximum domain of attraction of 

the Fréchet.    

3.2.2 Peaks over Threshold. Distribution of Exceedances (GPD)    

Theorem 1 also underlies the approach of POT. The method allows us to extract the extremes 

of the sample by considering the exceedances over a high threshold u. Consider a sample of 

observations X1, X2, … , Xn with a distribution function F(x) = P(Xi ≤ x) and a predetermined 

high threshold u, then an exceedance of the threshold u occurs when Xi>u for any i = 1,...,n.  

An excess over u is defined by y = Xi - u. We are interested in estimating the conditional 

excess distribution function (cedf) Fu defined as: 

)|()(u uXyuXPyF >≤−= ,            0 ≤ y ≤ xF – u                              (9) 

which represents the probability of values of X exceeding the threshold u, by at most an 

amount y, given that X exceeds u and xF ≤ ∞ represents the right endpoint of F. Writing Fu in 

terms of F, we can derive: 

 
)(1)(1

)(
uFuF

yFu −
)()()()( uFxFuFyuF −

=
−

−+

)()( yGyF ≈

                                                

=                                           (10) 

If the estimation of the portion between 0 and u is easy, as most observations lie in this area, 

we cannot say the same for the portion Fu, as we generally have very little observations left. 

This is another point where EVT proves useful, as it provides a very important result for the 

cedf, stated in the following theorem: 

Theorem 2. Balkema and de Haan (1974), Pickands (1975) 

For a large class of underlying distribution functions F, for a sufficiently high threshold u, the 

conditional excess distribution function Fu is well approximated by 

,u σξ ,       u → ∞                                                      (11) 

where 

 
13 , for some slow varying function L(x) )()(1 /1 xLxxF ξ−=−
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Gξ,σ is the Generalized Pareto Distribution14 (GPD) with ξ the shape parameter and σ the 

scale parameter, which measures the statistical dispersion of the series. The higher the scale 

parameter, the more spread out the distribution. Embrechts et. al (1997) found that for 

financial data α=1/ξ ∈ (3,4), Beirlant and Matthys (2000) state that for exchange rate log-

returns α usually lies between (3,5) and Gençay and Selçuk (2003) found that for high 

frequency foreign exchange returns the estimates of ξ are usually less than 0.5 (α > 2, 

implying finite variance). The parameters of GPD can be estimated through maximum 

likelihood (ML) or probability weighted method of moments (PWM). Hosking and Wallis 

(1987) found that for data with shape parameter greater than -0.5, the ML method holds. 

Rootzen and Tajvidi (1996), showed that for heavy-tailed data with shape parameter grater 

than 0.5, PWM method gives seriously biased estimates whereas ML estimates are consistent.   

3.2.3 Tail Estimates 

For the heavy-tailed case (ξ > 0), in terms of x = y + u, the GPD can be expressed as: 

ξ
σξ σ

ξ /1
, )1(1)( −−

+−=xG ux

)()())(1()( uFyFuFxF

                                           (13) 

From (10) we can derive the form of F(x) as following:  

+u−=                                                     (14) 

After we have selected the high threshold u, the last term of the distribution can be estimated 

by (n - Nu) / n, where n is the number of observations and Nu is the number of excesses above 

u. Therefore, the tail estimate can be written as: 

ξ
σξ σ
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14 Writing it in terms of x: 
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As measures like VaR and Expected Shortfall relate to tail risks, more specifically to 

quantiles in the tails of the distribution, quantile estimates offered by EVT can be used to 

adapt such measures.   

Considering a given desired probability p, inverting (15) we get the  extreme VaR estimate 

using EVT, written as: 

)1)1(((ˆ −−+= −ξ

ξ
σ p

N
uVaR

u
p

n                                           (16) 

where σ  and  are the estimated values of σ and ξ respectively. ξ̂

]|[ VaRXVaRXEVaRES >

The definition of Expected Shortfall or CVaR is given by: 

pppp + −=                                 (17) 

i.e. the Expected Shortfall is the mean value of the loss above VaR with a given probability, 

conditional on the loss exceeding VaR and the measure is also called Conditional Value at 

Risk.  

Reinterpreting the above definition in terms of distribution F and a given high threshold u, we 

can imply that ES is the mean excess distribution FVaR(y) over the threshold VaRp. The mean 

excess function of GPD with ξ<1 is therefore: 

ξ
ξz                                       (18) σ

−
+

=>−=
1

]|[)( zXzXEze

From (17) and (18), considering z = VaRp – u, the Expected Shortfall with probability p using 

EVT is given by: 
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111
uVaRES pp
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)( VaRuVaR
                       (19) 

The CVaR measure offers supplementary information about the risk of losses given that the 

VaR threshold is exceeded. Moreover, the two measures only use extreme observations, thus 

they are more adapted to extreme market conditions. 

 

17 
 



4 Methodological Aspects 

Practical implementation of EVT involves a number of challenging issues. After data 

collection, the early stage of data analysis is very important in determining whether the EVT 

framework for fat-tailed series can be applied or not. Several statistical and graphical 

methods can be used in order to conclude on this aspect. The sequent problem is the fact that 

the estimates of the limit distributions GEV and GPD highly depend on the number of 

extreme observations used and on the choice of a high threshold, respectively. Here, we will 

focus on POT method and GPD distribution. The threshold should be i) large enough to 

ensure that the data satisfies the conditions imposed by EVT, i.e. the threshold tends towards 

infinity, and, at the same time, ii) small enough to allow for sufficient observations to be 

taken into consideration. Finally, EVT relies on the i.i.d. assumption for observed returns, 

which is inconsistent with financial reality. In literature, stationarity is generally considered 

sufficient for weak consistency15. Also, in order to rely on i.i.d. observation, a common 

practice is to produce standardized residuals and use them in estimation. 

4.1 Data Processing and Analysis 

Before applying any measure or method to observed data we must process it. The market 

does not provide any information on returns of financial data on a time frame base. What we 

can observe from public data suppliers are realized values of indexes, exchange rates, interest 

rates etc., with a certain frequency, e.g. annual, monthly or daily. In order to assess market 

risk and, more specifically, exchange rate risk, on a daily basis, practitioners usually derive 

daily log-returns, computed as: 

100)ln(100
11

1 ×≈×=
−−

−

t

t

t

tt
t SS

r
− SSS

                                                

                                     (20) 

where rt denotes daily return for day t (logarithmic), St denotes daily exchange rate and ln 

denotes the natural logarithm. Where no information is provided for the value of a daily 

return, given the discrete nature of observations, interpolation is applied in order to calculate 

the missing values. 

As common practice we mentioned using standardized residuals as proxy for i.i.d. 

observations, instead of raw returns. We will fit specific models to the conditional mean and 

 
15 Leadbetter et. al (1983) 
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variance of the returns and extract the correspondent residuals. Using the filtered residuals 

and the conditional standard deviations, we will produce i.i.d. standardized residuals, which 

we will further use in EVT estimation. 

Another convention stems from the following: positive returns indicate data located in the 

right tail of the distribution, i.e. risk of increasing exchange rates, but in the special case of 

exchange rate risk, not only an extreme increase can generate losses in credit institutions 

portfolios, but also an extreme decrease, corresponding to the position taken. As EVT is 

designed to work with right fat tails, i.e. upper order statistics, in order to assess downside 

risk, a convention is used: 

),...,,(),...,,( 2121 nn rrrMaxrrrMin − − −=  

Basically, the series of returns are multiplied by (-1) in order to adapt EVT to the study of 

minima.  

Having derived the series of observations, one must analyse the data. This is a very important 

step and several tools are available in this area. Before applying VaR models and specific 

methods of EVT, the main characteristics of data have to be assessed, i.e. normality, 

heteroskedasticity, skewnees, kurtosis, autoregressive terms etc. For heavy-tailed data, this 

will bring empirical evidence on stylized facts.  

We start with the analysis of the main characteristics of the distribution: mean, variance, 

skewness, kurtosis etc. The skewness and, more importantly, the skewness and kurtosis offer 

very important information for the implementation of Extreme Value Theory, namely the 

degree of asymmetry and the peakness of data. Commonly used VaR models assume 

normally distributed returns, with 0 skewness and a kurtosis of roughly 3. In reality, financial 

data are known to be skewed and leptokurtic (with excess kurtosis, over the value of 3).  

In order to sustain the stylized fact that financial data is not normally distributed, we use 

Jarque-Bera statistic. We assess the goodness-of-fit of normal distribution for our data, 

showing the departure from normality and the rejection of the null hypothesis of normally 

distributed data, which literature considers common for returns of financial data. In order to 

assess normality, we also use graphical tools: histograms and QQ-Plots.  
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Financial data are known to be heteroskedastic (with volatility changing over time) and 

affected by volatility clusters. We assess heteroskedasticity using a graphical output of the 

time series (log returns). We test for stationarity, autoregressive components and 

autocorrelation, using Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests, 

correlograms and MLE estimation for AR terms. With respect to dependence, common 

knowledge indicates that financial data has persistent variance, thus we will extend the 

analysis of correlation to squared returns. 

Our first goal is to demonstrate the stylized facts presented in Section 1 and the fat-tailedness 

of our data. Still, some further analysis is required in order to apply the results of EVT. 

Exploratory data analysis within EVT framework starts with two main graphical tools: QQ-

plots against exponential distribution and the mean excess function plot. 

4.1.1 QQ-plots            

Usually, one starts by exploring the histogram of the data. In practice, most of VaR methods 

use the approximation of a normal distribution. However, most financial data are fat-tailed. In 

order to assess which approximation is suited for the underlying distribution of returns, QQ-

plots prove to be a very handful tool. The graph of quantiles makes it possible to assess the 

goodness of fit of the analyzed series to the parametric model. 

First, we should define the graph of quantiles. Let X1, X2, …, Xn be a succession of i.i.d. 

random variables and Xn,n < Xn-1,n < … < X1,n the decreasing order statistics, with Fn the 

empirical distribution, where Fn(Xk,n)=(n-k+1)/n, and F the parametric distribution. The QQ-

plot (graph of quantiles) is defined as the set of points 

⎭
⎬
⎫

⎩
⎨
⎧ =− nk

n
FX nk ,...,1|)(, 1

,
+− kn 1                                       (21) 

If the parametric model fits the data, the graph should have a linear form. The more linear the 

QQ-plot, the more appropriate the model in terms of goodness of fit. We compare the 

empirical distribution with the normal. If the empirical distribution exhibits a curve to the top 

at the right end or to the bottom at the left end, then it has fatter tail than the empirical.  

In the EVT framework, the quantiles of the empirical distribution are usually plotted against 

the exponential distribution. The graph should therefore show fatter tails for the underlying 
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distribution of data, i.e. a concave departure from the straight line of the empirical 

distribution. 

Also, when the distribution of returns is more or less known, the QQ-plot is useful to detect 

possible outliers in the data16. The graph of quantiles can prove useful in assessing the fit of 

selected model (with estimated parameters) for the tail of the distribution, i.e. plotting the tail 

against the GPD. 

4.1.2 Mean Excess Plot 

The mean excess plot is the graphical representation of the mean excess function (MEF). Let 

X be a random variable, u the sufficiently high threshold and xF the right endpoint, than MEF 

is defined as: 

,     0 ≤ u < xF                             (22) ]|[)( uXuXEue >= −

The mean excess function is the average of excesses over the threshold u and describes the 

expected overshoot of u once an exceedance occurs. 

If X follows an exponential distribution with parameter λ, the mean excess function is equal 

to λ-1 , for every u > 0. In the case of Generalized Pareto Distribution, the MEF is given by: 

ξ
ξu                                                    (23) σ

−
+

=
1

)(ue

where σ + ξu > 0. The mean excess function of a fat-tailed series is usually located between 

the constant MEF of the exponential and the linear GPD which tends towards infinity as the 

threshold u tends to infinity. 

A graphical assessment of the behaviour of the tail can be performed using the plot of the sets 

of points:  

 { }nkXeX ,...,1|))(,( nknnk ,, =                                        (24) 

i.e. the mean excess plot, where en(u) is the sample mean excess function, defined as: 

                                                 
16 See Embrechts et. al (1997)  
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where  is the indicator function which takes the value 1 if excesses occur and 0 

otherwise. 

{ uX i >

If the mean excess function of the empirical dataset is a positively sloped line above a certain 

threshold u, data in the tail follow a Generalized Pareto Distribution with positive shape 

parameter ξ. Conversely, exponentially distributed data show a horizontal MEF (constant) 

and short-tailed data exhibit a negatively sloped line (corresponding to the negative shape 

parameter)17.   

This is a very important graphical tool for the choice of the sufficiently high threshold u. 

Plotting MEF using the whole empirical distribution can help us choose the threshold u in the 

region where the curve is roughly linear, i.e. the data is well approximated by the GPD.  

Another useful graphical tool is the Hill plot, i.e. plotting the order statistics of empirical data 

against different values of the Hill estimator of the tail index. As tail index estimation needs 

to be discussed prior to graphical results and this is a very complex and troublesome issue of 

the EVT framework, we will refer to Hill plot later. 

4.2 Tail Index  

The next natural step in EVT implementation is the selection of the threshold. Considering 

the theory stated above, the tail index refers to α = 1/ξ, which could be interpreted as the 

number of existing finite moments of the empirical distribution, the number of degrees of 

freedom of an underlying Student-t distribution, the speed of decay in the tail or the inverse 

measure of tail fatness (fatter tail, smaller tail index and vice versa). In practice, this name 

often refers to the shape parameter ξ, which directly relates to tail fatness.  

The literature is abundant in measures of tail index. New measures try to deal with some of 

the weaknesses of the existing ones but their behaviour has not been yet verified in datasets 

with different characteristics. Moreover, the quality of the estimates highly depends on 

 
17 Gençay and Selçuk (2003) 
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empirical data: source, frequency of observations, volume, characteristics – e.g. 

independence or distribution.  This is why no consensus has been reached in this matter.   

4.2.1 Hill Estimator  

One of the most important and commonly used estimators of tail index/shape parameter is 

Hill estimator. The measure was introduced by Hill (1975) as a maximum likelihood 

estimator for the power coefficient of Pareto density:  

h(x/x>u) = α(x/u)-α-1u-1                                            (26) 

Let X1,n ≤ X2,n ≤ … ≤ Xn,n be the order statistics of the empirical series and k the number of 

upper order statistics over the threshold u. Taking logarithms and differentiating with respect 

to α in (26) yields  

∂logh(x/x>u)/ ∂α = 1/α - log(x/u)                                  (27) 

The Hill estimator is found by equating this first order condition to 0, replacing x with the 

order statistics Xi,n and applying the sum operator over this elements. Solving for ξ = 1/α 

gives 

∑ =
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                                             (28) 

We can now derive the final form of the Hill estimator in 

∑ = −−+ −=
k

i nknnin
Hill

nk XX
k 1 ,,1, loglogξ 1                                 (29) 

Properties: 

(1) Asymptotic normality (Mason, 1982): ),0()( 2
, ξξξ Ν⎯→⎯− dHill
nkk  

(2) (Weak) Consistency for ξ > 0 in the following sense: If kn, n∈ N is an intermediate 

sequence, that is kn → ∞, kn/n → 0, then . ξξ ⎯→⎯PHill

(3) Unbiased when {Xn} follows an exact Pareto distribution.  
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The second property relates to the choice of the sufficiently high threshold, leaving k upper 

order statistics above. It is not clear how to apply this result. Theoretically, one must try to 

minimize the asymptotic mean square error. In practice, this is usually done by choosing u 

based on the Hill plot, i.e. inferring on ξ from a stable region of the graph.  

4.2.2 Pickands Estimator  

If Hill only holds for ξ > 0, Pickands estimator of tail index holds for ξ ∈ ℜ. The estimator 

was introduced by Pickands (1975) and has the following form:  
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where [x] denotes the largest integer not exceeding x. Pickands provides an estimator for all 

three types of limit laws within Generalized Extreme Value. 

Properties18

1. Asymptotic normality. 

2. Consistency for ξ ∈ ℜ. 

On the other hand, the estimator is quite volatile as a function of k. The same idea behind 

threshold selection for Hill estimator is applicable to Pickands estimator.  

4.2.3 Dekkers-Einmahl-de Haan Moment Estimator 

The estimator was proposed by Dekkers, Einmahl and de Haan (1989) as a generalized form 

of the Hill estimator, in order to infer for values of ξ ∈ ℜ. 
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                                (32) 

DEdH is called the moment estimator because it is based on two measures (empirical 

moments): 

 
18 Dekkers and de Haan (1989) 
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The measure in (33) is the estimator proposed by Hill (1975). DEdH estimator is consistent 

and asymptotically normal. 

Comparative statements19: 

 Both Pickands and DEdH work for general ξ ∈ ℜ, while Hill only for ξ > 0; 

 Pickands estimator is rather unstable; 

 Hill estimator is very sensitive to dependence in the data20; 

 Pickands and DEdH estimators converge faster; 

 All estimators are biased, especially in small samples. 

4.3 Graphing Techniques 

Using the measures presented in Sections 4.3.1 - 4.3.4 one can inspect the behaviour of tail 

index estimates for different order statistics. In practice, this is done by plotting 

Hill/Pickands/DeHaan estimates against values of k: 

{ }nkk nk ≤≤1),,( ,ξ̂

                                                

                                                         (35) 

In order to establish the estimate of ξ, one should look for a stable region on the plot. This 

procedure is quite subjective, based on two considerations: the volatility of the plot, and the 

little time the plot spends in the true neighbourhood of the real value of ξ.  

Theoretically speaking, tail index selection is based on the minimization of the asymptotic 

mean squared error, which is a measure of variance and bias, thus of the quality of the 

estimator in terms of variation and bias.  

 
19 Embrechts et. al (1997). 
20 For ARMA or weakly dependent series the problem is usually treated by first fitting an ARMA model to data 
and then applying Hill estimator to the residuals. 
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4.4 Threshold selection 

This sub-section of the paper is dedicated to one of the most important steps in the 

implementation of Extreme Value Theory – the choice of the high threshold u. Although a 

wide literature has been devoted to the issue of tail index estimation, researchers haven’t yet 

found a clear-cut answer to the question “What estimator should one use for the tail index?”. 

However, threshold selection is crucial since the estimates of the shape parameter are 

sensitive to this choice. 

Amongst the tools and methods for choosing the threshold in the heavy tail of some 

underlying fat-tailed distribution, graphical methods are apparently the most simple and 

widely used alternative21. In reality, the issue is quite problematic. A basic set of graphs 

should be always assessed in data analysis (see Section 4.1.). This basic set of graphs should, 

at least, comprise mean excess plot and Hill/Pickands/DEdH plot (or other plots of tail index 

estimates against k upper statistics). 

The information mean excess plot offers should is resumed as it follows: choose the 

threshold in the area where the graph is roughly linear. This statement is backed by the 

simple fact that, according to the results of Pickands and Balkema-de Haan, excesses over a 

high threshold converge to GPD (Theorem 2 in Section 3.2.2.) and the GPD graph is 

perfectly linear. The slope of the curve also provides important information: if the slope is 

positive, then data follows the GPD above that certain threshold; if the slope is 0 then the 

underlying distribution follows the exponential and if the slope is negative, then the 

distribution is short-tailed. 

Other graphical tools are the Hill plot or similar alternative plots. The idea behind the 

selection of the threshold using these graphs is the following: choose the threshold in the area 

where the graph is fairly stable. This is backed by the fact that all types of estimators above 

are GPD estimators as extreme distribution converges to GPD over a high threshold u.   

4.5 Bias-variance trade-off 

As many authors suggest22, most alternative estimators for tail index are asymptotically 

unbiased but biased in small samples, generally leading to overestimates of tail risk. In order 

                                                 
21 This approach is applied by most of the referenced authors 
22 See for example Huisman et. al (1998), Blum and Dacorogna (2002). 
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to apply EVT tools, one has to choose a sufficiently high threshold. The threshold has to be 

low enough in order to reduce variance, as the reduction of variance relies on taking into 

account more observations i.e. variance reduces as the mean of a large number of excesses is 

considered. However, choosing the threshold too low, the bias of the estimators increases, 

because more observations situated far from the mean and, implicitly, from the linear part of 

the Pareto quantile plot are taken into account. This results in what literature calls bias-

variance trade-off and the selection of the threshold has to best satisfy the two implications of 

this matter.                                                                                                                                                             

4.6 Limitations and advantages of EVT 

Standard Value at Risk methods face a series of problems: normal distribution hypothesis, 

underestimation of risk; symmetry between tails assumption and focus on the centre of the 

distribution, i.e. events that happen in regular, manageable conditions. Moreover they provide 

no tools for extreme events or out of sample quantiles estimation. Their use is however 

common standard for risk managers, as the basic framework is easily implemented and 

supported by regulation. 

In the light of new market conditions and proven stylized facts of financial data, especially in 

the case of exchange rates, interest rates and stock index returns, risk managers become more 

and more concerned with rare events, i.e. events occurring under extreme market conditions 

(as extreme events tend to become regular in current market behaviour). EVT is a powerful 

complementary tool because it provides more appropriate distributions to fit extreme events. 

Moreover, no assumptions are made about the nature of the original distribution of 

observations and the framework can be used to solve for very high quantiles (deriving 

extreme VaR measures), which is very useful in predicting extreme-losses.  

However, EVT implementation faces many challenges. One of the most important ones is the 

fact that EVT is designed for independent data and financial data, exchange rate returns in 

our case, tend to be dependent. Many authors23 suggest using standardized observations to 

deal with this problem. Other important issue of EVT is the choice of the high enough 

threshold, which we discussed previously. Although these issues are important and further 

research is required in order to solve them, the following section aims to prove the 

importance that EVT framework has in risk management. 

                                                 
23 See for example Embrechts et al.(1997), Bensalah (2000). 
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4.7 Hybrid models 

In order to produce estimates of potential high losses taking into account the whole 

distribution, not only the tails, and produce dynamic estimates of potential risk, EVT can be 

modelled to incorporate the standard VaR measures. The respective VaR values can be 

produced as it follows:  
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where the VaR at time t is computed using the variance at time t obtained by EWMA and 

EGARCH models, the threshold u which equals the kth order statistic Xk,n, the ratio between 

the number of observations n and the number of order statistics in the tail k and not last, the 

shape parameter ξ. The method is proposed for example in Blum and Dacorogna (2002), 

Caserta and de Vries (2003). The multiplier of the variance is actually a higher order quantile 

which incorporates information about the tail fatness of the distribution. In literature, this 

quantile is often referred to as out-of-sample estimate.  

4.8 Backtesting 

Researchers have developed many methods to test the performance of VaR models and a very 

comprising reviews of these methods can be found in Engel and Gizycki (1999). Such 

methods usually measure the performance of VaR models in terms of conservatism and 

accuracy. In this paper we use two methods: first, we analyze the conservatism through the 

percentage of failures and second, we compute the Mean Squared Error to assess the 

accuracy in estimation.  

In order to determine the percentage of failures, we determine the number of failures for each 

model using the following loss function: 
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Thus, a failure happens when the real return at time t, positive or negative, is not covered by 

the respective VaR value. Counting the number of failures for each model, applied to each 

series, we obtain a percentage of failures, which should not be larger than the significance 
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level for which the VaR is computed, e.g. at 99% we should not have more than 1% of 

failures. 

The Mean Squared Error tests  for the accuracy in predicting potential losses and we compute 

it as: 

∑
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                                               (38) 

The measure penalized overestimates and underestimates of observed returns and a model is 

chosen as to minimize the MSE. 

 

5 Empirical Results 

 

5.1 Data 

We use daily returns of exchange rates of Swiss Franc, Great Britain Pound, Romanian New 

Leu and US Dollar, respectively, against EUR24 for the time period between January 1999 

and June 2009, each data set consisting in 2727 observations. Data is provided by The 

National Bank of Romania. Returns are computed as described in Section 4.1. For inference 

for lower tails, in order to transform minima into maxima, we use negative series. For our 

analysis on EVT performance we chose the POT method as it uses data more efficiently. The 

approach is in line with the studies of McNeil (1997a), McNeil(1997b) and McNeil (1999), 

Matthys and Beirlant (2000), Blum and Dacorogna (2002), Wagner and Marsh (2003), 

Brooks et al. (2003) and others.  

In Section 1 we have underlined the fact that movements in financial market variables often 

occur within more that 2-3 sigmas and the normal distribution does not fit well such data. In 

Table 1 below we present the number of observations within intervals of sigmas up to 10 

sigmas and above for our data. In Appendix 1. we present the evolution of exchange rates in 

the chosen time period. 

 

 
24 As a convention, from this point on we will denote by CHF the price of a Euro in Swiss Francs, by GBP the 
price of a Euro in Great Britain Pounds and so on. 

29 
 



Movements within (±) Series Sigma (%) 2 sigmas 4 sigmas 6 sigmas 8 sigmas 10 sigmas > 10 sigmas 
CHF 0,2999 2613 93 13 6 1 1 
GBP 0,5192 2591 125 10 1 0 0 
RON 0,6322 2582 132 9 2 1 1 
USD 0,6598 2585 137 5 0 0 0 

Table 1. Sigma movements of exchange rate returns 

Although data is concentrated in the middle of each distribution, it is obvious that important 

information lies beyond 2 sigmas and changes even above 10 sigmas occur (movements of 

CHF and RON vs. EUR). Such evidence of extreme movements gives incentive for the use of 

a stronger risk management framework, even more in the context of current crisis which has 

seriously weaken world’s currencies.   

To begin our analysis, we observe the stylized facts in our data, like fat-tailedness, skewness, 

leptokurtosis, heteroskedasticity, volatility clustering and dependence25. 

The main statistics of the series show maximum daily changes up to almost 7% in one day for 

RON/EUR exchange rate (severe depreciation of RON back in 1999). Maximum currency 

appreciation of RON vs. EUR, i.e. decrease of exchange rate, is roughly 5%. The impact of 

current crisis on the other three currencies has pushed the exchange rates against the Euro to 

new historical maxima and minima: GBP depreciated with almost 3% against the EUR and 

suddenly appreciated, in just a few days, with 3.14%; CHF, known as a highly speculated 

exotic currency, dropped 3.4% against the Euro and regained 2.06% with several tendency 

changes in the last months; the American currency lost 3.72% against the Euro in 2009, after 

another maximum drop at the end of 2008 of roughly 3.5%. In Appendix 1. we also present 

the evolution of exchange rates in the period between January 1999 and June 2009. 

In terms of skewness and kurtosis, all four series are positively skewed and exhibit excess 

kurtosis, up to over 14 for CHF, indicating fat-tails in the data. Considering this and the 

results of Jarque-Bera statistics (p-values equal 0), we can set grounds for rejecting the 

hypothesis of normally distributed returns. The Jarque-Bera statistic is distributed as χ2 with 2 

degrees of freedom under the null of normally distributed returns, with 1% critical value of 

9.210. The main results are presented in Table 2. Histograms are presented in Appendix 2. 

 

                                                 
25 Embrechts et. al (1997) stressed the importance of looking at the data before engaging in detailed statistical 
analysis. 
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Series CHF GBP RON USD 
Mean -0.000026  0.000063  0.000431  0.000060 
Maximum  0.034014  0.029818  0.068792  0.037188 
Minimum -0.020577 -0.031374 -0.051064 -0.027968 
Std. Dev.  0.002999  0.005192  0.006322  0.006598 
Skewness  0.297207  0.164338  0.652896  0.098952 
Kurtosis 17.562900  6.388935 12.772760  4.458904 
Jarque-Bera 24137.5* 1317.244* 11045.7* 246.2899* 
Probability 0.000000 0.000000 0.000000 0.000000 
Observations 2727 2727 2727 2727 

*denotes significance at 1% level. 

Table 2. Statistics of return series 

We plot the quantiles of empirical series against the quantiles of normal distribution, in order 

to verify the fit. QQ plots show excess kurtosis of empirical series. The concave departure of 

the line proves the fact that exchange rate returns have fatter tails than the normal 

distribution. USD returns have the smallest departure from the normal as we can also observe 

in Table 1.: kurtosis a little over 3 and small skewness. QQ plots are presented in Appendix 3.  

Exchange rate returns are known to be heteroskedastic. To observe the daily evolution of 

exchange rates, we plot the returns on the time axis (Figure 2). It is obvious that the variances 

change in time and the series are heteroskedastic. We can also observe high and low changes. 

At the introduction of the Euro in 1999 the Romanian currency suffered a severe depreciation 

of more than 6% (RON/EUR return around the 50th tick). RON appears to be the most 

unstable currency in our data set and tends to peak once in 2-3 years. CHF follows very close 

the evolution of the EUR. Moreover, volatility clusters appear. 
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Figure 2. Daily fluctuation of exchange rates 

In order to test for stationarity, we employ ADF and PP tests (estimation outputs available in 

Appendix 4.). Both tests reject the null of unit root existence at 1% (with p-values 

insignificantly different from 0), as critical values at 1%, 5% and 10% are constantly less 

negative than the ADF and PP statistics. The summary of the tests is presented in Table 3. 

 

Series CHF GBP RON USD 
Test statistic p-value statistic p-value statistic p-value statistic p-value 
ADF -54.7158 0.0001 -52.1392 0.0001 -33.2409 0.0001 -53.3015 0.0001 
PP -55.0132 0.0001 -52.1392 0.0001 -48.5331 0.0001 -53.2919 0.0001 

critical values 1% -3.4326 5% -2.8624 10% -2.5673 

Table 3. ADF and PP tests summary 

 

Moving further, we test for autocorrelation, as Extreme Value Theory requires the 

observations to be approximately independent and identically distributed. Exchange rate 

returns are heteroskedastic and present some degree of autocorrelation. Below we plot the 

sample autocorrelation function for our data (Figure 3). Indeed, autocorrelation appears and it 

is obviously significant for RON series, first three lags. USD series seem to present the 

smallest degree of autocorrelation, with AC coefficients insignificantly different from 0.  
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Figure 3. Sample ACF for exchange rate returns 
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We also estimate AR(p) processes for all four series of returns with one lag for CHF, GBP 

and USD against EUR returns and with three lags for RON vs. EUR return. We cannot reject 

autoregressive terms for CHF and RON. In the special case of RON we fit up to three AR 

terms and since none of the models is rejected we make our choice based on AIC and SIC 

values (Table 4). We choose an AR(1) model for CHF and an AR(3) for RON. 

Criterion AR(1) AR(2) AR(3) 
AIC -7.293203 -7.296764 -7.302550 
SIC -7.288866 -7.290257 -7.293872 

Table 4. AIC and SIC values for AR processes on RON 

No further evidence of autocorrelation was found in the residuals. Inverted autoregressive 

roots are within the unit circle and thus we support the stationarity of our data. AR estimation 

outputs are shown in Appendix 5.  

Even though GBP and USD series reject AR components, we plot the sample ACF of squared 

returns to illustrate the degree of persistence in variance, as the departure from i.i.d. structure 

impacts EVT framework. Indeed variances appear to be persistent, especially for GBP series. 

Plots of sample ACFs of squared returns are presented in Figure 4. below.  
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Figure 4. Sample ACF of squared returns 

In order to apply EVT to our data we have to produce i.i.d. observations, i.e. we have to 

compensate for autocorrelation and heteroskedasticity in returns. To compensate for 

autocorrelation, we fit ARMA models to the conditional mean and to compensate for 

heteroskedasticity we fit EGARCH models to the conditional variance of all four series 

(outputs presented in Appendix 6). For EGARCH specification we employed Student-t 

distribution, as it is more appropriate for fat-tailed data. We extract the residuals and the 

conditional variances from the estimated models and we obtain approximately independent 

and identically distributed standardized distributions, computed as: 

...;
)(
)()( dii

t
ttr

σ
ε

=             (39) 

Resulting standardized series autocorrelation functions and ACFs of squared standardized 

series are plotted in Figure 5 below. Autocorrelation coefficients are roughly insignificant 

and persistence in variance has been removed. The standardized series are approximately 

i.i.d. and can be used in the EVT framework. 
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Figure 5. ACFs of Standardized Series and Squared Standardized Series 

The conditional standard deviation and the correspondent residuals are plotted in Appendix 7. 

The main statistics of approximately i.i.d. standardized series are presented in Table 5 below.  

Series CHF GBP RON USD 
 Mean -0.000104 0.000166 0.000072 0.000207 
 Maximum 0.074168 0.044695 0.064260 0.041782 
 Minimum -0.067014 -0.040348 -0.061674 -0.037682 
 Std. Dev. 0.010451 0.009976 0.009950 0.009951 
 Skewness -0.331842 0.178408 0.335682 0.018966 
 Kurtosis 6.080639 3.860722 5.915937 3.531112 
 Jarque-Bera 1128.389* 98.64476* 1017.332* 32.21481* 
 Probability 0.000000 0.000000 0.000000 0.000000 
 Observations 2727 2727 2727 2727 

*denotes significance at 1% level. 

Table 5. Main statistics of standardized series 

5.2 Results 

Value at Risk 

For our non-normal, skewed, leptokurtotic and stationary non-standardized series, we apply 

Value at Risk framework for later comparison to VaR measures based on EVT models 

(extreme VaR). 

We employ four VaR models: Historical Simulation (HS), Hybrid Historical Simulation 

(HHS), RiskMetrics EWMA with 0.94 decay factor for daily data and an EGARCH(1,1). The 

99% and 99.9% Value at Risk and Expected Shortfall values for the 2728th day according to 
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each model employed are presented in Table 6. EGARCH model estimation is available in 

Appendix 6. We calculate the risk for right (upper) tail, denoted by U, and for the left (lower) 

tail, denoted by L.  

Series VaR (%) HS HHS EWMA EGARCH ES (%) HS HHS EWMA EGARCH 
CHFU 0.71 0.47 0.37 0.54 0.84 0.74 0.58 0.80 
CHFL 0.82 0.48 0.37 0.54 1.26 0.77 0.58 0.80 
GBPU 1.39 1.49 1.08 1.67 1.93 1.86 1.42 2.09 
GBPL 1.37 1.13 1.08 1.67 1.76 1.59 1.42 2.09 
RONU 1.84 0.86 0.48 0.69 2.55 1.31 1.01 1.48 
RONL 1.50 0.76 0.48 0.69 2.10 1.27 1.01 1.48 
USDU 1.72 1.67 1.39 0.91 2.15 1.94 1.71 2.45 
USDL

99
%

 

1.73 1.81 1.39 0.91 

99
%

 

1.97 2.31 1.71 2.45 
CHFU 1.79 0.72 0.49 0.72 2.63 1.11 0.77 1.07 
CHFL 1.86 0.79 0.49 0.72 1.99 1.38 0.77 1.07 
GBPU 2.70 1.94 1.43 2.22 2.85 2.41 1.89 2.77 
GBPL 2.27 1.92 1.43 2.22 3.48 2.31 1.89 2.77 
RONU 3.07 1.11 0.64 0.91 3.70 1.59 1.33 1.96 
RONL 2.71 1.10 0.64 0.91 3.02 1.68 1.33 1.96 
USDU 2.80 1.78 1.83 2.14 3.20 2.01 2.26 3.25 
USDL

99
.9

%
 

2.22 2.35 1.83 2.14 

99
.9

%
 

3.18 2.87 2.26 3.25 

Table 6. 99% and 99.9% VaR and ES (point estimates for day one out of the sample period).  

Values in percents26. L stands for lower (left) tail and U stands for upper (right) tail. 

The first observation to be made is the fact that VaR and ES values are constantly lower for 

CHF series. If we take a look at the daily movements in each exchange rate return data set 

(Figure 2. above), we have the immediate explanation: while CHF generally fluctuates in a 

narrow band of ±1% against the Euro, the other currencies show higher changes, approaching 

±2% band, especially in the case of GBP and USD. VaR and ES values highly depend on this 

regular historical fluctuation. 

According to our result, the highest VaR and ES values are computed for Historical 

Simulation, which directly picks the 99% and 99.9% quantiles. Hybrid Approach shows 

lower values of potential loss but above those provided by RiskMetrics approach. HHS is 

expected to perform better for CHF, GBP and USD series, as the highest returns are rather 

recent. Conversely, HS and HHS could have never predicted returns of ±2% in 2009 for 

CHF, GBP and USD since history offered significantly lower values for these exchange rate 

movements. EWMA takes into consideration past returns and volatility but with quadratic 

                                                 
26 We refer to a positive percentage VaR as to a loss of x%. 
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impact and the slow adjustments may produce underestimates of risk. EGARCH model 

produces estimates in between those computed for HS and EWMA. The model takes into 

consideration the future impact of current information, considering it exponential and not 

quadratic.    

In Figures 6 and 7 below, we show how daily estimates of VaR values computed with 

EWMA and EGARCH models fit actual returns. We show the symmetric coverage for both 

left and right tails. It is obvious that changes in exchange rates outside the ±2.5% band are 

generally not captured by the two models. EGARCH shows little improvement compared to 

EWMA, especially at 99.9% confidence level. The high depreciation of CHF and USD vs. 

EUR in 2009 and that of RON vs. EUR back in 1999 are not captured by any of the two 

models.  

Figure 6. VaR EWMA coverage for exchange rates appreciation (negative returns) and 

depreciation (positive returns) over the sample period: January 1999 – June 2009. 
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Figure 7. VaR EGARCH coverage for exchange rates appreciation and depreciation over the 

sample period: January 1999 – June 2009. 
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In Section 5.3.4. we will test the performance of the VaR methods employed and compare it 

to the performance of EVT models. We will prove that with respect to extreme events 

prediction, standard VaR models are clearly outperformed by extreme VaR measures, which 

incorporate the results of Extreme Value Theory. 

 

 

 

Extreme Value Theory 

Objective: compute possible losses that have not yet been historically observed. 
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The first step in applying EVT is to explore the data27. This is usually done by plotting QQ 

graphs and the distribution of mean excess, as discussed in Sections 4.1.1. and 4.1.2. Because 

EVT is designed to analyze upper tails (positive values) of i.i.d. data, as stated before, we use 

positive standardized series to infer for upper tails and negative standardized series for lower 

tails.   

First, we plot the quantiles of our series against the quantiles of exponential distribution, to 

verify the existence of heavy tails. Because exponential distribution decays faster than power 

function type distributions, the plot of the series against exponential quantiles should be 

curved at the bottom/upper end in order to prove heavier tails. As shown in Appendix 8., 

judging from the concave departures from the straight line, our datasets appear to have fatter 

tails than the exponential distribution. We expect GBP series to have a smaller degree of fat-

tailedness than the others as they appear to have only a small departure from the exponential. 

In Appendix 8 some of the last order statistics have been removed in order to analyze how 

much distortion they induce to the graphs. Judging by the tendency of the data in the tail of 

USD to describe a convex curve against the straight line, we also expect these series to be 

considerably less fat-tailed. 

Mean Excess (ME) plots in Appendix 9. generally show that for some threshold above 1%, 

the curves have an upward slope. Correspondently, data above that threshold will be 

approximated by a Generalized Pareto Distribution. Where the slopes are positive, GPD 

shape parameter will also be positive, i.e. the distributions are likely to be in the maximum 

domain of attraction (MDA) of the Fréchet (fat tailed). ME plots are generally unstable 

compared to the ideal case of an upward straight line, but in trend the graphs are positioned 

between the horizontal MEF of the exponential and the MEF of GPD, going towards infinity.    

Hill plots in Appendix 10. show how estimates of the shape parameter ξ vary with the 

number of upper/lower order statistics and with the chosen threshold. For each tail, we 

plotted the last 300 order statistics (lower or upper). We consider this truncation as fair as it 

leaves more than 10% of data for analysis28. The graphs are roughly stable between 100 and 

120 order statistics in the case of CHF right tail, between 100 and 150 for CHF left tail, 

around 100 order statistics for GBP right tail, between 80 and 100 order statistics for GBP 

left tail, between 120 and 150 order statistics for RON right tail, between 100 and 110 order 

                                                 
27 Embrechts et. al (1997) 
28 Peng et. al (2005) argued that the range of data left in the tail should be less than or equal to 10% of data.  
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statistics for RON left tail, between 130 and 150 order statistics for USD right tail and 

between 80 and 100 order statistics for USD left tail. In order to test the stability of the 

parameter in each of these areas, we computed ML shape parameter estimates for different 

numbers of observations left in the tail. 

Based on the previous two graphing techniques we select the thresholds for each tail - we 

choose a number of order statistics k in order to obtain as small variance and bias as possible. 

Then we fit GPD distributions to each tail and obtain ML estimates29 for shape parameter ξ. 

Goodness of fit is presented in Appendix 11. Results are presented in Table 7 below.  

Tail CHFU CHFL GBPU GBPL RONU RONL USDU USDL

k 110 130 100 90 120 105 150 95 
Threshold (%) 1.7068 1.7521 1.8526 1.7875 1.7834 1.6411 1.6453 1.8001 
ξ estimates 0.2031 0.1365 0.1176 0.0947 0.1402 0.1544 0.0962 0.1118 

Table 7. ML estimates - threshold selected through graphing techniques 

Using the above values for tail estimates as detailed in Section 3.2.3., we find that at 99% 

confidence level, extreme VaR estimates higher potential loss than the standard methods 

(Table 6 in Section 5.2.). Passing on to higher quantiles in the tail, like 99.9%, EVT VaR 

estimates depreciation of CHF as high as 4.03% (CHF series, right tail), not far from the 

value observed in March 2009 (3.40%), which came after a change of only 0.6% in 

CHF/EUR rate. The same observation can be made in the case of GBP at 99.9%, with an 

estimated extreme appreciation of 3.89% and a real, observed maximum appreciation of 

3.14% in January 2009 or in the case of USD – estimated depreciation of 3.36% at 99.9% 

against observed 3.72% in March 2009. For RON series, extreme VaR still does not cover the 

maximum observed values of 6.89% depreciation in 1999 and 5.11% appreciation against 

EUR in 2005. VaR estimates are presented in Table 8.  

VaR (%) CHFU CHFL GBPU GBPL RONU RONL USDU USDL
99% 2.38 2.90 2.53 2.54 2.75 2.38 2.46 2.43 

99.9% 4.03 5.11 4.00 3.98 4.75 4.07 3.36 3.37 
ES (%) CHFU CHFL GBPU GBPL RONU RONL USDU USDL

99% 3.08 3.69 3.16 3.12 3.61 3.12 3.12 3.11 
99.9% 5.15 6.25 4.83 4.71 5.93 5.12 4.12 4.17 

Table 8. Point estimates (values in percents) – extreme VaR and ES at 99% and 99.9% levels  

As discussed in Section 4.3., we also computed tail index measures using Hill, Pickands and 

DEdH estimators. These estimates and corresponding VaR and ES measures are given in 

                                                 
29 Hosking, Wallis (1987) show that for ξ>-0.5 the ML method holds. 

43 
 



Table 9. Two observations have to be made: one, Pickands estimator produces lower VaR 

values than the other two estimators30, and two, for the same length of one particular tail, 

higher shape parameters result into higher VaR values31.  

Estimator CHFU CHFL GBPU GBPL RONU RONL USDU USDL
Hill 0.2191 0.1765 0.1226 0.1134 0.1785 0.1806 0.1159 0.1268 

Pickands 0.2078 0.1641 0.1197 0.1067 0.1680 0.1708 0.1126 0.1235 
DEdH 0.2198 0.1769 0.1253 0.1175 0.1776 0.1797 0.1172 0.1283 

Hill 2.77 3.67 3.12 2.86 3.35 3.10 2.66 2.64 
Pick 2.56 3.58 3.04 2.79 3.26 3.02 2.64 2.62 V

aR
 

99
%

 

DEdH 2.78 3.68 3.17 2.88 3.34 3.09 2.66 2.65 
Hill 5.41 5.81 4.26 4.06 5.34 5.11 3.68 3.63 
Pick 5.43 5.79 4.23 4.02 5.29 5.05 3.67 3.63 

V
aR

 
99

.9
%

 

DEdH 5.42 5.81 4.26 4.06 5.33 5.09 3.68 3.64 
Hill 3.43 4.19 3.68 3.25 3.98 3.61 3.08 3.09 
Pick 3.35 4.17 3.58 3.17 3.92 3.47 3.07 3.08 E

S 
99

%
 

DEdH 3.43 4.19 3.73 3.29 3.98 3.63 3.09 3.09 
Hill 6.36 6.75 4.94 4.40 6.10 5.75 4.12 4.11 
Pick 6.22 6.74 4.84 4.39 6.07 5.69 4.10 4.10 E

S 
99

.9
%

 

DEdH 6.37 6.76 4.97 4.40 6.09 5.77 4.12 4.18 
Table 9. Point estimates (%) - EVT VaR and ES using Hill, Pickands and DEdH estimators 

We obtained higher estimators of the shape parameter and higher VaRs than by ML method. 

The 99.9% VaR for RON series is now considerably closer to the observed maxima and 

minima. On the other hand, USD extreme appreciation against EUR at 99.9% appears 

somewhat overestimated compared to the observed minima. For the chosen thresholds, CHF 

appears to be more fat-tailed than the other series. The second series in terms of tail-fatness 

appears to be RON, with a slightly fatter left tail, implying risk on Romanian Leu 

appreciation versus the Euro. GBP and USD appear to be less fat-tailed that the other two 

series. The largest potential extreme loss at 99% confidence level is expected for CHF series 

(around 3.6%) generated by an appreciation against the EUR. The recovery trend of CHF is 

actually consistent with real data, in and outside the sample period. At 99.9% confidence 

level, the CHF extreme appreciation is estimated at approximately 5.8%. For USD against the 

EUR, VaR values are roughly similar in the right and left tail. This is also consistent with the 

real trend as in the recent months the two currencies have been struggling to gain points 

against each other. As expected, for the RON higher losses are estimated for the upper tail, 

meaning extreme depreciation would be higher than correspondent appreciation. The values 

                                                 
30 Brooks et. al (2003) also found that Pickands estimator usually results into ‘slightly smaller’ VaR values. 
31 We found similar results in the paper of Wagner and Marsh (2003). 
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for Expected Shortfall show how much can an investor lose on a short or long position if the 

extreme movement in exchange rates overshoots the VaR values.  

Hybrid models  

According to this approach, we computed new VaR values and the point estimates for the 

first day out of sample are shown in Table 10 below: 

EVT EWMA  CHFU CHFL GBPU GBPL RONU RONL USDU USDL

99% 0.56 0.52 1.55 1.44 0.69 0.66 1.71 1.92 
99.9% 0.90 0.71 2.04 1.79 0.96 0.94 2.14 2.49 

EVT EGARCH  CHFU CHFL GBPU GBPL RONU RONL USDU USDL

99% 0.55 0.51 1.61 1.49 0.66 0.62 1.77 2.20 
99.9% 0.87 0.69 2.11 1.86 0.91 0.88 1.98 2.57 

Table 10. Point estimates (%) - EVT VaR using EWMA and EGARCH 

The point estimates for day 1 out of the sample period are slightly different from those 

computed with standard VaR models. Losses of less than 1% are expected for CHF and RON 

series. Highest losses are expected for USD against the EUR on long positions on EUR, 

around 2.49% at 99.9% confidence level. This method is likely to produce more biased 

estimates both in the tail and in the centre of the distribution, i.e. underestimate the tails (high 

losses) and overestimate the centre (small losses). 

5.3 Backtesting  

In order to asses the performance of VaR models we backtest VaR estimates against actual 

returns in order to determine the percentage of failure in VaR estimation. In this part of the 

analysis we only include dynamic results, for the whole distribution. Results for 99% and 

99.9% confidence levels are presented in Table 11 and Table 12, respectively. 

Percentage of violations at 99% confidence level – fail if > 1% 
Model CHFU CHFL GBPU GBPL RONU RONL USDU USDL

EWMA 5.83 6.71 7.00 6.12 7.55 4.91 7.37 6.12 
EGARCH 5.32 6.45 6.38 5.06 6.49 4.14 5.79 6.09 
EVT EWMA 1.72 1.39 1.10** 2.34 0.92* 1.76 2.23 1.28 
EVT EGARCH 1.32 0.73* 1.28 2.42 0.91* 2.53 1.90 1.28 

*Denotes accepted models at 99% 
**Denotes models close to acceptance at 99% 

Table 11. Backtesting results: percentage of failures in VaR estimation at 99% level 
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Percentage of violations at 99.9% confidence level – fail if > 0.1% 
Model CHFU CHFL GBPU GBPL RONU RONL USDU USDL

EWMA 2.38 2.89 2.89 2.35 4.03 2.16 2.97 2.60 
EGARCH 1.72 2.82 2.57 1.94 3.12 1.58 2.42 2.02 
EVT EWMA 0.18 0.11** 0.07* 0.58 0.11** 0.69 0.25 0.11** 
EVT EGARCH 0.07* 0.07* 0.07* 0.11** 0.11** 0.66 0.18 0.07* 

       
*Denotes accepted models at 99.9% 
**Denotes models close to acceptance at 99.9% 

Table 12. Backtesting results: percentage of failures in VaR estimation at 99.9% level 

Taking into consideration the average failures in predicting future losses at 99%, EVT 

EWMA and EVT EGARCH seem to perform better than regular VaR models. Performance at 

99.9% is even better for these two approaches, especially for EVT EGARCH. Still, this may 

be a result of overestimation of risk, rather than of reliability. EWMA and EGARCH seem to 

be rejected both at 99% and 99.9% confidence levels, with a better performance at 99.9%, 

especially for EGARCH. 

Next, we compute Mean Squared Error for all the models employed (excepting HS and 

HHS). For pure EVT models we analyze how much bias they produce in estimating tail risk, 

and for regular VaR models, EVT EWMA and  EVT EGARCH we want to determine the 

bias of the estimates for the whole distribution.  

Mean Squared Error for 99% confidence level models 
Model CHFU CHFL GBPU GBPL RONU RONL USDU USDL

Prediction at tails 
EVT ML 0.3454 0.1982 0.1045 0.0560 0.0667 0.0566 0.0650 0.0762 
EVT Hill 0.3945 0.3199 0.1308 0.0784 0.1129 0.0796 0.0914 0.0966 
EVT Pick 0.3736 0.2464 0.1119 0.0762 0.1069 0.0797 0.0916 0.0964 
EVT DEdH 0.3907 0.3181 0.1176 0.0837 0.1119 0.0778 0.0933 0.0987 

Prediction for complete distribution 
EWMA 0.3037 0.3069 0.9278 0.8934 1.4598 1.2703 1.4726 1.4686 
EGARCH 0.2814 0.2823 0.9273 0.9022 1.5093 1.3058 1.4966 1.4943 
EVT EWMA 0.5887 0.5186 1.6299 1.4019 2.5382 2.0457 2.0255 2.4314 
EVT EGARCH 0.5359 0.4706 1.6352 1.4155 2.6363 2.1144 2.0627 2.4799 

*Minimum MSE in bold 

Table 13. Mean Squared Error at 99% level 
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Mean Squared Error for 99.9% confidence level models 
Model CHFU CHFL GBPU GBPL RONU RONL USDU USDL

Prediction at tails 
EVT ML 2.6021 1.2894 0.7185 0.3614 1.0851 1.1454 0.4972 0.5903 
EVT Hill 3.1963 2.4670 0.9583 0.5486 2.0117 1.7118 0.7741 0.7962 
EVT Pick 3.1281 2.4585 0.8693 0.5126 1.9120 1.5734 0.7867 0.7813 
EVT DEdH 3.1478 2.4478 0.8353 0.5961 1.9892 1.6641 0.7942 0.8179 

Prediction for complete distribution 
EWMA 0.4655 0.4697 1.4164 1.3708 2.2165 1.9656 2.2533 2.2481 
EGARCH 0.4259 0.4271 1.4206 1.3847 2.3003 2.0309 2.2958 2.2927 
EVT EWMA 1.3633 0.8925 2.5976 2.0280 4.4050 3.8277 2.9112 3.7766 
EVT EGARCH 1.2269 0.8033 2.6087 2.0476 4.5868 3.9733 2.9694 3.8576 

*Minimum MSE in bold 

Table 14. Mean Squared Error at 99.9% level 

Both at 99% and 99.9% confidence levels, the best prediction in the tails is obtained with 

EVT ML, thus with lower tail indexes. Appears that bias in the Hill, Pickands and DEdH 

estimators induces bias in the quantile estimation. Prediction for the whole distribution is split 

between EWMA and EGARCH, but slightly better for EWMA, as differences in MSE are not 

significantly different. EVT EWMA and EVT EGARCH are clearly outperformed in terms of 

MSE by regular VaR models, thus applying some form of EVT for the whole distribution is 

not desirable as it clearly overestimates small size changes in exchange rates. ES models 

were not included in this analysis as we only use them for the purpose of orientation.  

 

Scenario Setting 

Last, but not least, we want to produce some sort of scenario. We know for sure how 

exchange rates have evolved in the last ten years. So we extract the maximum and minimum 

historical returns for each series, as well as the returns observed in the day prior to these 

changes. Then we compare them with the 99.9% VaR vales obtained by different models for 

day one out of the sample period and with returns in the last day of the sample period, 

respectively, as shown in Table 15 below.  
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 Values in 
% CHFU CHFL GBPU GBPL RONU RONL USDU USDL

Worst 
daily 

movement 
+3.40 -2.06 +2.98 -3.14 +6.88 -5.11 +3.72 -2.80 

Return in 
previous 

day 
+0.57 -1.8732 +2.7033 +0.07 +1.90 +0.49 +0.36 +0.99 

Return in 
last day of 

sample 
-0.08 -0.08 +0.48 +0.48 -0.02 -0.02 +0.26 +0.26 

VaR HS 1.79 1.86 2.70 2.27 3.07 2.71 2.80 2.22 
VaR HHS 0.72 0.79 1.94 1.92 1.11 1.10 1.78 2.35 

VaR 
EWMA 0.49 0.49 1.43 1.43 0.64 0.64 1.83 1.83 

VaR 
EGARCH 0.72 0.72 2.22 2.22 0.91 0.91 2.14 2.14 

VaR EVT 
EWMA 0.90 0.71 2.04 1.79 0.96 0.94 2.14 2.49 

VaR EVT 
EGARCH 0.87 0.69 2.11 1.86 0.91 0.88 1.98 2.57 

Average 
VaR EVT 5.07 5.63 4.19 4.03 5.18 4.83 3.60 3.57 

Table 15. Realized vs. estimated extremes 

Searching on what generated these extremes movements, we found the following 

information: 

• EUR/CHF +3.40% on March 12th 2009 – Swiss National Bank lowers interest rates by 

25bps and adopts quantitative ease. 

• EUR/CHF –2.06% on October 27th 2008 – effects of the crisis – extra burden to the 

slowing export-depending economy. 

• EUR/GBP +2.98% on November 13th 2008 – a report from Bank of England leads to 

expectations of further cuts into interest rates (after a 150bps cut in the previous week);  

• EUR/GBP -3.14% on January 5th 2009 – European Central Bank cuts 50bps of interest rate 

overnight. 

                                                 
32 With +0.55% change in previous day 
33 With -0.25% change in previous day 
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• EUR/RON +6.89% on March 17 1999 – the largest commercial bank in Romania almost 

bankrupt; overwhelming external debt (almost 30% of the total mid and long-term debt); 

effects of the Russian crisis. 

• EUR/RON -5.11% on February 22nd 2005 – expectations that National Bank of Romania 

would enter the market and buy excess foreign currency. 

• EUR/USD +3.72% on March 19th 2009 – Federal Open Market Committee announces 

quantitative ease. 

• EUR/USD -2.80% on October 27th – The Fed announces another economic stimulus – 

optimism in the market. 

Now looking back at Table 15 and considering what were the main drivers of these extreme 

moves and the current situation in the market, one question arises: Are such extreme 

scenarios that improbable? The answer is up to the reader but what is certainly clear is that 

underestimating risk one could suffer severe losses, moreover considering the fact that the 

current market conditions are highly unpredictable. 

 

6 Concluding remarks  

Under the current regulation of Basel II, banks are allowed to use internal risk models to 

calculate capital requirements for market risk, in order to cover their trading positions. The 

most common approach in computing expected losses is Value at Risk. Under Basel 

approach, VaR should be computed for a 10-day holding period at 99% confidence level, 

using minimum one year of historical data. Then the capital requirements are computed using 

a multiplication factor of 3. The implementation is simple but significantly flawed. The basic 

assumption in VaR computation is that returns in financial data are normally distributed. 

According to this assumption, the size of a one in 1000 days extreme event is considerably 

underestimated. In reality, a return of 5% or more is observed once a few years, and returns 

of roughly 3% even more frequently. In theory, the normality assumption is contradicted by 

stylized facts like fat-tailedness and leptokurtosis. In order to adapt VaR to characteristics of 

the data and improve the vanilla Historical Simulation, some new approaches have been 

proposed, like EWMA, Hybrid Historical Simulation, GARCH models, with normal or 
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Student-t distributions etc. Indeed, these new models seem to better fit the behaviour of 

financial data, but still fail to predict some extreme, unexpected changes in market variables, 

that produce huge losses. In the last years, a new framework has been adopted in financial 

risk modelling, Extreme Value Theory. First used in fields like hydrology or meteorology, 

EVT has been recently adopted in insurance and operational risk modelling. The theory is 

used to describe the behaviour of extreme historical returns and can be used to compute very 

high quantiles, i.e. estimate extreme losses with very low probability, once in 1000 days or 

more. Many studies have analyzed the performance of EVT in describing the behaviour of 

exchange rates. Generally, the studies concluded that indeed EVT is more fit to estimate 

extreme movements in exchange rates. However, inference for very high quantiles is done at 

the expense of not modelling correctly moderate movements, precisely where VaR estimation 

intervenes, thus the two approaches are rather complementary. 

In this paper we used four exchange rate returns series and analyzed the performance of four 

Value at Risk models, namely Historical Simulation, Hybrid Historical Simulation, 

Exponentially Weighted Moving Average and EGARCH. We also employed EVT Peaks over 

Threshold method to estimate potential extreme losses on exchange rate positions and two 

hybrid models between EWMA and EGARCH, respectively, and Extreme Value Theory. We 

treated each tail separately, as exchange rate risk refers not only to negative movements is the 

data, but also to positive ones, corresponding to the long or short position taken on a 

currency. Among VaR models, Historical Simulation seems to produce high values for 

expected losses but it highly depends on historically observed returns. If we were to eliminate 

the last 300 observations in each data set, HS would have predicted considerably lower 

losses. Moreover, HS and also Hybrid HS can only be used to produce point estimates as we 

refer to one single data set, with a predetermined time length. EWMA and EGARCH can be 

used for dynamic computation of VaR and build the variance at each step taking into account 

past information on returns and variance. Their performance differs between right and left 

tails, as they produce symmetric VaR values, whereas the tails contain asymmetric 

information. On the other hand, EVT is very sensitive to the choice of threshold and this 

choice can prove very difficult as the tails can show significant departures from the Pareto 

distribution. Also, VaR estimates using EVT are apparently more reliable when using ML 

estimates for the shape parameter, than using other estimators, like Hill, Pickands or Dekkers-

Einmahl-DeHaan, as this estimators are known to be biased in small samples. The hybrids of 

50 
 



EVT and standard VaR models perform well in terms of failure percentage but very poor in 

terms of Mean Squared Error.  

Based on backtesting results, we consider that the tails and rest of the distribution should be 

modelled separately and the information from both should be used in risk management. We 

back this statement by the simple scenario proposed in the last part of our analysis, which 

does not appear so improbable in the current market conditions. However there is a trade-off 

when considering how this information should be used: regulators would prefer more 

conservative measures, which diminish systemic risk but results into inefficient 

supplementary capital allocation; on the other hand, bank managers would assume the risks 

but prefer those models which result into low capital requirements. It is obvious that no 

regulation could ask banks to put aside as much capital as based on EVT VaR values, 

although, roughly speaking, if we consider a historical VaR of 1% and multiply it by 3, we 

may need to put aside as much capital as EVT indicates. The use of EVT should orientate on 

stress testing or limit setting for long or short positions, as the limits set for transactions 

highly depend on the probability of an extreme loss, that may not be easy to cover and EVT, 

by contrast to VaR, tells that such a probability is considerably high. We underline this two 

issues as possible orientation for future research. 
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Appendixes 

1. Exchange rates evolution between January 1999 and June 2009. Effects of the current 

crisis can be observed in the last 200 observations. 

 

 

 

 

 

 



2. Histograms of exchange rate returns series. The distributions are skewed and leptokurtic. 

Generally, right tails are longer, i.e. more severe depreciation than appreciation against the Euro. 

 

 

      

 

 

       

 

 

 

 



3. QQ-plots: Exchange rate returns vs. Normal distribution. Series are not normally 

distributed. USD exhibits the smallest departure from the Normal. 

                

     

 

     

 

 

 



4. Unit root tests. Unit root hypothesis is rejected at 1% confidence level by both tests in all four 
cases. Series are stationary. 

Augmented Dickey-Fuller unit root test. H0: data has a unit root          

           

 

 

 

 

 

 

 

 

 

 

 

Phillips-Perron unit root test. H0: data has a unit root    

 

 

 

 

 

    

 

 

 

 

 



5. AR(p) estimates for exchange rate returns. AR(1) estimation for CHF, GBP and USD series and 

AR(3) estimation for RON series. Rejected: GBP and USD. Accepted: CHF, at 5%, and RON at 1%.  

            

             

             

                                           



6. Fitting EGARCH models to exchange rate return series. All conditional variance 
coefficients are positive. 

 

Series CHF: accept ARMA(1,1) for conditional mean and EGARCH(1,1,1) for conditional 
variance.  

                    

 

 

                    

 



 

Series GBP: accept ARMA(1,1) for conditional mean and EGARCH(1,1,0) for conditional 
variance. 

 

                    

 

                                    

 



                       

 

Series RON: accept ARMA(3,3) for conditional mean and EGARCH(1,1,0) for conditional 
variance. 

 

                   



                                

             

                                           

 

 

 

 



Series USD: accept AR (1) for conditional mean and EGARCH(1,1,0) for conditional variance. 

 

                          

 

   

                   

 

 

 



 

                   

 

 

                 

 

 

 

 



7. Conditional Standard Deviations and Filtered Residuals from EGARCH estimation. 

 

 

 

 



 

 

 

 



 

 

 

 



 

 

 

 



8. QQ plots against exponential distribution. Right tails in left panel and left tails in right 

panel. Concave departures from the straight line indicate heavy tails. Data is truncated in the case 

of GBP(+), RON and USD series in order to eliminate information that distorts the plots.  

             

    

 

    

 

 

 



 

 

    

 

 

 

    

 

 

 



9. Mean Excess plots of return series against threshold values. X Axis: threshold values 
(returns in percents). Y Axis: mean excess function value. Objective: find a threshold above 
which the graph has a positive slope; ideal case: the graph above the threshold is linear. 

 

          

 

 

        

 

 

 



 

 

        

 

 

 

         

 

 

 



10. Hill plots: left panel – shape parameter against threshold values; right panel – shape 

parameter against number of observations in the tail; 99% confidence intervals in red. Objective: 

find a relatively stable area on the graph. The threshold is likely to lie in that area.  

           

 

            



    

         

    

     



           

          

       

      



11. GPD fit for exceedances above selected thresholds. Threshold values are selected through 
graphing techniques (ME and Hill plots). 

 

          

 

 

       

 

 

 

 



 

 

          

 

 

 

 

            

       

 



12. 99% and 99.9% quantiles for ML estimates (Section 5.3.2)  
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