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Abstract

More than forty years ago researchers started to reconsider the behavior of financial data.
Since then, stylized facts about financial returns have become common knowledge in
economics. Characteristics as fat-tailedness, leptokurtosis and serial dependence have been
extensively analyzed. As the financial world became focused on risk management and
prudential supervision, various risk models have been developed. However, the first
generation of risk models is highly dependent on rough assumptions, empirically
contradicted, but embraced by practitioners as they benefit from a fairly easy implementation.
In the context of market risk, such a proxy was developed under the name of Value at Risk,
which rapidly became a standard measure for both risk managers and supervisors. The
current state of affairs brings us one step closer to the death of VaR. The need for a new

approach is imperative.

This paper aims to bring new evidence to the limited performance of Value at Risk and test
the fit of Extreme Value Theory as a complementary risk management tool for stressed
market conditions, in the context of exchange rate risk. We use exchange rate returns of four
currencies against the Euro and analyze the relative performance of several VaR models and
Extreme Value Theory, respectively. We show that in extreme market conditions, extreme
measures are required, and that no single measure can perform proper for both the centre and

the tails of an exchange rate distribution.



Contents

0 418 (04 L o1 o) P 4
2 Literature REeVIEW ...t 6
3 Theoretical Background .......... ..o e 9
3.l Value at RisK ....onein 9

3.1.1 Parametric Models ........oouiieiiii e 10

3.1.2 Non-parametric Models ............cooiiiiiiiiiii e 11

3.2 Extreme Value Theory ........ooiiiiiii e e e 12

3.2.1 Block Maxima. Distribution of Maxima (GEV) ..................cc....... 13

3.2.2 Peaks over Threshold. Distribution of Exceedances (GPD) ............... 15

3.2.3 Taill EStIMALES .. ..ueeetei e 16

4 Methodological ASPECES . .....unei e e 18
4.1 Data Processing and ANalysis .........o.oiuiiiiiiiiiiiiiiiii i 18

411 QQPlOtS nneeeie it e 20

4.1.2 Mean Excess Plot .......o.oiiiiii 21

A2 Tall INA@X ..ot 22

4.2.1 Hill ESHMALOTr ....voneieitiie e e 23

4.2.2 Pickands EStimator ............ooiuiiiiiiiiiiiii e 24

4.2.3 Dekkers-Einmahl-de Haan Moment Estimator ............................ 24

4.3 Graphing TeChNIQUES ........c.oiiiiii i e, 25

4.4 Threshold Selection ..........co.eiiiiii i e 26

4.5 Bias-Variance trade-off ... 26

4.6 Limitations and Advantages of Extreme Value Theory .....................coce 27

4.7 Hybrid Models .......cooiiiii i e 28

4.8 BACKLESTING ... .eneit ittt et e 28
SEmpirical RESUILS ... e 29
0 B D | N 29

5.2 RESUILS .t 37

5.3 BaCKLESTING . .eneitiete e 44

6 Concluding remarkss ... ..o e 48
RETRIENCES ...t 51

N 0 157 416 5 55



1 Introduction

Reality brings forward stressed market conditions and empirically proved stylized facts, as
suggested in the early work of Mandelbrot (1963) or Fama (1963) or in the more recent work
of Manganelli and Engle (2001): financial returns, especially exchange rate and interest rate
returns, are not normally distributed, but fat-tailed, leptokurtic and skewed, suffer from
volatility clustering and are not independent. Movements of 4-6 sigmas are rather common in
financial markets, while normal distribution concentrates on movements of 2-3 sigmas'.
Using Gaussian as a reference distribution in assessing market risk, one assumes that the
probability of an extreme event is considerably lower than it is in fact, thus underestimating

the true risk of an asset or portfolio.

Risk management is a key function within financial institutions and during the last decade
financial markets have realized the importance of monitoring risks. Recent years brought
significant instability in financial markets worldwide, mainly because of excessive risk
appetite of market participants. In the context of current crisis, financial risk management has
been very much challenged. The triggers of the crisis are various and still not fully known but
the rapid spreading of the effects was the whistleblower of both risk managers and
supervisory authorities. The development of high risk behaviour in financial markets,
especially in the banking system and real estate (subprime lending, securitization, toxic
assets, complex derivatives and deregulation) led to huge bankruptcies, bailouts and
takeovers (e.g. Lehman Brothers U.S., Northern Rock U.K., Bear Stearns U.S., Merrill Lynch
U.S.), and also to a generalized liquidity crisis, declining stock market prices and real estate
values, numerous insolvencies and economic recession. The common lesson of financial
disasters is that unbearable losses can occur because of poor supervision and risk

management of financial risks.

One of the most affected sectors in the global economy is the banking system. The crisis has
also put a very difficult charge on regulators. The advent of Basel Capital Accord back in
1996 brought into view the concern about quantifying risks, but its further amendments?,
although incorporating new risks in risk management, also proved laxer, allowing internal

risk management models for prudential capital requirements calculation. Under Basel II,

' Blum, Dacorogna (2002) specifically consider daily fluctuations in FX returns up to 5% as highly significant.
? Followed by The Amendment to the Capital Accord in 1997 and the New Basel Capital Accord of 2006 (Basel
I1) issued by Basel Committee on Banking Supervision.


http://en.wikipedia.org/wiki/Basel_Committee_on_Banking_Supervision

market risk became one of the priorities of risk management. The most widely used approach
to measure market risk is Value at Risk (VaR). The directives ask for losses in trading
portfolios to be covered over a 10-day time horizon, 99% of time. In practice, the calculation
requires operating with minimum one year P&L historical data. The measure has become

popular among practitioners, due to its simple implementation.

VaR is formally defined as the potential loss of a portfolio that would result if relatively large
adverse price movements were to occur, over a certain time horizon, with a given probability.
Historical VaR does not make any assumptions concerning the underlying distribution but it
highly depends on historical data, ignoring out-of-sample events, thus implying that the
future will be similar to the past. Various alternatives have been proposed. Some of these
alternatives refer to the use of ARCH models introduced by Engle (1982) and Bollerslev
(1986)°, with normal or Student-t distribution®, J.P. Morgan RiskMetrics (1996)
Exponentially Weighted Moving Average volatility models, complementary Conditional VaR
models, popularized by Rockafeller and Uryasev (1999, 2002), and others.

As recently suggested by researchers and practitioners’, VaR-based risk management
framework must be reviewed. The presence of high volatility in financial markets and the
occurrence of extreme events result into the need to develop new products and methods to
deal with these issues. Risk managers and supervisors become more concerned with events
occurring under extreme market conditions, events that produce huge, unexpected losses, that
could affect their capital (i.e. solvency) and also lead to bankruptcies and hence, systemic

risk.

In the last years financial risk modelling has easily incorporated a new framework for
measuring risks, Extreme Value Theory, traditionally used in fields like hydrology and
meteorology. A wide literature has been recently devoted to the study of extreme events in
finance and insurance®. In practice, the framework has been adopted in operational risk and
insurance loss modelling. EVT describes the behaviour of extreme returns rather than

describing the behaviour of all returns. Unlike most VaR methods, there are no assumptions

? Further developed by Nelson — EGARCH (1991), Glosten, Jagannathan and Runkle — GJR-GARCH (1993),
Zakoian — TGARCH (1994), and others.

*Jorion (1996), and Yang and Brorsen (1995).

> See for example Colander et al. (2009), Einhorn (2008), Bernanke (2009); The High-Level Group on Financial
Supervision in the EU (2009); Sir John Gieve (2008).

® See McNeil (1997a, 1997b, 1998, 1999), Huisman et al. (1998), Gencay et al. (2003), Embrechts et al. (1997)
for instance.



about the nature of the underlying distribution. However, inference for very high quantiles is
done at the expense of not modelling correctly moderate movements, precisely where VaR
estimation intervenes, thus the two approaches are rather complementary. There are two
general approaches under EVT: first, Block Maxima, stemming from the behaviour of the k&
largest order statistics within a block, which are assumed to follow a Generalized Extreme
Value (GEV) distribution, and second, Peaks over Threshold, originating in observations
exceeding a high threshold, which are considered to follow a Generalized Pareto Distribution

(GPD). Most researchers are in favour of POT method since it uses data more efficiently.

The use of a certain proxy for market risk is somewhat reduced to a trade-off: regulators
would prefer more conservative measures, which diminish systemic risk but results into
inefficient supplementary capital allocation, and bank managers would prefer underestimated
losses, with high risks but low capital requirements. This paper aims to test the performance
of Extreme Value Theory (EVT) as a complementary risk measure for the analysis of extreme
events, in the context of exchange rate risk’, using EUR/CHF, EUR/GBP, EUR/RON and
EUR/USD exchange rate returns and underline the existing trade-off between coverage and
efficiency. Our objectives are: 1) analyze the presence of stylized facts in the data, ii) produce
point estimates of potential losses from exchange rate positions using VaR and EVT, iii)
modelling VaR to incorporate EVT and determine dynamic VaR measures, iv) backtest the

results and conclude on the specific performance of employed measures.

The rest of the paper unfolds as follows: Section 2 makes a quick overview of the most
referenced literature in the field of VaR and EVT; Section 3 presents the theoretical
framework of different Value at Risk approaches and Extreme Value Theory; Section 4
describes the methodology; Section 5 deals with data analysis and empirical results and

Section 6 states the concluding remarks and some directions for further research.

2 Literature Review

A wide literature has been produced addressing market risk modelling, and most of the work
refers to VaR modelling approaches. Hendricks (1996) analyses the performance of twelve

different VaR models using historical data on exchange rate returns and finds that historical

7 Engel, Gizycki (1999) found that for four of the largest banks in Australia, FX risk accounts for over one third
of market risk. This finding also applies to many Romanian banks, large and small.



simulation performs better at 95% than at 99% or higher confidence levels and Exponentially
Weighted Moving Average is more reliable with 0.94 decay factor for daily returns. Duffie
and Pan (1997) give a theoretical overview of VaR models applicable to market risk and their
econometric and practical implications, without empirical evidence. Jorion (2001) offers a
complete and detailed study of Value at Risk, of its application to different types of risks and
portfolios, and also states the pitfalls of such models, although he very much supports the
general approach. Engel and Gizycki (1999) develop the work of Hendricks and propose new
tests for the performance, accuracy and efficiency. Rockafellar and Uryasev (2002) approach
Conditional Value at Risk, as a measure who deals with some of the shortcomings of VaR,
mainly the lack of subadditivity (coherence) and the limited information provided by VaR — it
tells nothing about losses exceeding a certain threshold. Rockafellar and Uryasev (2000) also
propose a method to optimize the CVaR measure. Alexander (2001) offers a very
comprehensive overview of market risk models and also exemplifies their application using
different software. Kaplanski and Levy (2009) approach VaR and underline the idea that
existing regulation, allowing internal risk models, may induce excessive risk taking of banks

and also distort capital allocation.

Standard VaR risk measures are generally derived by making distributional assumptions, the
most common one being normality. The normality assumption imposes several restrictions on
the underlying distribution of returns like symmetry and, most importantly, lack of excess
kurtosis. However, many studies, like those of Mandelbrot (1963), Fama (1963), Mussa
(1979), Andersen et al. (1999) and Manganelli and Engle (2001) have shown that this
hypothesis is fairly unrealistic. Accordingly, papers like those of Hols and De Vries (1991),
Huisman et al. (1997), Huisman et al. (1998), Wagner and Marsh (2003) and others have
shown that financial data are fat-tailed and tested and proved the superior performance of
EVT methodology in estimating tail risk. Moreover, financial data suffer from volatility
clustering. In the sense of Mandelbrot (1963), this means that large changes in returns are
followed by large changes of either sign and, correspondently, small changes are followed by
small changes. This implies that, although raw returns may be uncorrelated, absolute or
squared returns display a positive autocorrelation. In order to deal with some of these
features, several alternative VaR approaches have been studied, like Student-t distribution,
ARCH-GARCH models, pioneered by Engle (1982) and Bollerslev (1986) or mixtures of
normal, also approached by Duffie and Pan (1997).



However, many authors have oriented their work towards more efficient tail-oriented models
of risk, namely Extreme Value Theory (EVT) approach. The superiority of EVT has been
extensively demonstrated by many researchers, in fields like insurance or financial risk
management. Embrechts, Kluppelberg and Mikosch (1997) employ EVT tools for assessing
fat tails of different time series, like hydrologic, insurance and financial data, supported by a
very detailed and complex mathematical framework. Similar work is found in Resnick
(2007), who studies extreme events in data networks, finance and insurance. McNeil (1997a,
1997b, 1998, 1999) also studies the performance of the methods in insurance and finance. His
work focuses on the POT method®, i.e. fitting a Generalized Pareto Distribution to excesses
over a high threshold. He also applies Block Maxima to financial time series (BMW
returns)’. POT method is also preferred in the studies of Matthys and Beirlant (2000), Blum
and Dacorogna (2002), Wagner and Marsh (2003), who compare the performance with
Student-t and GARCH-t volatility models, Brooks et al. (2003), who employ GPD
distribution to future contracts, and Gonzalo and Olmo (2004), who use simulated data to
bootstrap for an optimal threshold. Block Maxima is preferred in papers of Caserta and De
Vries (2003), who differentiate their analysis for minima and maxima of AEX index, Cotter
and Dowd (2007), who apply the method to compare tail risks of limit and market orders
considering the distribution of FX returns, Robert, Segers and Ferro (2008), who analyze the
tail thickness of FTSE100 index return data. Many of these studies and others use Value at
Risk to incorporate EVT framework, thus calculating higher quantiles than those computed
for regular VaR methods. The general agreement is that EVT proves superior in analysing

extreme movements in data.

Ample literature has also been dedicated to more specific issues of Extreme Value Theory,
e.g. tail index and graphical tools of the framework, like mean excess function plot, Hill plot,
QQ plots etc. Tail index estimation is yet a very widely debated problem of EVT. Starting
with the work of Hill (1975) and Pickands (1975), many studies have tried to establish a
measure of the tail thickness of fat-tailed distributions. Alternatives or improved approaches
are offered in Dekkers et al. (1989), who extend the Hill estimator and prove consistency and
asymptotic normality. Huisman et al. (2001), Segers (2005) and others offer different tail
index estimators using Monte Carlo simulation, bootstrap methods or regressing Hill

estimator on the number of order statistics. Despite the dedicated work, the literature is

¥ McNeil (1997a), Mc Neil(1997b) and McNeil (1999).
? McNeil (1998).



divergent with respect to tail index estimation, especially since some of the underlying steps
for the computation of such indexes (e.g. the choice of a threshold) are still subject to
arbitrary methods and their relative efficiency depends on the characteristics of the data used

for empirical analysis.

Researchers have also studied the behaviour of some usual graphical tools used in the
preliminary analysis of data. Remarkable work has been done by Kratz and Resnick (1995),
who analyze the information provided by QQ-plots, Embrechts et al. (1997), who offer a very
detailed analysis of Hill plots, Mean Excess Plots and QQ plots, Drees et al. (1998), who
approach Hill plot and several extensions. Similar work is found in Sousa and Michailidis
(2004), and Embrechts and Resnick (2007). We will refer to some of the underlying methods

and results in the following sections.

3 Theoretical Background

The purpose of this section is to offer an overall view on VaR measures and a more detailed

presentation of basic EVT framework.
3.1 Value at Risk

VaR is generally defined as the maximum potential loss on a portfolio or asset that would
result over a time horizon, with a given probability, if relatively large adverse movements in
market variables (price, interest rate, exchange rate) were to occur. More formally, the VaR
of a portfolio at a confidence level a.e(0;1) is the smallest number 1 such that the probability

of'a loss L exceeding | over a certain time horizon is smaller than or equal to (1-a.):
VaR(a)=inf{l e R/IP(L>1)<(1—a)}=—(u+0Z,) )

where u is the mean value of the portfolio/asset, ¢ the respective standard deviation and Z, is
the a-percentile of normal distribution. Following J.P. Morgan RiskMetrics framework, most
financial firms compute 5% VaR over a one-day holding period. For regulatory purposes,
Basel proposed the calculation of 1% VaR for a ten-day period, based on a historical
observation period of at least 1 year of data, which should then be multiplied by a safety

factor of 3 in order to compute capital adequacy requirement. The safety factor was



introduced because the normal hypothesis for the P&L distribution is widely recognized as
unrealistic but may lead to an overestimation of risk for medium movements in market
variables, which results into significantly higher capital buffer, i.e. significant loss of
efficiency or, on the contrary, to underestimated risk of very small or very large movements,

affecting the solvency of the bank and even putting at risk an entire system.
3.1.1 Parametric Models

Models like RiskMetrics EWMA, launched in 1996 by J.P. Morgan and ARCH-GARCH,
introduced by Engle (1982) and Bollerslev (1986), require a specific parameterization for the

behaviour of prices.

Under RiskMetrics approach, the volatility is derived from the Exponentially Weighted

Moving Average model, taking into account past information on returns and variance:
Gtz = /103—1 +(1- ﬂ’)rtil (2)

where: o] - variance at time t, 7, - return at time t, A - decay factor, usually set at 0.94 or

0.97'°. This approach uses the assumption of normally distributed standardized residuals.

The EGARCH(1,1,1) model, proposed by Nelson (1991), derives from the basic
GARCH(1,1) of Engle (1982) and Bollerslev (1986) and incorporates the asymmetric
response to shocks in the equation of conditional variance. The model has the following

specification for the conditional mean and conditional variance, respectively:
no=Py+Biro + Bhe e,

logatz =, taq logoﬁl ta,(lz [ —Ellz,, D +asz, (3)

where: z; = /0y and o3 measures the asymmetric impact of information, which is considered
exponential and not quadratic. The model can be used in the general form, to include more
AR or MA terms in the equation of the mean and more GARCH or ARCH terms in the
equation of the variance. The i.i.d. assumption is needed in order to estimate the parameters
of the model. The standard normal distribution of residuals can be replaced by alternatives
like Student-t, a more appropriate approximation for financial data, or generalized error

distribution (GED).

' recommended values: 0.94 for daily data and 0.97 for monthly data.
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Both normal EGARCH and RiskMetrics tend to underestimate the VaR measure for large
movements in the data as the normality assumption is not consistent with the behaviour of
financial returns. The main advantages of these methods are the fairly simple implementation
and the fact that they allow a complete characterization of the distribution of returns. The use
of Student-t approximation for innovations can also prove useful to improve the performance
and we will use this specific method in this paper. On the other hand, disadvantages stem
from three sources: specification of variance equation, assumptions on underlying
distribution and the i.i.d. hypothesis on residuals. The impact of these flaws on VaR measure

is highly dependent on empirical data and results.
3.1.2 Non-parametric Models

This class of methods requires no parameterization of price behaviour. The most common
non-parametric approach is the Historical Simulation (HS). The procedure doesn’t make any
assumption on the underlying distribution of returns, this being one of its major advantages,
apart from the very simple implementation. Basically, HS implies the choice of a window of
observations for portfolio returns, which are then sorted in ascending order. The a-quantile of
interest is then chosen as the return that leaves a% of the observations under the respective

value and (1-a)% above.

Historical VaR does not make any assumptions concerning the underlying distribution and
eliminates the need of approximations that introduce inaccuracies into calculation. Although
the measure can incorporate fat tails, it highly depends on historical data, ignoring out-of-
sample events, thus implying that the future will be similar to the past. There are several other
problems with this approach. First, the methodology is clearly inconsistent. Second, the
quantile estimator is consistent only if the length of the chosen time window approaches
infinity. Third, the choice of the time window implies the same distribution for all historical
data, while there are several volatility clustering periods, which cannot be easily identified.
So there is a trade-off between the choice of a large window which would make the estimator
significant and a shorter window which would avoid the risk of taking observation outside the
volatility cluster. Finally, HS is considered flawed since it puts the same weight on all

observations, specifically not taking into account the clustering aspect.

In order to deal with this last disadvantage, a Hybrid Approach between HS and RiskMetrics
EWMA was developed by Boudoukh, Richardson and Whitelaw (1998). The model applies

11



exponentially declining weights to past returns of the portfolio. Accordingly, to each return 1,

fe1, ... , Tekel in a k-length time window a weight is assigned in the range:
1-1 (1- 1- )" . .
" j: , (1 2/1 ,...,( " iz{kl . Then the returns are ordered in ascending order. To compute

the o-quantile of the portfolio, the weights are summed until 0% is reached and the

corresponding return is considered.

The significant improvement of this approach is that it incorporates a more flexible

specification of the data, thus resulting into more reliable figures for the VaR measure.

Some other models are also used in literature for the computation of tail risk. We remind
Conditional Value at Risk (CVaR or Expected Shortfall), which is basically the mean size of
losses exceeding VaR threshold and the semi-parametric model of VaR using Extreme Value
Theory. We will consider the latter separately, as it is the approach that this paper focuses on

and several technical issues have to be detailed.
3.2 Extreme Value Theory

The fundamental role that Extreme Value Theory plays in the modelling of maxima of a
random variable is comparable to the role of Central Limit Theorem in modelling sums of

random variables. More precisely, in both cases theory gives us the limiting distributions.

There are two main approaches when identifying extremes in real data. Let us consider the
distribution of daily returns/losses. The first approach — under the generic name of Block
Maxima — considers the maximum (minimum) values that returns take over successive
periods of same length (blocks). The selected values (one maximum/minimum for each
period in the time span of time series) are considered extreme events that constitute block
maxima (minima). The second approach — Peaks over Threshold (POT) - focuses on returns
that exceed a given high threshold. The two approaches are illustrated in Figure 1 below.
Block Maxima is generally used in fields with seasonal data e.g. hydrology and has the
disadvantage that it could overlook extreme events in the same block, as it only uses the
largest observation in each block. Also, the choice of block length is subject to
misspecification. POT method has the advantage to more efficiently use data but, on the other
hand, relies on the choice of the high threshold, which is fairly subjective. Until the present
day, no general agreement has been reached upon the best method for threshold selection nor

have researchers developed a fully parametric algorithm.

12
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Figure 1. Block Maxima (left) and Peaks over Threshold (right)

3.2.1 Block Maxima. Distribution of Maxima (GEV)

Reconsider the sequence of daily returns with X, X», ..., X, i.i.d. and denote by M,=max(X,
X2, ..., X,) the block maxima, with n the size of the block. The limit law for the distribution
of maxima is given by one of the two fundamental theorems of EVT — Fisher-Tippett

Theorem, formally proved by Gnedenko.

Theorem 1. Fisher-Tippett (1928), Gnedenko (1943)

Let (X,) be a sequence of i.i.d. random variables. If there exist constants ¢, > 0, d,'' € R and

some non-degenerate function H such that

then H belongs to one of the three standard extreme value distributions:

, 0,x<0
Fréchet: O, (x)=7 oa>0 (5)
e’ ,x>0
—(—x)* <
Weibull: v (=1¢ *=0 o> 0 (6)
Lx>0

" Embrechts et. al (1997) state the common practice of taking d, equal to 0.
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Gumbel: A(x)=e* xeR (7)

The Fisher-Tippett theorem suggests that the asymptotic distribution of maxima belongs to
one of the three distributions above, regardless of the original distribution of observed data.
By taking the reparameterisation a=1/&, von Mises (1936) and Jenkinson (1955) represented
the three distributions in one unified model with a single parameter, thus introducing

Generalised Extreme Value Distribution (GEV):

_ -1/¢
e g2

e’ ,&=0 ®

Hg(x)_{

where 1+&x > 0, § = 1/a. is the shape parameter and «. is the tail index. In practice, the name
of tail index is mostly used for &, this being merely a convention, since if we have one of the
values of o or § we can immediately compute the other. Tail index o represents the number
of finite moments in the sample'?, while shape parameter measures the degree of fatness in
the tail. The smaller the tail index (less existing finite moments) the fatter the tails of the

distribution.

The general form of GEV implies the three classes of functions mentioned above, considering

the value of the shape parameter:

= £<0 - Weibull, corresponding to short-tailed distributions, like the uniform, where the tail

is bounded and has a finite right endpoint;

= &=0 — Gumbel, corresponding to thin-tailed distributions, including the normal and

exponential, with tails decaying exponentially;

= >0 — Fréchet or heavy-tailed distributions, like Cauchy, Student-t and Pareto, with tail

values decaying like a power function (slower than the Gumbel class).

The latter, corresponding to heavy-tailed distributions, are more appropriate for financial

data. Following the results of Gnedenko (1943), if the tail of the distribution decays like a

"2 Huisman et al. (1998)

14



power function"?, then the distribution is said to be in the maximum domain of attraction of

the Fréchet.
3.2.2 Peaks over Threshold. Distribution of Exceedances (GPD)

Theorem 1 also underlies the approach of POT. The method allows us to extract the extremes
of the sample by considering the exceedances over a high threshold u. Consider a sample of
observations X, X, ... , X, with a distribution function F(x) = P(X; < x) and a predetermined

high threshold u, then an exceedance of the threshold u occurs when Xi>u for any i = 1,...,n.

An excess over u is defined by y = X; - u. We are interested in estimating the conditional

excess distribution function (cedf) F, defined as:
FEO)=PX-u<y[X>u), 0<y<xr—u 9)

which represents the probability of values of X exceeding the threshold u, by at most an
amount y, given that X exceeds u and x < o represents the right endpoint of F. Writing F, in

terms of F, we can derive:

_Fu+y)-F@) _ F(x)-F(u)
 1=Fu)  1-F@)

F,(») (10)

If the estimation of the portion between 0 and u is easy, as most observations lie in this area,
we cannot say the same for the portion F,, as we generally have very little observations left.
This is another point where EVT proves useful, as it provides a very important result for the
cedf, stated in the following theorem:

Theorem 2. Balkema and de Haan (1974), Pickands (1975)

For a large class of underlying distribution functions F, for a sufficiently high threshold u, the

conditional excess distribution function F, is well approximated by
Fu(y)sz,a(y)’ U— 0 (11)

where

P 1- F(x)=x"¢L(x), for some slow varying function L(x)

15



_(+E ) [0,(x; —1)],E20
G.,(y) = 1 (1+ay) E#0 for ye (0-21.6<0 (12)
l_eav/crjgzo y ,

G, is the Generalized Pareto Distribution'® (GPD) with & the shape parameter and o the
scale parameter, which measures the statistical dispersion of the series. The higher the scale
parameter, the more spread out the distribution. Embrechts et. al (1997) found that for
financial data a=1/§ € (3,4), Beirlant and Matthys (2000) state that for exchange rate log-
returns o usually lies between (3,5) and Gengay and Selguk (2003) found that for high
frequency foreign exchange returns the estimates of & are usually less than 0.5 (a0 > 2,
implying finite variance). The parameters of GPD can be estimated through maximum
likelihood (ML) or probability weighted method of moments (PWM). Hosking and Wallis
(1987) found that for data with shape parameter greater than -0.5, the ML method holds.
Rootzen and Tajvidi (1996), showed that for heavy-tailed data with shape parameter grater

than 0.5, PWM method gives seriously biased estimates whereas ML estimates are consistent.
3.2.3 Tail Estimates

For the heavy-tailed case (§ > 0), in terms of x =y + u, the GPD can be expressed as:
X—u.,_
Gg,a(X)=1—(1+§T) Ve (13)
From (10) we can derive the form of F(x) as following:
F(x)=(A-F)F,(y)+F(u) (14)

After we have selected the high threshold u, the last term of the distribution can be estimated
by (n - N,) / n, where n is the number of observations and N, is the number of excesses above

u. Therefore, the tail estimate can be written as:

- N N N
Fx)=—(1-G,,(x)+ (- "):1——u(l+£(x—u))fm (15)
n n n o
 Writing it x: 1= (1+= (=) ™. # 0. where  is the loca
riting it in terms of x: G.,,(x)= p , , where p is the location parameter.
l_ef(xju)/o"gzo
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As measures like VaR and Expected Shortfall relate to tail risks, more specifically to
quantiles in the tails of the distribution, quantile estimates offered by EVT can be used to

adapt such measures.

Considering a given desired probability p, inverting (15) we get the extreme VaR estimate

using EVT, written as:

VaR, =u+%((Ni(1—p)-f ~1) (16)

u

where o and f are the estimated values of ¢ and & respectively.

The definition of Expected Shortfall or CVaR is given by:

ES,=VaR,+E[X ~VaR,| X > VaR,] (17)

1.e. the Expected Shortfall is the mean value of the loss above VaR with a given probability,
conditional on the loss exceeding VaR and the measure is also called Conditional Value at

Risk.

Reinterpreting the above definition in terms of distribution F and a given high threshold u, we
can imply that ES is the mean excess distribution Fy,r(y) over the threshold VaR,. The mean

excess function of GPD with <1 is therefore:

o+¢&

e(z)=E[X—-z|X>z]= I

(18)

From (17) and (18), considering z = VaR;, — u, the Expected Shortfall with probability p using
EVT is given by:

o+&(VaR, —u) B Var, +g_@

ES =VaR + =
g g 1-¢ 1-& 1-¢

(19)

The CVaR measure offers supplementary information about the risk of losses given that the
VaR threshold is exceeded. Moreover, the two measures only use extreme observations, thus

they are more adapted to extreme market conditions.
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4 Methodological Aspects

Practical implementation of EVT involves a number of challenging issues. After data
collection, the early stage of data analysis is very important in determining whether the EVT
framework for fat-tailed series can be applied or not. Several statistical and graphical
methods can be used in order to conclude on this aspect. The sequent problem is the fact that
the estimates of the limit distributions GEV and GPD highly depend on the number of
extreme observations used and on the choice of a high threshold, respectively. Here, we will
focus on POT method and GPD distribution. The threshold should be 1) large enough to
ensure that the data satisfies the conditions imposed by EVT, i.e. the threshold tends towards
infinity, and, at the same time, ii) small enough to allow for sufficient observations to be
taken into consideration. Finally, EVT relies on the i.i.d. assumption for observed returns,
which is inconsistent with financial reality. In literature, stationarity is generally considered
sufficient for weak consistency'’. Also, in order to rely on i.i.d. observation, a common

practice is to produce standardized residuals and use them in estimation.
4.1 Data Processing and Analysis

Before applying any measure or method to observed data we must process it. The market
does not provide any information on returns of financial data on a time frame base. What we
can observe from public data suppliers are realized values of indexes, exchange rates, interest
rates etc., with a certain frequency, e.g. annual, monthly or daily. In order to assess market
risk and, more specifically, exchange rate risk, on a daily basis, practitioners usually derive
daily log-returns, computed as:

r :;SHXIOOzln( 5
S

t-1

)x100 (20)

t-1

where 7, denotes daily return for day t (logarithmic), S; denotes daily exchange rate and /n
denotes the natural logarithm. Where no information is provided for the value of a daily
return, given the discrete nature of observations, interpolation is applied in order to calculate

the missing values.

As common practice we mentioned using standardized residuals as proxy for i.i.d.

observations, instead of raw returns. We will fit specific models to the conditional mean and

' Leadbetter et. al (1983)
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variance of the returns and extract the correspondent residuals. Using the filtered residuals
and the conditional standard deviations, we will produce i.i.d. standardized residuals, which

we will further use in EVT estimation.

Another convention stems from the following: positive returns indicate data located in the
right tail of the distribution, i.e. risk of increasing exchange rates, but in the special case of
exchange rate risk, not only an extreme increase can generate losses in credit institutions
portfolios, but also an extreme decrease, corresponding to the position taken. As EVT is
designed to work with right fat tails, i.e. upper order statistics, in order to assess downside

risk, a convention is used:

Min(r,r,,...,r,) = Max(—r,,—r,,...,.—1,)

n

Basically, the series of returns are multiplied by (-1) in order to adapt EVT to the study of

minima.

Having derived the series of observations, one must analyse the data. This is a very important
step and several tools are available in this area. Before applying VaR models and specific
methods of EVT, the main characteristics of data have to be assessed, i.e. normality,
heteroskedasticity, skewnees, kurtosis, autoregressive terms etc. For heavy-tailed data, this

will bring empirical evidence on stylized facts.

We start with the analysis of the main characteristics of the distribution: mean, variance,
skewness, kurtosis etc. The skewness and, more importantly, the skewness and kurtosis offer
very important information for the implementation of Extreme Value Theory, namely the
degree of asymmetry and the peakness of data. Commonly used VaR models assume
normally distributed returns, with 0 skewness and a kurtosis of roughly 3. In reality, financial

data are known to be skewed and leptokurtic (with excess kurtosis, over the value of 3).

In order to sustain the stylized fact that financial data is not normally distributed, we use
Jarque-Bera statistic. We assess the goodness-of-fit of normal distribution for our data,
showing the departure from normality and the rejection of the null hypothesis of normally
distributed data, which literature considers common for returns of financial data. In order to

assess normality, we also use graphical tools: histograms and QQ-Plots.
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Financial data are known to be heteroskedastic (with volatility changing over time) and
affected by volatility clusters. We assess heteroskedasticity using a graphical output of the
time series (log returns). We test for stationarity, autoregressive components and
autocorrelation, using Augmented Dickey-Fuller (ADF) and Phillips-Perron (PP) tests,
correlograms and MLE estimation for AR terms. With respect to dependence, common
knowledge indicates that financial data has persistent variance, thus we will extend the

analysis of correlation to squared returns.

Our first goal is to demonstrate the stylized facts presented in Section 1 and the fat-tailedness
of our data. Still, some further analysis is required in order to apply the results of EVT.
Exploratory data analysis within EVT framework starts with two main graphical tools: QQ-

plots against exponential distribution and the mean excess function plot.
4.1.1 QQ-plots

Usually, one starts by exploring the histogram of the data. In practice, most of VaR methods
use the approximation of a normal distribution. However, most financial data are fat-tailed. In
order to assess which approximation is suited for the underlying distribution of returns, QQ-
plots prove to be a very handful tool. The graph of quantiles makes it possible to assess the

goodness of fit of the analyzed series to the parametric model.

First, we should define the graph of quantiles. Let X;, X, ..., X, be a succession of i.i.d.
random variables and X,, < Xp.1n < ... < Xj, the decreasing order statistics, with F, the
empirical distribution, where F,,(X;,)=(n-k+1)/n, and F the parametric distribution. The QQ-
plot (graph of quantiles) is defined as the set of points

{Xk’n,F“(n_—kH) k= ln} Q1)
n

If the parametric model fits the data, the graph should have a linear form. The more linear the
QQ-plot, the more appropriate the model in terms of goodness of fit. We compare the
empirical distribution with the normal. If the empirical distribution exhibits a curve to the top

at the right end or to the bottom at the left end, then it has fatter tail than the empirical.

In the EVT framework, the quantiles of the empirical distribution are usually plotted against

the exponential distribution. The graph should therefore show fatter tails for the underlying
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distribution of data, i.e. a concave departure from the straight line of the empirical

distribution.

Also, when the distribution of returns is more or less known, the QQ-plot is useful to detect
possible outliers in the data'®. The graph of quantiles can prove useful in assessing the fit of
selected model (with estimated parameters) for the tail of the distribution, i.e. plotting the tail

against the GPD.
4.1.2 Mean Excess Plot

The mean excess plot is the graphical representation of the mean excess function (MEF). Let
X be a random variable, u the sufficiently high threshold and xr the right endpoint, than MEF

1s defined as:
ew)=E[X-u|X>u], 0=Zu<xr (22)

The mean excess function is the average of excesses over the threshold u and describes the

expected overshoot of u once an exceedance occurs.

If X follows an exponential distribution with parameter A, the mean excess function is equal

to A", for every u > 0. In the case of Generalized Pareto Distribution, the MEF is given by:

e(u) = ";?‘ (23)

where ¢ + Su > 0. The mean excess function of a fat-tailed series is usually located between
the constant MEF of the exponential and the linear GPD which tends towards infinity as the

threshold u tends to infinity.

A graphical assessment of the behaviour of the tail can be performed using the plot of the sets

of points:
(X e, (X ) k=1,..,n] (24)

i.e. the mean excess plot, where e,(u) is the sample mean excess function, defined as:

' See Embrechts et. al (1997)
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():& 25)

Zi:l [{X i>u}

where 7y, ., is the indicator function which takes the value 1 if excesses occur and 0

otherwise.

If the mean excess function of the empirical dataset is a positively sloped line above a certain
threshold u, data in the tail follow a Generalized Pareto Distribution with positive shape
parameter & Conversely, exponentially distributed data show a horizontal MEF (constant)
and short-tailed data exhibit a negatively sloped line (corresponding to the negative shape

1
parameter) "’

This is a very important graphical tool for the choice of the sufficiently high threshold u.
Plotting MEF using the whole empirical distribution can help us choose the threshold « in the

region where the curve is roughly linear, i.e. the data is well approximated by the GPD.

Another useful graphical tool is the Hill plot, i.e. plotting the order statistics of empirical data
against different values of the Hill estimator of the tail index. As tail index estimation needs
to be discussed prior to graphical results and this is a very complex and troublesome issue of

the EVT framework, we will refer to Hill plot later.
4.2 Tail Index

The next natural step in EVT implementation is the selection of the threshold. Considering
the theory stated above, the tail index refers to o = 1/§, which could be interpreted as the
number of existing finite moments of the empirical distribution, the number of degrees of
freedom of an underlying Student-t distribution, the speed of decay in the tail or the inverse
measure of tail fatness (fatter tail, smaller tail index and vice versa). In practice, this name

often refers to the shape parameter &, which directly relates to tail fatness.

The literature is abundant in measures of tail index. New measures try to deal with some of
the weaknesses of the existing ones but their behaviour has not been yet verified in datasets

with different characteristics. Moreover, the quality of the estimates highly depends on

' Gengay and Selguk (2003)
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empirical data: source, frequency of observations, volume, -characteristics — e.g.

independence or distribution. This is why no consensus has been reached in this matter.
4.2.1 Hill Estimator

One of the most important and commonly used estimators of tail index/shape parameter is
Hill estimator. The measure was introduced by Hill (1975) as a maximum likelihood

estimator for the power coefficient of Pareto density:
hx/x>u) = a(x/u)* u’ (26)

Let X;n < Xon < ... < Xyn be the order statistics of the empirical series and £ the number of
upper order statistics over the threshold u. Taking logarithms and differentiating with respect

to o in (26) yields
Ologh(x/x>u)/ 0 = 1/ - log(x/u) 27)

The Hill estimator is found by equating this first order condition to 0, replacing x with the

order statistics X;, and applying the sum operator over this elements. Solving for & = I/«

gives
X.
a k= u
We can now derive the final form of the Hill estimator in
; 1 —«
/f,lnll = Ezi:l log Xn+1—[,n - log Xn—k,n (29)

Properties:

(1) Asymptotic normality (Mason, 1982): N (cf,f;” —&)—L5N(0,£7)

(2) (Weak) Consistency for & > 0 in the following sense: If k,, ne N is an intermediate

sequence, that is k, — o, k,/n — 0, then §H"” L5,

(3) Unbiased when {X,} follows an exact Pareto distribution.
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The second property relates to the choice of the sufficiently high threshold, leaving k upper
order statistics above. It is not clear how to apply this result. Theoretically, one must try to
minimize the asymptotic mean square error. In practice, this is usually done by choosing u

based on the Hill plot, i.e. inferring on ¢ from a stable region of the graph.
4.2.2 Pickands Estimator

If Hill only holds for & > 0, Pickands estimator of tail index holds for § € . The estimator

was introduced by Pickands (1975) and has the following form:

lﬁck _ 1 log Xn—Lk/u,n _Xn—Lk/zJ,n (30)
log 2 Xr1—|_k/2j,n - X

n—k,n

where [Xx] denotes the largest integer not exceeding x. Pickands provides an estimator for all

three types of limit laws within Generalized Extreme Value.

Properties™

1. Asymptotic normality.
2. Consistency for & € ‘R.

On the other hand, the estimator is quite volatile as a function of k. The same idea behind

threshold selection for Hill estimator is applicable to Pickands estimator.
4.2.3 Dekkers-Einmahl-de Haan Moment Estimator

The estimator was proposed by Dekkers, Einmahl and de Haan (1989) as a generalized form
of the Hill estimator, in order to infer for values of § € ‘R.
1 (M]il) 2

= MY 1=

)" (32)

k,n

DEdH is called the moment estimator because it is based on two measures (empirical

moments):

'® Dekkers and de Haan (1989)
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1 k
M) = ;Zlog(X in ! Xivin) (33)

i=1

k
z 10g2 (Xi,n / Xk+l,n ) (34)

ME -+
TkS

The measure in (33) is the estimator proposed by Hill (1975). DEdH estimator is consistent

and asymptotically normal.

Comparative statements™ H

= Both Pickands and DEdH work for general & € R, while Hill only for & > 0;
= Pickands estimator is rather unstable;

= Hill estimator is very sensitive to dependence in the data”;

= Pickands and DEdH estimators converge faster;

= All estimators are biased, especially in small samples.

4.3  Graphing Techniques

Using the measures presented in Sections 4.3.1 - 4.3.4 one can inspect the behaviour of tail
index estimates for different order statistics. In practice, this is done by plotting

Hill/Pickands/DeHaan estimates against values of 4:

(k& )<k <n| (35)

In order to establish the estimate of &, one should look for a stable region on the plot. This
procedure is quite subjective, based on two considerations: the volatility of the plot, and the

little time the plot spends in the true neighbourhood of the real value of &.

Theoretically speaking, tail index selection is based on the minimization of the asymptotic
mean squared error, which is a measure of variance and bias, thus of the quality of the

estimator in terms of variation and bias.

' Embrechts et. al (1997).
2 For ARMA or weakly dependent series the problem is usually treated by first fitting an ARMA model to data
and then applying Hill estimator to the residuals.
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4.4 Threshold selection

This sub-section of the paper is dedicated to one of the most important steps in the
implementation of Extreme Value Theory — the choice of the high threshold u. Although a
wide literature has been devoted to the issue of tail index estimation, researchers haven’t yet
found a clear-cut answer to the question “What estimator should one use for the tail index?”.
However, threshold selection is crucial since the estimates of the shape parameter are

sensitive to this choice.

Amongst the tools and methods for choosing the threshold in the heavy tail of some
underlying fat-tailed distribution, graphical methods are apparently the most simple and
widely used alternative®'. In reality, the issue is quite problematic. A basic set of graphs
should be always assessed in data analysis (see Section 4.1.). This basic set of graphs should,
at least, comprise mean excess plot and Hill/Pickands/DEdH plot (or other plots of tail index

estimates against k upper statistics).

The information mean excess plot offers should is resumed as it follows: choose the
threshold in the area where the graph is roughly linear. This statement is backed by the
simple fact that, according to the results of Pickands and Balkema-de Haan, excesses over a
high threshold converge to GPD (Theorem 2 in Section 3.2.2.) and the GPD graph is
perfectly linear. The slope of the curve also provides important information: if the slope is
positive, then data follows the GPD above that certain threshold; if the slope is O then the
underlying distribution follows the exponential and if the slope is negative, then the

distribution is short-tailed.

Other graphical tools are the Hill plot or similar alternative plots. The idea behind the
selection of the threshold using these graphs is the following: choose the threshold in the area
where the graph is fairly stable. This is backed by the fact that all types of estimators above

are GPD estimators as extreme distribution converges to GPD over a high threshold u.
4.5  Bias-variance trade-off

As many authors suggest’, most alternative estimators for tail index are asymptotically

unbiased but biased in small samples, generally leading to overestimates of tail risk. In order

2! This approach is applied by most of the referenced authors
2 See for example Huisman et. al (1998), Blum and Dacorogna (2002).
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to apply EVT tools, one has to choose a sufficiently high threshold. The threshold has to be
low enough in order to reduce variance, as the reduction of variance relies on taking into
account more observations i.e. variance reduces as the mean of a large number of excesses is
considered. However, choosing the threshold too low, the bias of the estimators increases,
because more observations situated far from the mean and, implicitly, from the linear part of
the Pareto quantile plot are taken into account. This results in what literature calls bias-
variance trade-off and the selection of the threshold has to best satisfy the two implications of

this matter.
4.6 Limitations and advantages of EVT

Standard Value at Risk methods face a series of problems: normal distribution hypothesis,
underestimation of risk; symmetry between tails assumption and focus on the centre of the
distribution, i.e. events that happen in regular, manageable conditions. Moreover they provide
no tools for extreme events or out of sample quantiles estimation. Their use is however
common standard for risk managers, as the basic framework is easily implemented and

supported by regulation.

In the light of new market conditions and proven stylized facts of financial data, especially in
the case of exchange rates, interest rates and stock index returns, risk managers become more
and more concerned with rare events, i.e. events occurring under extreme market conditions
(as extreme events tend to become regular in current market behaviour). EVT is a powerful
complementary tool because it provides more appropriate distributions to fit extreme events.
Moreover, no assumptions are made about the nature of the original distribution of
observations and the framework can be used to solve for very high quantiles (deriving

extreme VaR measures), which is very useful in predicting extreme-losses.

However, EVT implementation faces many challenges. One of the most important ones is the
fact that EVT is designed for independent data and financial data, exchange rate returns in
our case, tend to be dependent. Many authors™ suggest using standardized observations to
deal with this problem. Other important issue of EVT is the choice of the high enough
threshold, which we discussed previously. Although these issues are important and further
research is required in order to solve them, the following section aims to prove the

importance that EVT framework has in risk management.

3 See for example Embrechts et al.(1997), Bensalah (2000).
27



4.7 Hybrid models

In order to produce estimates of potential high losses taking into account the whole
distribution, not only the tails, and produce dynamic estimates of potential risk, EVT can be
modelled to incorporate the standard VaR measures. The respective VaR values can be

produced as it follows:
" -¢
SYCR () a0

where the VaR at time t is computed using the variance at time t obtained by EWMA and
EGARCH models, the threshold u which equals the k™ order statistic Xk, the ratio between
the number of observations # and the number of order statistics in the tail £ and not last, the
shape parameter & The method is proposed for example in Blum and Dacorogna (2002),
Caserta and de Vries (2003). The multiplier of the variance is actually a higher order quantile
which incorporates information about the tail fatness of the distribution. In literature, this

quantile is often referred to as out-of-sample estimate.
4.8  Backtesting

Researchers have developed many methods to test the performance of VaR models and a very
comprising reviews of these methods can be found in Engel and Gizycki (1999). Such
methods usually measure the performance of VaR models in terms of conservatism and
accuracy. In this paper we use two methods: first, we analyze the conservatism through the
percentage of failures and second, we compute the Mean Squared Error to assess the

accuracy in estimation.

In order to determine the percentage of failures, we determine the number of failures for each

model using the following loss function:

Lr, >VaR,
L= (37)

0,7, <VaR,

Thus, a failure happens when the real return at time t, positive or negative, is not covered by
the respective VaR value. Counting the number of failures for each model, applied to each

series, we obtain a percentage of failures, which should not be larger than the significance
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level for which the VaR is computed, e.g. at 99% we should not have more than 1% of

failures.

The Mean Squared Error tests for the accuracy in predicting potential losses and we compute

it as:

1 n
MSE =—x> (VaR, -r,)’ (38)

no
The measure penalized overestimates and underestimates of observed returns and a model is

chosen as to minimize the MSE.

5 Empirical Results

5.1 Data

We use daily returns of exchange rates of Swiss Franc, Great Britain Pound, Romanian New
Leu and US Dollar, respectively, against EUR** for the time period between January 1999
and June 2009, each data set consisting in 2727 observations. Data is provided by The
National Bank of Romania. Returns are computed as described in Section 4.1. For inference
for lower tails, in order to transform minima into maxima, we use negative series. For our
analysis on EVT performance we chose the POT method as it uses data more efficiently. The
approach is in line with the studies of McNeil (1997a), McNeil(1997b) and McNeil (1999),
Matthys and Beirlant (2000), Blum and Dacorogna (2002), Wagner and Marsh (2003),
Brooks et al. (2003) and others.

In Section 1 we have underlined the fact that movements in financial market variables often
occur within more that 2-3 sigmas and the normal distribution does not fit well such data. In
Table 1 below we present the number of observations within intervals of sigmas up to 10
sigmas and above for our data. In Appendix 1. we present the evolution of exchange rates in

the chosen time period.

* As a convention, from this point on we will denote by CHF the price of a Euro in Swiss Francs, by GBP the
price of a Euro in Great Britain Pounds and so on.
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Movements within (+)

. . o
Series Sigma (%) 2sigmas 4 sigmas 6 sigmas 8 sigmas 10 sigmas > 10 sigmas

CHF 0,2999 2613 93 13 6 1 1
GBP 0,5192 2591 125 10 1 0 0
RON 0,6322 2582 132 9 2 1 1
USD 0,6598 2585 137 5 0 0 0

Table 1. Sigma movements of exchange rate returns

Although data is concentrated in the middle of each distribution, it is obvious that important
information lies beyond 2 sigmas and changes even above 10 sigmas occur (movements of
CHF and RON vs. EUR). Such evidence of extreme movements gives incentive for the use of
a stronger risk management framework, even more in the context of current crisis which has

seriously weaken world’s currencies.

To begin our analysis, we observe the stylized facts in our data, like fat-tailedness, skewness,

leptokurtosis, heteroskedasticity, volatility clustering and dependence™.

The main statistics of the series show maximum daily changes up to almost 7% in one day for
RON/EUR exchange rate (severe depreciation of RON back in 1999). Maximum currency
appreciation of RON vs. EUR, i.e. decrease of exchange rate, is roughly 5%. The impact of
current crisis on the other three currencies has pushed the exchange rates against the Euro to
new historical maxima and minima: GBP depreciated with almost 3% against the EUR and
suddenly appreciated, in just a few days, with 3.14%; CHF, known as a highly speculated
exotic currency, dropped 3.4% against the Euro and regained 2.06% with several tendency
changes in the last months; the American currency lost 3.72% against the Euro in 2009, after
another maximum drop at the end of 2008 of roughly 3.5%. In Appendix 1. we also present

the evolution of exchange rates in the period between January 1999 and June 2009.

In terms of skewness and kurtosis, all four series are positively skewed and exhibit excess
kurtosis, up to over 14 for CHF, indicating fat-tails in the data. Considering this and the
results of Jarque-Bera statistics (p-values equal 0), we can set grounds for rejecting the
hypothesis of normally distributed returns. The Jarque-Bera statistic is distributed as x> with 2
degrees of freedom under the null of normally distributed returns, with 1% critical value of

9.210. The main results are presented in Table 2. Histograms are presented in Appendix 2.

 Embrechts et. al (1997) stressed the importance of looking at the data before engaging in detailed statistical
analysis.
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Series CHF GBP RON USD
Mean -0.000026 0.000063 0.000431 0.000060
Maximum 0.034014 0.029818 0.068792 0.037188
Minimum -0.020577 -0.031374 -0.051064 -0.027968
Std. Dev. 0.002999 0.005192 0.006322 0.006598
Skewness 0.297207 0.164338 0.652896 0.098952
Kurtosis 17.562900 6.388935 12.772760 4.458904
Jarque-Bera 24137.5%* 1317.244* 11045.7* 246.2899*
Probability 0.000000 0.000000 0.000000 0.000000
Observations 2727 2727 2727 2727

*denotes significance at 1% level.
Table 2. Statistics of return series

We plot the quantiles of empirical series against the quantiles of normal distribution, in order
to verify the fit. QQ plots show excess kurtosis of empirical series. The concave departure of
the line proves the fact that exchange rate returns have fatter tails than the normal
distribution. USD returns have the smallest departure from the normal as we can also observe

in Table 1.: kurtosis a little over 3 and small skewness. QQ plots are presented in Appendix 3.

Exchange rate returns are known to be heteroskedastic. To observe the daily evolution of
exchange rates, we plot the returns on the time axis (Figure 2). It is obvious that the variances
change in time and the series are heteroskedastic. We can also observe high and low changes.
At the introduction of the Euro in 1999 the Romanian currency suffered a severe depreciation
of more than 6% (RON/EUR return around the 50" tick). RON appears to be the most
unstable currency in our data set and tends to peak once in 2-3 years. CHF follows very close

the evolution of the EUR. Moreover, volatility clusters appear.
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RON vs. EUR daily fluctuations
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USD vs. EUR daily fluctuations
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Figure 2. Daily fluctuation of exchange rates
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In order to test for stationarity, we employ ADF and PP tests (estimation outputs available in

Appendix 4.). Both tests reject the null of unit root existence at 1% (with p-values

insignificantly different from 0), as critical values at 1%, 5% and 10% are constantly less

negative than the ADF and PP statistics. The summary of the tests is presented in Table 3.

Series CHF GBP RON USD
Test statistic  p-value | statistic  p-value | statistic  p-value | statistic  p-value
ADF -54.7158  0.0001 -52.1392 0.0001 -33.2409 0.0001 -53.3015 0.0001
PP -55.0132  0.0001 -52.1392 0.0001 -48.5331 0.0001 -53.2919 0.0001
critical values 1% -3.4326 5% -2.8624 10% -2.5673

Table 3. ADF and PP tests summary

Moving further, we test for autocorrelation, as Extreme Value Theory requires the

observations to be approximately independent and identically distributed. Exchange rate

returns are heteroskedastic and present some degree of autocorrelation. Below we plot the

sample autocorrelation function for our data (Figure 3). Indeed, autocorrelation appears and it

is obviously significant for RON series, first three lags. USD series seem to present the

smallest degree of autocorrelation, with AC coefficients insignificantly different from 0.
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Figure 3. Sample ACF for exchange rate returns
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We also estimate AR(p) processes for all four series of returns with one lag for CHF, GBP
and USD against EUR returns and with three lags for RON vs. EUR return. We cannot reject
autoregressive terms for CHF and RON. In the special case of RON we fit up to three AR
terms and since none of the models is rejected we make our choice based on AIC and SIC

values (Table 4). We choose an AR(1) model for CHF and an AR(3) for RON.

Criterion AR(1) AR(2) AR(3)
AIC -7.293203 -7.296764 -7.302550
SIC -7.288866 -7.290257 -7.293872

Table 4. AIC and SIC values for AR processes on RON

No further evidence of autocorrelation was found in the residuals. Inverted autoregressive
roots are within the unit circle and thus we support the stationarity of our data. AR estimation

outputs are shown in Appendix 5.

Even though GBP and USD series reject AR components, we plot the sample ACF of squared
returns to illustrate the degree of persistence in variance, as the departure from i.i.d. structure
impacts EVT framework. Indeed variances appear to be persistent, especially for GBP series.

Plots of sample ACFs of squared returns are presented in Figure 4. below.
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Figure 4. Sample ACF of squared returns

In order to apply EVT to our data we have to produce i.i.d. observations, i.e. we have to
compensate for autocorrelation and heteroskedasticity in returns. To compensate for
autocorrelation, we fit ARMA models to the conditional mean and to compensate for
heteroskedasticity we fit EGARCH models to the conditional variance of all four series
(outputs presented in Appendix 6). For EGARCH specification we employed Student-t
distribution, as it is more appropriate for fat-tailed data. We extract the residuals and the
conditional variances from the estimated models and we obtain approximately independent

and identically distributed standardized distributions, computed as:

e) ..

r(t) = ﬁ;l.l.d. (39)
a(?)

Resulting standardized series autocorrelation functions and ACFs of squared standardized

series are plotted in Figure 5 below. Autocorrelation coefficients are roughly insignificant

and persistence in variance has been removed. The standardized series are approximately

1.1.d. and can be used in the EVT framework.
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Figure 5. ACFs of Standardized Series and Squared Standardized Series

The conditional standard deviation and the correspondent residuals are plotted in Appendix 7.

The main statistics of approximately 1.1.d. standardized series are presented in Table 5 below.

Series CHF GBP RON USD
Mean -0.000104 0.000166 0.000072 0.000207
Maximum 0.074168 0.044695 0.064260 0.041782
Minimum -0.067014  -0.040348 -0.061674 -0.037682
Std. Dev. 0.010451 0.009976 0.009950 0.009951
Skewness -0.331842 0.178408 0.335682 0.018966
Kurtosis 6.080639 3.860722 5.915937 3.531112
Jarque-Bera 1128.389* 98.64476* 1017.332* 32.21481*
Probability 0.000000 0.000000 0.000000 0.000000
Observations 2727 2727 2727 2727

*denotes significance at 1% level.
Table 5. Main statistics of standardized series

5.2 Results
Value at Risk

For our non-normal, skewed, leptokurtotic and stationary non-standardized series, we apply
Value at Risk framework for later comparison to VaR measures based on EVT models

(extreme VaR).

We employ four VaR models: Historical Simulation (HS), Hybrid Historical Simulation
(HHS), RiskMetrics EWMA with 0.94 decay factor for daily data and an EGARCH(1,1). The
99% and 99.9% Value at Risk and Expected Shortfall values for the 2728" day according to
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each model employed are presented in Table 6. EGARCH model estimation is available in
Appendix 6. We calculate the risk for right (upper) tail, denoted by U, and for the left (lower)
tail, denoted by L.

Series | VaR (%) | HS [ HHS | EWMA [ EGARCH | ES (%) [ HS [ HHS [ EWMA [ EGARCH
CHFy, 071 047 | 037 0.54 0.84 [ 074 [ 0.58 0.80
CHF, 0.82 ] 048 | 037 0.54 126 [ 0.77 [ o058 0.80
GBPy 139 149 | 1.08 1.67 193 [ 1.86 | 1.42 2.09
GBp, | £ |137] 13| 108 1.67 £ |17 159 | 142 2.09
RONy| & |184|o0s6| o048 0.69 & |255] 131 101 1.48
RON, 150 | 076 | 0.48 0.69 210 127 | 101 1.48
USDy 172 | 167 | 139 0.91 215 194 | 171 2.45
USD, 173 ] 181 ] 139 0.91 197 [ 231 | 171 2.45
CHF, 1791072 049 0.72 263 L1T [ 077 1.07
CHF, 1.86 | 0.79 | 0.49 0.72 199 [ 138 | 077 1.07
GBPy 270 | 194 | 143 2.22 285 241 | 1.89 2.77
GBP, S 227 192 | 143 2.22 S |348) 231 189 2.77
RONy| g |307| 111 | o064 0.91 g [370] 159 | 133 1.96
RON, 271 | 110 | 064 0.91 3.02 ] 1.68 | 1.33 1.96
USDy 280 [ 1.78 | 1.83 2.14 320 | 2.01 | 2.26 3.25
USD, 222235 ] 183 2.14 3.18] 2.87 | 2.6 3.25

Table 6. 99% and 99.9% VaR and ES (point estimates for day one out of the sample period).
Values in percents”. L stands for lower (left) tail and U stands for upper (right) tail.

The first observation to be made is the fact that VaR and ES values are constantly lower for
CHF series. If we take a look at the daily movements in each exchange rate return data set
(Figure 2. above), we have the immediate explanation: while CHF generally fluctuates in a
narrow band of £1% against the Euro, the other currencies show higher changes, approaching
+2% band, especially in the case of GBP and USD. VaR and ES values highly depend on this

regular historical fluctuation.

According to our result, the highest VaR and ES values are computed for Historical
Simulation, which directly picks the 99% and 99.9% quantiles. Hybrid Approach shows
lower values of potential loss but above those provided by RiskMetrics approach. HHS is
expected to perform better for CHF, GBP and USD series, as the highest returns are rather
recent. Conversely, HS and HHS could have never predicted returns of +2% in 2009 for
CHF, GBP and USD since history offered significantly lower values for these exchange rate

movements. EWMA takes into consideration past returns and volatility but with quadratic

26 We refer to a positive percentage VaR as to a loss of x%.
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impact and the slow adjustments may produce underestimates of risk. EGARCH model
produces estimates in between those computed for HS and EWMA. The model takes into
consideration the future impact of current information, considering it exponential and not

quadratic.

In Figures 6 and 7 below, we show how daily estimates of VaR values computed with
EWMA and EGARCH models fit actual returns. We show the symmetric coverage for both
left and right tails. It is obvious that changes in exchange rates outside the £2.5% band are
generally not captured by the two models. EGARCH shows little improvement compared to
EWMA, especially at 99.9% confidence level. The high depreciation of CHF and USD vs.
EUR in 2009 and that of RON vs. EUR back in 1999 are not captured by any of the two

models.

Figure 6. VaR EWMA coverage for exchange rates appreciation (negative returns) and

depreciation (positive returns) over the sample period: January 1999 — June 2009.
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In Section 5.3.4. we will test the performance of the VaR methods employed and compare it
to the performance of EVT models. We will prove that with respect to extreme events
prediction, standard VaR models are clearly outperformed by extreme VaR measures, which

incorporate the results of Extreme Value Theory.

Extreme Value Theory

Objective: compute possible losses that have not yet been historically observed.
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The first step in applying EVT is to explore the data®’. This is usually done by plotting QQ
graphs and the distribution of mean excess, as discussed in Sections 4.1.1. and 4.1.2. Because
EVT is designed to analyze upper tails (positive values) of i.1.d. data, as stated before, we use
positive standardized series to infer for upper tails and negative standardized series for lower

tails.

First, we plot the quantiles of our series against the quantiles of exponential distribution, to
verify the existence of heavy tails. Because exponential distribution decays faster than power
function type distributions, the plot of the series against exponential quantiles should be
curved at the bottom/upper end in order to prove heavier tails. As shown in Appendix 8.,
judging from the concave departures from the straight line, our datasets appear to have fatter
tails than the exponential distribution. We expect GBP series to have a smaller degree of fat-
tailedness than the others as they appear to have only a small departure from the exponential.
In Appendix 8 some of the last order statistics have been removed in order to analyze how
much distortion they induce to the graphs. Judging by the tendency of the data in the tail of
USD to describe a convex curve against the straight line, we also expect these series to be

considerably less fat-tailed.

Mean Excess (ME) plots in Appendix 9. generally show that for some threshold above 1%,
the curves have an upward slope. Correspondently, data above that threshold will be
approximated by a Generalized Pareto Distribution. Where the slopes are positive, GPD
shape parameter will also be positive, i.e. the distributions are likely to be in the maximum
domain of attraction (MDA) of the Fréchet (fat tailed). ME plots are generally unstable
compared to the ideal case of an upward straight line, but in trend the graphs are positioned

between the horizontal MEF of the exponential and the MEF of GPD, going towards infinity.

Hill plots in Appendix 10. show how estimates of the shape parameter & vary with the
number of upper/lower order statistics and with the chosen threshold. For each tail, we
plotted the last 300 order statistics (lower or upper). We consider this truncation as fair as it
leaves more than 10% of data for analysis”®. The graphs are roughly stable between 100 and
120 order statistics in the case of CHF right tail, between 100 and 150 for CHF left tail,
around 100 order statistics for GBP right tail, between 80 and 100 order statistics for GBP
left tail, between 120 and 150 order statistics for RON right tail, between 100 and 110 order

7 Embrechts et. al (1997)
* Peng et. al (2005) argued that the range of data left in the tail should be less than or equal to 10% of data.
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statistics for RON left tail, between 130 and 150 order statistics for USD right tail and
between 80 and 100 order statistics for USD left tail. In order to test the stability of the
parameter in each of these areas, we computed ML shape parameter estimates for different

numbers of observations left in the tail.

Based on the previous two graphing techniques we select the thresholds for each tail - we
choose a number of order statistics & in order to obtain as small variance and bias as possible.
Then we fit GPD distributions to each tail and obtain ML estimates® for shape parameter &.

Goodness of fit is presented in Appendix 11. Results are presented in Table 7 below.

Tail CHFy CHF, GBPy GBP, RONy RON, USDy USD,

k 110 130 100 90 120 105 150 95
Threshold (%) | 1.7068 1.7521 1.8526 1.7875 1.7834 1.6411 1.6453 1.8001
& estimates 0.2031 0.1365 0.1176 0.0947 0.1402 0.1544 0.0962 0.1118

Table 7. ML estimates - threshold selected through graphing techniques

Using the above values for tail estimates as detailed in Section 3.2.3., we find that at 99%
confidence level, extreme VaR estimates higher potential loss than the standard methods
(Table 6 in Section 5.2.). Passing on to higher quantiles in the tail, like 99.9%, EVT VaR
estimates depreciation of CHF as high as 4.03% (CHF series, right tail), not far from the
value observed in March 2009 (3.40%), which came after a change of only 0.6% in
CHF/EUR rate. The same observation can be made in the case of GBP at 99.9%, with an
estimated extreme appreciation of 3.89% and a real, observed maximum appreciation of
3.14% in January 2009 or in the case of USD — estimated depreciation of 3.36% at 99.9%
against observed 3.72% in March 2009. For RON series, extreme VaR still does not cover the
maximum observed values of 6.89% depreciation in 1999 and 5.11% appreciation against

EUR in 2005. VaR estimates are presented in Table 8.

VaR (%) | CHFy CHF, GBPy GBPp, RONy RON; USDy USDy,
99% 2.38 2.90 2.53 2.54 2.75 2.38 2.46 243
99.9% 4.03 5.11 4.00 3.98 4.75 4.07 3.36 3.37

ES (%) | CHFy CHF, GBPy GBPp, RONy RON; USDy USD,
99% 3.08 3.69 3.16 3.12 3.61 3.12 3.12 3.11
99.9% 5.15 6.25 4.83 4.71 5.93 5.12 4.12 4.17

Table 8. Point estimates (values in percents) — extreme VaR and ES at 99% and 99.9% levels

As discussed in Section 4.3., we also computed tail index measures using Hill, Pickands and

DEdH estimators. These estimates and corresponding VaR and ES measures are given in

% Hosking, Wallis (1987) show that for £&>-0.5 the ML method holds.
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Table 9. Two observations have to be made: one, Pickands estimator produces lower VaR
values than the other two estimators®, and two, for the same length of one particular tail,

higher shape parameters result into higher VaR values®'.

Estimator CHFy CHF, GBPy GBP, RONy RON,; USDy USD,,
Hill 0.2191 0.1765 0.1226 0.1134 0.1785 0.1806 0.1159 0.1268
Pickands 0.2078 0.1641 0.1197 0.1067 0.1680 0.1708 0.1126 0.1235
DEdH 0.2198 0.1769 0.1253 0.1175 0.1776 0.1797 0.1172 0.1283
=G Hill 2.77 3.67 3.12 2.86 3.35 3.10 2.66 2.64
3 é Pick 2.56 3.58 3.04 2.79 3.26 3.02 2.64 2.62
DEdH 2.78 3.68 3.17 2.88 3.34 3.09 2.66 2.65
o Hill 541 5.81 4.26 4.06 5.34 5.11 3.68 3.63
E i Pick 543 5.79 4.23 4.02 5.29 5.05 3.67 3.63
| DEdH 542 5.81 4.26 4.06 533 5.09 3.68 3.64
; Hill 3.43 4.19 3.68 3.25 3.98 3.61 3.08 3.09
4] § Pick 3.35 4.17 3.58 3.17 3.92 347 3.07 3.08
DEdH 3.43 4.19 3.73 3.29 3.98 3.63 3.09 3.09
- Hill 6.36 6.75 4.94 4.40 6.10 5.75 4.12 4.11
4] i Pick 6.22 6.74 4.84 4.39 6.07 5.69 4.10 4.10
| DEdH 6.37 6.76 4.97 4.40 6.09 5.77 4.12 4.18

Table 9. Point estimates (%) - EVT VaR and ES using Hill, Pickands and DEdH estimators

We obtained higher estimators of the shape parameter and higher VaRs than by ML method.
The 99.9% VaR for RON series is now considerably closer to the observed maxima and
minima. On the other hand, USD extreme appreciation against EUR at 99.9% appears
somewhat overestimated compared to the observed minima. For the chosen thresholds, CHF
appears to be more fat-tailed than the other series. The second series in terms of tail-fatness
appears to be RON, with a slightly fatter left tail, implying risk on Romanian Leu
appreciation versus the Euro. GBP and USD appear to be less fat-tailed that the other two
series. The largest potential extreme loss at 99% confidence level is expected for CHF series
(around 3.6%) generated by an appreciation against the EUR. The recovery trend of CHF is
actually consistent with real data, in and outside the sample period. At 99.9% confidence
level, the CHF extreme appreciation is estimated at approximately 5.8%. For USD against the
EUR, VaR values are roughly similar in the right and left tail. This is also consistent with the
real trend as in the recent months the two currencies have been struggling to gain points
against each other. As expected, for the RON higher losses are estimated for the upper tail,

meaning extreme depreciation would be higher than correspondent appreciation. The values

3% Brooks et. al (2003) also found that Pickands estimator usually results into ‘slightly smaller’ VaR values.
3! We found similar results in the paper of Wagner and Marsh (2003).
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for Expected Shortfall show how much can an investor lose on a short or long position if the

extreme movement in exchange rates overshoots the VaR values.

Hybrid models

According to this approach, we computed new VaR values and the point estimates for the

first day out of sample are shown in Table 10 below:

EVT EWMA CHFy CHF, GBPy GBP, RONy RON, USDy USD,
99% 0.56 0.52 1.55 1.44 0.69 0.66 1.71 1.92
99.9% 0.90 0.71 2.04 1.79 0.96 0.94 2.14 2.49

EVT EGARCH CHFy CHF, GBPy GBP, RONy; RON; USDy USD,
99% 0.55 0.51 1.61 1.49 0.66 0.62 1.77 2.20
99.9% 0.87 0.69 2.11 1.86 0.91 0.88 1.98 2.57

Table 10. Point estimates (%) - EVT VaR using EWMA and EGARCH

The point estimates for day 1 out of the sample period are slightly different from those
computed with standard VaR models. Losses of less than 1% are expected for CHF and RON
series. Highest losses are expected for USD against the EUR on long positions on EUR,
around 2.49% at 99.9% confidence level. This method is likely to produce more biased
estimates both in the tail and in the centre of the distribution, i.e. underestimate the tails (high

losses) and overestimate the centre (small losses).

5.3 Backtesting

In order to asses the performance of VaR models we backtest VaR estimates against actual
returns in order to determine the percentage of failure in VaR estimation. In this part of the
analysis we only include dynamic results, for the whole distribution. Results for 99% and

99.9% confidence levels are presented in Table 11 and Table 12, respectively.

Percentage of violations at 99% confidence level — fail if > 1%

Model CHFy CHF, GBPy GBP, RONy RON, USDy USD,
EWMA 5.83 6.71 7.00 6.12 7.55 491 7.37 6.12
EGARCH 5.32 6.45 6.38 5.06 6.49 4.14 5.79 6.09
EVT EWMA 1.72 1.39 1.10%** 2.34 0.92* 1.76 223 1.28
EVT EGARCH 1.32 0.73* 1.28 242 091* 2.53 1.90 1.28

*Denotes accepted models at 99%
**Denotes models close to acceptance at 99%

Table 11. Backtesting results: percentage of failures in VaR estimation at 99% level
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Percentage of violations at 99.9% confidence level — fail if > 0.1%

Model CHFy CHF., GBPy GBP, RONy RON_, USDy USD,
EWMA 2.38 2.89 2.89 2.35 4.03 2.16 2.97 2.60
EGARCH 1.72 2.82 2.57 1.94 3.12 1.58 242 2.02
EVT EWMA 0.18 0.11**  0.07* 0.58 0.11%* 0.69 0.25 0.11%*
EVT EGARCH 0.07* 0.07* 0.07*  0.11**  0.11** 0.66 0.18 0.07*

*Denotes accepted models at 99.9%
**Denotes models close to acceptance at 99.9%

Table 12. Backtesting results: percentage of failures in VaR estimation at 99.9% level

Taking into consideration the average failures in predicting future losses at 99%, EVT
EWMA and EVT EGARCH seem to perform better than regular VaR models. Performance at
99.9% is even better for these two approaches, especially for EVT EGARCH. Still, this may
be a result of overestimation of risk, rather than of reliability. EWMA and EGARCH seem to
be rejected both at 99% and 99.9% confidence levels, with a better performance at 99.9%,
especially for EGARCH.

Next, we compute Mean Squared Error for all the models employed (excepting HS and
HHS). For pure EVT models we analyze how much bias they produce in estimating tail risk,
and for regular VaR models, EVT EWMA and EVT EGARCH we want to determine the

bias of the estimates for the whole distribution.

Mean Squared Error for 99% confidence level models

Model CHFy CHF, GBPy GBP. RONy RON, USDy USD,,
Prediction at tails
EVT ML 0.3454 0.1982 0.1045 0.0560 0.0667 0.0566 0.0650 0.0762
EVT Hill 0.3945 0.3199 0.1308 0.0784  0.1129  0.0796  0.0914  0.0966
EVT Pick 0.3736 0.2464 0.1119 0.0762  0.1069 0.0797  0.0916  0.0964
EVT DEdH 0.3907 03181 0.1176 0.0837 0.1119 0.0778  0.0933  0.0987
Prediction for complete distribution
EWMA 0.3037 03069 0.9278 0.8934 1.4598 1.2703 1.4726 1.4686
EGARCH 0.2814 0.2823 0.9273 0.9022  1.5093  1.3058  1.4966  1.4943
EVT EWMA 0.5887 0.5186 1.6299 1.4019 2.5382 2.0457 2.0255 2.4314
EVT EGARCH 0.5359 0.4706 1.6352 1.4155 2.6363 2.1144  2.0627  2.4799
*Minimum MSE in bold

Table 13. Mean Squared Error at 99% level
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Mean Squared Error for 99.9% confidence level models

Model CHFy CHF. GBPy GBP. RONy RON, USDy USD,
Prediction at tails
EVT ML 2.6021 1.2894 0.7185 0.3614  1.0851 1.1454  0.4972  0.5903
EVT Hill 3.1963 24670 09583  0.5486  2.0117 1.7118  0.7741  0.7962
EVT Pick 3.1281 24585 0.8693  0.5126 1.9120 1.5734  0.7867  0.7813
EVT DEdH 3.1478  2.4478 0.8353  0.5961 1.9892 1.6641  0.7942  0.8179
Prediction for complete distribution
EWMA 0.4655 0.4697 1.4164 1.3708 2.2165 1.9656 2.2533  2.2481
EGARCH 04259 0.4271 14206 1.3847 23003  2.0309 2.2958  2.2927
EVT EWMA 1.3633  0.8925 25976 2.0280 4.4050  3.8277 29112  3.7766
EVT EGARCH 1.2269 0.8033 2.6087 2.0476  4.5868  3.9733  2.9694  3.8576
*Minimum MSE in bold

Table 14. Mean Squared Error at 99.9% level

Both at 99% and 99.9% confidence levels, the best prediction in the tails is obtained with
EVT ML, thus with lower tail indexes. Appears that bias in the Hill, Pickands and DEdH
estimators induces bias in the quantile estimation. Prediction for the whole distribution is split
between EWMA and EGARCH, but slightly better for EWMA, as differences in MSE are not
significantly different. EVT EWMA and EVT EGARCH are clearly outperformed in terms of
MSE by regular VaR models, thus applying some form of EVT for the whole distribution is
not desirable as it clearly overestimates small size changes in exchange rates. ES models

were not included in this analysis as we only use them for the purpose of orientation.

Scenario Setting

Last, but not least, we want to produce some sort of scenario. We know for sure how
exchange rates have evolved in the last ten years. So we extract the maximum and minimum
historical returns for each series, as well as the returns observed in the day prior to these
changes. Then we compare them with the 99.9% VaR vales obtained by different models for
day one out of the sample period and with returns in the last day of the sample period,

respectively, as shown in Table 15 below.
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Val;fs in I car, | car, | cBp, | GBr, | RON, | RON, | wsp, | usp,
Worst
daily +3.40 | -2.06 +2.98 -3.14 +6.88 -5.11 +3.72 -2.80
movement
Return in
previous | +0.57 | -1.87*% | +2.70%* | +0.07 | +1.90 | +0.49 | +0.36 | +0.99
day
Return in
last day of | -0.08 | -0.08 +0.48 +0.48 -0.02 -0.02 +0.26 | +0.26
sample
VaR HS 1.79 1.86 2.70 2.27 3.07 2.71 2.80 2.22
VaR HHS | 0.72 0.79 1.94 1.92 1.11 1.10 1.78 2.35
VaR
EWMA 0.49 0.49 1.43 1.43 0.64 0.64 1.83 1.83
VaR 072 | 072 222 222 0.91 0.91 2.14 2.14
EGARCH ) ) . ) ) ) ) .
VaR EVT
EWMA 0.90 0.71 2.04 1.79 0.96 0.94 2.14 2.49
VaR EVT
eArcH | 087 0.69 2.11 1.86 0.91 0.88 1.98 2.57
Average
varEve | 507 5.63 4.19 4.03 5.18 4.83 3.60 3.57

Table 15. Realized vs. estimated extremes

Searching on what generated these extremes movements, we found the following

information;

e EUR/CHF +3.40% on March 12" 2009 — Swiss National Bank lowers interest rates by

25bps and adopts quantitative ease.

e EUR/CHF -2.06% on October 27" 2008 — effects of the crisis — extra burden to the

slowing export-depending economy.

e EUR/GBP +2.98% on November 13" 2008 — a report from Bank of England leads to

expectations of further cuts into interest rates (after a 150bps cut in the previous week);

e EUR/GBP -3.14% on January 5™ 2009 — European Central Bank cuts 50bps of interest rate

overnight.

32 With +0.55% change in previous day
33 With -0.25% change in previous day
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e EUR/RON +6.89% on March 17 1999 — the largest commercial bank in Romania almost
bankrupt; overwhelming external debt (almost 30% of the total mid and long-term debt);

effects of the Russian crisis.

e EUR/RON -5.11% on February 22" 2005 — expectations that National Bank of Romania

would enter the market and buy excess foreign currency.

e EUR/USD +3.72% on March 19™ 2009 — Federal Open Market Committee announces

quantitative ease.

e EUR/USD -2.80% on October 27" — The Fed announces another economic stimulus —

optimism in the market.

Now looking back at Table 15 and considering what were the main drivers of these extreme
moves and the current situation in the market, one question arises: Are such extreme
scenarios that improbable? The answer is up to the reader but what is certainly clear is that
underestimating risk one could suffer severe losses, moreover considering the fact that the

current market conditions are highly unpredictable.

6 Concluding remarks

Under the current regulation of Basel II, banks are allowed to use internal risk models to
calculate capital requirements for market risk, in order to cover their trading positions. The
most common approach in computing expected losses is Value at Risk. Under Basel
approach, VaR should be computed for a 10-day holding period at 99% confidence level,
using minimum one year of historical data. Then the capital requirements are computed using
a multiplication factor of 3. The implementation is simple but significantly flawed. The basic
assumption in VaR computation is that returns in financial data are normally distributed.
According to this assumption, the size of a one in 1000 days extreme event is considerably
underestimated. In reality, a return of 5% or more is observed once a few years, and returns
of roughly 3% even more frequently. In theory, the normality assumption is contradicted by
stylized facts like fat-tailedness and leptokurtosis. In order to adapt VaR to characteristics of
the data and improve the vanilla Historical Simulation, some new approaches have been

proposed, like EWMA, Hybrid Historical Simulation, GARCH models, with normal or
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Student-t distributions etc. Indeed, these new models seem to better fit the behaviour of
financial data, but still fail to predict some extreme, unexpected changes in market variables,
that produce huge losses. In the last years, a new framework has been adopted in financial
risk modelling, Extreme Value Theory. First used in fields like hydrology or meteorology,
EVT has been recently adopted in insurance and operational risk modelling. The theory is
used to describe the behaviour of extreme historical returns and can be used to compute very
high quantiles, i.e. estimate extreme losses with very low probability, once in 1000 days or
more. Many studies have analyzed the performance of EVT in describing the behaviour of
exchange rates. Generally, the studies concluded that indeed EVT is more fit to estimate
extreme movements in exchange rates. However, inference for very high quantiles is done at
the expense of not modelling correctly moderate movements, precisely where VaR estimation

intervenes, thus the two approaches are rather complementary.

In this paper we used four exchange rate returns series and analyzed the performance of four
Value at Risk models, namely Historical Simulation, Hybrid Historical Simulation,
Exponentially Weighted Moving Average and EGARCH. We also employed EVT Peaks over
Threshold method to estimate potential extreme losses on exchange rate positions and two
hybrid models between EWMA and EGARCH, respectively, and Extreme Value Theory. We
treated each tail separately, as exchange rate risk refers not only to negative movements is the
data, but also to positive ones, corresponding to the long or short position taken on a
currency. Among VaR models, Historical Simulation seems to produce high values for
expected losses but it highly depends on historically observed returns. If we were to eliminate
the last 300 observations in each data set, HS would have predicted considerably lower
losses. Moreover, HS and also Hybrid HS can only be used to produce point estimates as we
refer to one single data set, with a predetermined time length. EWMA and EGARCH can be
used for dynamic computation of VaR and build the variance at each step taking into account
past information on returns and variance. Their performance differs between right and left
tails, as they produce symmetric VaR values, whereas the tails contain asymmetric
information. On the other hand, EVT is very sensitive to the choice of threshold and this
choice can prove very difficult as the tails can show significant departures from the Pareto
distribution. Also, VaR estimates using EVT are apparently more reliable when using ML
estimates for the shape parameter, than using other estimators, like Hill, Pickands or Dekkers-

Einmahl-DeHaan, as this estimators are known to be biased in small samples. The hybrids of
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EVT and standard VaR models perform well in terms of failure percentage but very poor in

terms of Mean Squared Error.

Based on backtesting results, we consider that the tails and rest of the distribution should be
modelled separately and the information from both should be used in risk management. We
back this statement by the simple scenario proposed in the last part of our analysis, which
does not appear so improbable in the current market conditions. However there is a trade-off
when considering how this information should be used: regulators would prefer more
conservative measures, which diminish systemic risk but results into inefficient
supplementary capital allocation; on the other hand, bank managers would assume the risks
but prefer those models which result into low capital requirements. It is obvious that no
regulation could ask banks to put aside as much capital as based on EVT VaR values,
although, roughly speaking, if we consider a historical VaR of 1% and multiply it by 3, we
may need to put aside as much capital as EVT indicates. The use of EVT should orientate on
stress testing or limit setting for long or short positions, as the limits set for transactions
highly depend on the probability of an extreme loss, that may not be easy to cover and EVT,
by contrast to VaR, tells that such a probability is considerably high. We underline this two

issues as possible orientation for future research.
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Appendixes

1. Exchange rates evolution between January 1999 and June 2009. Effects of the current
crisis can be observed in the last 200 observations.
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2. Histograms of exchange rate returns series. The distributions are skewed and leptokurtic.

Generally, right tails are longer, i.e. more severe depreciation than appreciation against the Euro.
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3. QQ-plots: Exchange rate returns vs. Normal distribution. Series are not normally

distributed. USD exhibits the smallest departure from the Normal.
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4. Unit root tests. Unit root hypothesis is rejected at 1% confidence level by both tests in all four

cases. Series are stationary.

Augmented Dickey-Fuller unit root test. Hy: data has a unit root

Mull Hypothesis: CHF has a unit root
Exogenous: Constant
Lag Length: O (Autornatic based on SIC, MAKLAG=27)

Mull Hypothesis: GBP has a unit root
Exogenous: Constant
Lag Length: O (Automatic based on SIC, MAKLAG=27)

t-Statistic Prob.* t-Statistic Prob.*
Augrnented Dickey-Fuller test statistic S471576 0 0.000 Augmented Dickey-Fuller test statistic -52.13022 0.0001
Test critical values: 1% level -3.432557 Test critical values: 1% leval -3. 432557
A% level -2.862401 5% level -2.862401
10% level 2567273 10% leval -2EE7273
*Mackinnon (1996) one-sided p-values. *Mackinnon (1996) one-sided p-values.
Mull Hypothesis: RON has a unit root Mull Hypothesis: USD has a unit root
Exogenous: Constant Exogenous: Constant
Lag Length: 2 (Autornatic based on SIC, MAXLAG=2T) Lag Length: O (Automatic based on SIC, MAKLAG=27)
t-Statistic Prob.* t-Statistic Prab.*
Augmented Dickey-Fuller test statistic -33.24085 0.0000 Augmented Dickey-Fullar test statistic -53.30146 0.0001
Test critical values: 1% level -3.432559 Test critical values: 1% level -3.432557
5% level -2.862402 5% level -2.862401
10% level 2567273 10% level -2.867273
*Mackinnon (1996) one-sided p-values. *Mackinnon (1996) one-sided p-values.
Phillips-Perron unit root test. Ho: data has a unit root
Mull Hypothesis: CHF has a unit root Mull Hypothesis: GBP has a unit root
Exogenous: Constant Exogenous: Constant
Bandwidth: 15 (Mewey-¥West using Bartlett kemel) Bandwidth: 1 (Newey-West using Bartlett kemel)
Adj. t-Stat Frob.* Adj. t-Stat Prab.®
Phillips-Perron test statistic -55.01316  0.0001 Phillips-Perron test statistic -52.13920  0.0007
Test critical values: 1% level -3.432657 Test critical values: 1% level 3432857
5% level -2.862401 5% level -2.862401
10% level -2.567273 10% level -2.567273
“Mackinnan (1996) one-sided p-values. *Mackinnon (1996) one-sided p-values.
Mull Hypothesis: ROM has a unit root Mull Hypothesis: USD has a unit root
Exogenous: Constant Exogenous: Constant _
Bandwidth: 9 (Mewey-¥est using Bartlett kemel) Bandwidth: 11 {Mewey-¥West using Bartlett kernel}
Ad. t+-Stat Prob* Adj. t-Stat Prob™
Phillips-Perron test statistic -48.53310  0.0001 Fhillips-Perran test statistic -53.29183  0.0001
Test critical values: 1% level -3.432857 Test critical values: 1% level -3.432557
5% level -2.8E2401 5% level -2.062401
10% leval -2 867273 10% level 2567273

“Mackinnon (1996) one-sided p-values.

*Mackinnon (1996) one-sided p-values,




5. AR(p) estimates for exchange rate returns. AR(1) estimation for CHF, GBP and USD series and
AR(3) estimation for RON series. Rejected: GBP and USD. Accepted: CHF, at 5%, and RON at 1%.

Dependent Yariable; CHF
Method: Least Squares
Date: 06/24/09 Tirme: 10:09
Sample (adjusted); 2 2727

Included observations: 2726 after adjustrments
Convergence achieved after 3 iterations

Dependent Wariable: GBF
hWlethod: Least Sguares
Date: 06/23/09 Time: 15:33
Sample (adjusted): 2 2727

Included observations: 2726 after adjustments
Corwvergence achisved after 2 iterations

“Yariable Coeficient  Std. Eror  t-Statistic Prob.
C -257E-05 548E05 0469169 0.6390
AR 0047202 0019139 2466293 00137
R-squared 0.002228 Mean dependent var  -2.57E-05
Adjusted R-squared 0.001862  S.D. dependent war 0.003000
S.E. of regression 0.002997  Akaike info criterion -5.781343
Surn squared resid 0.024463  Schwarz criterion -8.777507
Log likelihood 11971.65  F-statistic B.052601
Durbin-Watson stat 2.003044  ProbiF-statistic) 0.013713
Inverted AR Roots -05
Dependent “ariable: ROMN
tethod: Least Squares
Date: 06/24/09 Time: 21:55
Sample (adjusted): 2 2727
Included obsereations: 2726 after adjustments
Corwergence achieved after 3 iterations
Yariable Coeficient  Std. Error t-Statistic Prob.
[ 0.000430 0000130 3311166 0.0009
AR 0070283 0019112 3677371 0.0002
R-sguared 0.004340  Mean dependent var 0.000430
Adjusted R-sguared 0.004575 5.0 dependent var 0.006323
S.E. of regression 0.006305  Akaike info criterion 7293203
Surn sguared resid 0.108397  Schwarz criterion -7. 288365
Log likelihood 9942 635  F-statistic 13.52305
Durbin-YWatson stat 1.990555  Prob(F-statistic) 0.000240
Inverted AR Roots 07
Dependent Wariable: ROMN
Method: Least Sguares
Date: 06/24/09 Time: 10:37
Sample (adjusted): 4 2727
Included observations: 2724 after adjustments
Convergence achieved after 2 iterations
“ariable Coefficient  Std. Error t-Statistic Prob.
> 0.000432 0000112 3840845 0.0001
AR 0.069993 0012108 3663268  0.0003
AR -0.061008  OO18M17 0 -31912358 0 0.0014
AR -0.073483 00182108 -4.107330  0.0000
R-squared 0.015544  Mean dependent war 0.000432
Adjusted R-squared 0.014459  S.D. dependent var 0.006322
S.E. of regression 0.006276  Akaike info criterion -7.302550
Surm squared resid 0107152 Schwarz criterion -7.293872
Log likelihood 9950073 F-statistic 1431616
Durbin-Watson stat 1.996154  ProbiF-statistic) 0.000000
Inverted AR Roots 2+ 410 2240 -36

“ariable Coefficient  Std. Error  t-Statistic  Prob.
C 6.46E-05  956E-05 0649292 05162
AR 0.000935  0.019161 0048812 09611
R-squared 0.000001  Mean dependent var G.46E-05
Adjusted R-gquared  -0.0003858 5.D. dependent var 0.005132
S.E. of regression 0.005193  Akaike info criterion -7.652199
Surn syuared resid 0.073465  Schwarz criterion -7.B77362
Log likelihood 1047284  F-statistic 0.002383
Durbin-WWatson stat 1995599 Prob(F-statistic) 0961071
Inverted AR Roots .00
Dependent Variable: ROMN
Method: Least Sguares
Date: 082502 Time: 0542
Sample (adjusted): 32727
Included abserations: 2725 after adjustments
Camwergence achieved after 3 iterations
“arable Coefficient  Std. Error t-Statistic Prab.
C 0.000429 0000122 3527489  0.0004
AR 0074923 0019122 3918035  0.0001
AR 0067019 00122 -3.504794  0.0005
R-squared 0.009401  Mean dependent var 0.000429
Adjusted R-squared 0.008673  S.0. dependent war 0006323
3.E. of regression 0.006296  Akaike info criterion -7 296764
Sum squared resid 0107393 Schwarz criterion -7.290257
Log likelihood 9944841  F-statistic 1291555
Durbin-watson stat 2.009145  Prob(F-statistic) 0.000003
Inverted AR Foots 04-26i 04+26i
Dependent Wariable: USD
hethod: Least Squares
Date: 06/23/02 Time: 15:34
Sample (adjusted): 2 2727
Included observations: 2726 after adjustments
Canvergence achieved after 3 iterations
Yariable Coeficient  Std. Error  t-Statistic Prob.
C B.Z23E05 0000124 0503235 06148
AR 0020934 0019154 1092928 02745
R-zsquared 0.000438  Mean dependent war B 24E-05
Adjusted R-squared 0.000071 3.0, dependent var 0.006593
3.E. of regression 0.0065295  Akaike info criterion -7.203326
Surm squared resid 0118330 Schwarz criterion 7153933
Log likelihood 9820133 F-statistic 1.194485
Durbin-¥Watson stat 2000623 Prob(F-statistic) 0.274523
Inverted AR Roots -0z




6. Fitting EGARCH models to exchange rate return series. All conditional variance
coefficients are positive.

Series CHF: accept ARMA(1,1) for conditional mean and EGARCH(1,1,1) for conditional

variance.

Dependent Yariable: CHF

Method: ML - ARCH (Marguardt) - Student's t distribution

Date: 0B/25/09  Time: 10:30
Sarnple: 12727
Included observations: 2727

Convergence achieved after 11 iterations

“ariance backcast: ON

LOG(GARCH) = C(Z) + C(3*ABS(RESID(-1 1@ SORT(GARCHL1)) +
C{4"RESIDI-1 @S QRT(GARCHE 1Y) + CEFLOGIGARCHCT)

Coefficient  Std. Error  z-Statistic Prob.

C 207ED5  3.86E-05 0536030 05919
Yariance Equation

(2 -0.257319 0048930 -5.258933  0.0000
C3 0143329 0.019493 7350947  0.0000
Cidy -0.086537 00133683 -4.230858  0.0000
CE) 0567730  0.003437  287.3979  0.0000
T-DIST. DOF 6.145385  0.636835  9.6498592  0.0000
R-squared 0000239 Mean dependent var -2 57E-05
Adjusted R-sguared  -0.002077  5.D. dependent var 0.002929
S.E. of regression 0.003002  Akaike info criterion -9.267799
Sum sguared resid 0.024523  Schwarz criterian -9.244793
Log likelihood 12629.01  Durbin-YWatson stat 2.093871

Dependent Yariable: CHFL

Methad: ML - ARCH (Marguardt) - Student's t distribution

Date: 0672509 Time: 20:41
Sample: 12727
Included observations: 2727

Convergence achieved after 12 iterations

“ariance backcast: ON

LOG(GARCH) = C(2) + CEABS(RESIDE Y@SQART(GARCHE)) +
CURESIDETM@SART(GARCHE 1Y) + CELOG(GARCHE-1))

Coefficient  Std. Error  z-Statistic Prob.

C -207E-05  386E-05 0536132 05919
Yariance Equation

Ci 0257359 0048921 5260662 0.0000
Ci3) 0143352 0.019425 7353312 0.0000
Cid) 0.0s6518 0.013362 4229850  0.0000
CiE) 0957728 0003436 2874443 0.0000
T-DIST. DOF 6145131 0636864 9645044  0.0000
R-squared -0.000233  Mean dependent var 257E-05
Adjusted R-squared  -0002077  5.D. dependent var 0.002999
S.E. of regression 0003002  Akaike info criterion -5.257799
Sum squared resid 0024523 Schwarz criterion SB.244793
Log likelihood 12629.01  Durbin-Watson stat 2093671

Dependent Yariable: CHF

Method: ML - ARCH (Marguardt) - Student's t distribution

Date: 06/27/09 Time: 10:51
Sample (adjusted): 2 2727

Included obserations: 2726 ater adjustments

Convergence achieved after B iterations

MA backcast: 1, Wariance backcast: OM

LOG{GARCH) = C(3) + CM"ABS(RESID-1)/@SARTGARCHE1)) +
CHETRESIDEV@SART(GARCH-1)) + CEFLOGGARCH(-1))

Coefficient  Std. Error  z-Statistic  Prob.
AR 0539199  0.091495 9171929  0.0000
WAT) 0865764 0.083567 -10.36015  0.0000
Yariance Equation

CE3 0413688 0015238 2714674 0.0000

Cid 0199075 0.01849% 1076147 0.0000

CE) 0077335  0.010438  7.408207  0.0000

[¥(5)] 0578822 0001328 7362464  0.0000

T-DIST. DOF 6.568935  0.670631 10.24155  0.0000
R-squared 0.002867  Mean dependent var 2.57E-05
Adjusted R-squared  0.000667  S.D. dependent var 0.003000
S.E. of regression 0.002999  Akaike info criterion -9.263032
Surn squared resid 0.024447  Schwarz criterion -9.237854
Log likelihood 12618.88  Durbin-Watson stat 2.044984

Dependent Wariable: CHFL

Method: ML - ARCH (Marguardt) -

Date: 0672709 Time: 10:53
Sample (adjusted): 2 2727

Student's t distribution

Included observations: 2726 after adjustrments

Corvergence achieved after B iterations

A backcast: 1, Variance backcast: OMN

LOG(GARCH) = C(3) + C4ABS(RESID-1/@SART(GARCHE-1)) +
CEFRESIDEA@SART(GARCH1)) + CEFLOGGARCH(-17)

Coeficient  Std. Error z-Statistic Prob.
AR(T) 0.639198 0091456 9171929  0.0000
AT 0865764  0.083867 1036015 0.0000
“ariance Eguation

Ci3 0413658  0.015238 2714674  0.0000

C4) 0.199075  0.018499 10.76147  0.0000

Ci5) 0.077335 0010435  7.409207  0.0000

CiB) 0978522 0001329  7365.2464  0.0000

T-DIST. DOF 6.666935  0.670691 10.24189  0.0000
R-squared 0.002867  Mean dependent var 2.57E-05
Adjusted R-squared 0.000667  S.D. dependent var 0.003000
S.E. of regression 0.002999  Akaike info criterion -9.253032
Surn squared resid 0.024447  Schwarz criterion -9.237854
Log likelihood 12618.88 Durbin-¥Watson stat 2.044984




Series GBP: accept ARMA(1,1) for conditional mean and EGARCH(1,1,0) for conditional

variance.

Dependent Variable: GBP

Method: ML - ARCH (Marquardt) - Student's t distribution

Date: 06/25/09 Time: 11:44
Sample: 1 2727
Included observations: 2727

Convergence achieved after 15 iterations

“atiance backcast: ON

LOG(GARCH) = C(2) + C(3"ABS(RESIDH-1 V@S QRTIGARCHE-1)1) +
CUFRESIDE W@SORTIGARCH1) + CELOGGARCHL)

Coefficient  Std. Error  z-Statistic Prob

[ 218E-06  7.82E05 0027469 0.9781
“ariance Equation

C2 0122609 0029373 -4.174282 0.0000
CE) 0.085476 0014149 6747792 0.0000
Cid) 0.007368  0.0095%7 0767714  0.4427
CE) 0995452 0002270 4384503  0.0000
T-DIST. DOF 1032808  1.886184 5475733 0.0000
R-sqguared -0.000152  Mean dependent var 6.34E-05
Adjusted R-squared  -0.001857  5.0. dependent var 0.005152
5.E. of regression 0.005157  Akaike info criterion -7.933746
Sum squared resid 0073488  Schwarz criterion -7.92074
Log likelihood 10823.66  Durbin-WWatson stat 1.997340

Dependent “ariable: GBP

Method: ML - ARCH (Marguardt) - Student's t distribution

Date: 06/27/09 Time: 10:56
Sample (adjusted): 2 2727

Included observations: 2726 after adjustments
Corvergence achieved after 15 iterations
A backcast: 1, Wariance backcast: ON
LOG{GARCH) = C3) + CA"ABS(RESID-1@SCRT(GARCH- 1) +

Dependent “ariable: GBP
Method: ML - ARCH (Margquardt) - Student's t distribution

Date: 06/27/09  Time:

10:54

Sarnple (adjusted): 2 2727

Included observations: 2726 after adjustments

Corvergence achieved after 21 iterations

MlA backcast: 1, Wariance backcast: OR

LOG[GARCH) = C(3) + C4rABSRESID-1AESART(GARCH-1))) +
CEFRESIDENESURTGARCHE + GBI LOGIGARCH-17)

Coefficient  Std. Error z-Statistic Prob.
AR(1) 0.907780  0.056315 16.11963  0.0000
A1) -0.827660  0.049804  -18.62612  0.0000
YWariance Eguation

Ci3 0127417 0029635  -4.299540  0.0000

Cid) 0.097950  0.014150 6922347 0.0000

Cig) 0.004952  0.008442  0.590057  0.5552

CiB) 0.995211 0.002318  429.2808  0.0000

T-DIST. DOF 10.22935 1.854872 5514853  0.0000
R-squared 0.000720 Mean dependent var G.46E-05
Adjusted R-squared  -0.001415  S.D. dependent var 0.005152
S.E. of regression 0.005186  Akaike info criterion -7.935315
Sum sguared resid 0.073407  Schwarz criterion -7.920M37
Log likelihood 1052283 Durbin-VWatson stat 1.958966

Dependent Wariable: GEPL
Method: ML - ARCH (Marquardt) - Student’s t distribution
Date: 0625709 Time: 20:49

Sample: 12727

Included observations: 2727
Convergence achieved after 14 iterations

Yariance backcast: ON

LOG(GARCH) = C(2) + C{3FABS(RESID1 @S QRTIGARCHE-1) +
CUPRESIDE1W@SRRT(GARCHE 1Y) + CEFLOGIGARTH( 1))

CEPLOGIGARCHE-1)
Coefficient  Std. Error  z-Statistic Prab.
AR 0909177 0055283 1644585 0.0000
MALT) -0.928901 0048789  -19.03913  0.0000
“Wariance Equation

C(3) -0129788  0.030247  -4.290922  0.0000

C#) 0100320 0014002 7164778 0.0000

CE) 0995153 0002368 4203012 0.0000

T-DIST. DOF 10.24143  1.860228 5505264  0.0000
R-sqguared 0.000792  Mean dependent var 6.46E-05
Adjusted R-squared  -0.001045  5.D. dependent var 0.005152
S.E. of regression 0.005195  Akaike info criterion -7 935522
Surn squared resid 0.073406  Schwearz criterion -7.92293
Log likelihood 1082266  Durbin-Watson stat 1.959274

Coeficient  Std. Error  z-Statistic Prob.

C 218E06  7B2ZEO: 0027464 0571
“ariance Equation

i 0122595 0029372 4173891 0.0000
C3 0.093467 0.014142  B747337  0.0000
i 0.007370 0009297 0767897 0.4425
i 05950452 0002270 4354811  0.0000
T-DIST. DOF 10.32831 1886190 5475755 0.0000
R-squared -0.000159  Mean dependent var -6.34E-05
Adjusted R-squared  -0.001997  S.D. dependent var 0.005192
S.E. of regression 0.005197  Akaike info criterion -7.933746
Surm squared resid 0.073488  Schwarz criterion -7.920741
Log likelihood 1082366  Durbin-YWatson stat 1.997340




Dependent “ariable: GBPL

hethod: ML - ARCH (Marquardt) - Student's t distribution

Date: 06/27/02 Tirme: 10:57

Sample (adjusted): 2 2727

Included observations: 2726 after adjustments

Convergence achieved after 21 iterations

MA backeast: 1, Wariance backcast: O

LOG(GARCH) = C(3) + CAABS(RESID-1)/@SARTIGARCHE- 1)) +
CEFRESIDENESORTGARCH-1)) + CEFLOG(GARCH{-1))

Dependent “ariable: GBPL

Method: ML - ARCH (Marquardt) - Student's t distribution

Date: 06/27/09 Time: 10:58

Sample (adjusted): 2 2727

Included observations: 2726 after adjustments

Conmvergence achieved after 15 iterations

M backeast: 1, Variance backcast: Ob

LOG{GARCH) = C(3) + CH)ABSIRESIDH WESARTIGARCH1)) +

- — CEPLOGIGARCH-1)
Coefficient  Std. Error  z-Statistic Prob.
: Coefficient  Std. Error z-Statistic Prob.

AR 0207851 0056405 16.09509  0.0000
MALT) 0827727 0049831 -18.59504  0.0000 AR(1) 0909177 0055283 1644505 0.0000
F WA 0828501 0048782 1203913 0.0000

“ariance Egquation
“ariance Equation

Ci3) 0127416 0028636 -4.299312  0.0000
Cidy 0057845 0014181 BE21427  0.0000 [ofic)] 0129783 0030247 -4290922  0.0000
CiE) 0004935  0.003444 -0.550433 06543 Ci 0100320 0014002 7164778 0.0000
CiE) 0995211 0002318 4292665  0.0000: C{5) 0995153  0.002368 4203012 0.0000
T-DIST. DOF 1022914 1.854953 5514501 0.0000: T-DIST. DOF 1024143 1860298 54605264  0.0000
R-squared 0.000720  Mean dependent var -6.46E-05 R-squared 0.000792  Mean dependent var -6 46E-05
Adjusted R-sgquared  -0.001415  5.0. dependent var 0.005152 Adjusted R-squared  -0.001045  5.0. dependant var 0.005152
S.E. of regression 0.005198  Akaike info criterion -7 .935315 3.E. of regression 0.005195  Akaike info criterion -7.935922
Sum sguared resid 0.073407  Schwarz criterion 7920137 Surn squared resid 0.073406  Schwarz criterion -7.922913
Loy likelihood 10822.83  Durbin-Watson stat 1.968973: Loy likelihood 1082266 Durbin-Watson stat 1.858274

Series RON: accept ARMA(3,3) for conditional mean and EGARCH(1,1,0) for conditional
variance.

Dependent Yariable: RON

hdethod: ML - ARCH {Marquardt) - Student's t distribution

Date: 062709 Tirme: 11:00

Sample (adjusted): 4 2727

Included obserations: 2724 after adjustments

Convergence achieved after 16 iterations

mdA hackecast: 1 3, Wariance backcast: ON

LOG(GARCTH) = ) + CEFABS(RESIDE @ SORTIGARCHE1I +
CEVRESIDEA@SART(GARCHE)) + SO0 LOG(GARCHE-1Y)

Dependent Yariable: RON

Method: ML - ARCH (Marguardt) - Student's t distribution

Date: 06/25/09 Time: 10:46

Sample: 12727

Included observations: 2727

Corvergence achieved after 13 iterations

“ariance backcast: OM

LOGGARCH) = C2) + CEArABS(RESIDE-A@SORTIGARCH-11 +

CATRESIDE)/@SART(GARCHL1]) + CELOG(GARCH(1)) Coeficient  Std. Emor  z Statistic  Prob.
Coefficient  Std. Error  z-Statistic  Prob. AR(1) 0477354 DOMEZD 5207308 0.0000
AR 0.685295 0.049817 13.75635 0.0000
AR 0.782486 0.093929 5.330587 0.0000
c -4.57E05 727ED5  -0B29158 05292 A1) 0.513902 0.083396 B.162220 0.0000
- - A2 -0.672124 0.045228  -15.01510 0.0000
Variance Equation MAE) 0816649 0085646 9535188  0.0000
G -0.361676 0058939 6136431 0.0000 “ariance Equatian
C3) 0.278797  0.025894 10.76678 0.0000
Cl4) 0029686 0.014468 -2.051736  0.0402 ggi Da7iges  pLesall  beposss  boood
CE) 0.984734 0004854  202.8602 0.0000 c@) 0026999 0014535 -1.994594 0.0451
coa 0.984261 0.004367 2022381 0.0000
T-DIST. DOF 4980726 0489416 10.11557 0.0000 o
T-DIST. DOF 5229225 0.530055 9.865439 0.0000
R-sguared -0.005620  Mean dependent var 0.000431
Adjusted R-squared  -0.007538  S.D. dependent var 0.006322 i;:lsqutardEdR y ggégggg gﬂ?ﬂddepezde?t war gggggg%
H H H 0 H a ljuste -square ependent var
gﬁh i;fagrfdsf;?d g'?ggggg gtﬁﬁsr'zn?rig':iizon _;;Sggg; S.E. of regression 0006252  Akaike info criterion 7722739
L. . . : Sum squared resid 0107407  Schwarz criterion -7.B28574
Log likelihood 1052716 Durbin-Watson stat 1.848878 Log likelihood 1052937 Durbin-WWatson stat 1 9273623




Dependent Yariable: ROM

Method: ML - ARCH (Marquardt) - Student's t distribution

Date: 06/27/09 Time: 11:09
Sample (adjusted): 4 2727

Included observations: 2724 after adjustments
Corvergence achieved after 9 iterations

MA backcast: 1.3, Variance backcast: ON
LOG{BARCH) = C(7) + C{E*ABS(RESID-1 )@ SART(GARCHE1T) +

COEFLOGIEARCHE1))

Coefficient  Std. Error - z-Statistic Prob.

AR(T) -0.535314 0034433 -1563346  0.0000

AR(2) 0678962 0034263 1572880  0.0000

AR(3) 0851814 0015515 5490107  0.0000

M) 0571384 00306860 15636854  0.0000

WAZ) 0670058 0029619 -22E2289  0.0000

)] -0.882556 0009695  -91.03334  0.0000

Yariance Equation

CF -0.3581469 0053568 -6.513253  0.0000

CE) 0278307 0025202 1092415 0.0000

CE 0952983 0004529  203.5809  0.0000

T-DIST. DOF 5101458 0605433 1005315 0.0000
R-sguared 0012388 Mean dependent var 0.000432
Adjusted R-squared 0002114 5.0. dependent var 0.006322
S.E. of regression 0006253 Akaike info criterion 7721621
Sum squared resid 0107455 Schwarz criterion -7 6995926
Log likelihood 10526.85  Durbin-YYatson stat 1.917723

Dependent “ariable: ROML

Method: ML - ARCH (Marquardt) -

Date: 062709 Time: 11:13
Sample (adjusted): 4 2727

Student's t distribution

Included observations: 2724 after adjustments

Convergence achieved after 13 iterations

A backcast: 1 3, Wariance backcast: OM

LOGIGARCH) = C(7) + CEABS(RESID-1A@ SORTIGARCHE-1 +
CEIRESIDHAESORT(GARCH-1)) + SO0 LOGIGARCH-1))

Dependent “ariable: ROML

Method: ML - ARCH (Marquardt) - Student's t distribution

Date: 06/25/09  Tirne: 20:58
Sample: 12727
Included observations: 2727

Convergence achieved after 15 iterations

Yariance backcast: ON

LOG(GARCH) = C(2) + C3*ABS(RESIDM V@S ART(GARCH(-1)) +
CHUFRESIDE M@SART(GARCH(1Y) + CEFLOGGARCH( )

Coeficient  Std. Error  z-Statistic  Prob.

C 4.86E-06  7.27E-05 0627381 0.5304
“ariance Equation

2 -0.361614  0.058945 -B.134525  0.0000
CE 0278796  0.0288%4 1076663  0.0000

Cidy 0.029695  0.014465 2052320  0.0401
CE) 0.954790  0.004855  202.8442  0.0000
T-DIST. DOF 4950529 0.489451 1011448 0.0000
R-squared -0.005687  Mean dependent var  -0.000431
Adjusted R-squared  -0.007535  S.D. dependent var 0.006322
S.E. of regression 0.006345  Akaike info criterion -7.716287
Sum sguared resid 0109558  Schwarz criterion -7 703282
Log likelihood 1052716 Durbin-YWatson stat 1.8455884

Dependent Variable: ROML

Method: ML - ARCH (Marquardt) - Student's t distribution

Date: 06/27/09  Time: 11:14
Sample (adjusted): 4 2727

Included observations: 2724 after adjustments

Cormvergence achieved after 9 iterations

MA backcast: 13, Wariance backcast: ON

LOG(GARCH) = C7) + CE*ABS(RESID-1/@SART(GARCH-1))) +

Coefficient Std. Error - z-Statistic Prob.

AR -0.415224 0111848  -3.712385 0.0002

AR 0.660852 0.059804 11.05043 0.0000

AR 0.744944 0108530 5.863935 0.0000

hAT) 0.453658 0.103543 4.381334 0.0000

hA(2) -0.656114 0.055053 -11.91795 0.0000

bl A(3) -0.779663 0100250 -7.723282 0.0000

Wariance Equation

C( -0.366666 0.0558521 -5.223040 0.0000

CB) 0.2768587 0.025703 10.76995 0.0000

C 0.0294358 0.014204 2072576 0.0382

C1oy 0.954441 0.004527 203.9461 0.0000

T-DIST. DOF 5.136528 0.512437 10.02372 0.0000
R-sguared 0.013264  Mean dependent var -0.000432
Adjusted R-squared 0.009:27 S.D. dependent war 0.005322
S.E. of regression 0.006292  Akaike info criterion -7 22829
Surm squared resid 0107400  Schwarz criterion -7.B95764
Log likelihood 1052922 Durbin-“Watson stat 1.8927712

CEFLOGIGARCH-1Y)
Coefficient  Std. Error  z-Statistic Prob

AR(T) -0.535314  0.034433 -15.63346  0.0000

AR 0675562 0034263 1572880  0.0000

AR(3) 0851814 0015515 54.90107  0.0000

MA(T) 0571394 0030660  18.63654  0.0000

WA2) 06700658 0.029619  -22.62289  0.0000

hA(3) -0.6628556  0.008695 -91.03334  0.0000

Yariance Equation

Ci7 0351465  0.058568 6.513283  0.0000

o1 5)] 0275307 0025202  10.92415  0.0000

[oiz)] 0952993 0004529 2035809  0.0000

T-DIST. DOF 5101459 0505433 10.09315  0.0000
R-squared 0012339  Mean dependent var -0.000432
Adjusted R-squared 0.009114 5.0, dependent var 0.005322
S.E. of regression 0006293 Akaike info criterion 7721621
Surm squared resid 0107495 Schwarz criterion -7.699926
Log likelihood 10526.85  Durbin-WWatson stat 1.917723




Series USD: accept AR (1) for conditional mean and EGARCH(1,1,0) for conditional variance.

Dependent Yariable: USD

Dependent Yariable: USD Method: ML - ARC_H (Marguardt) - Student's t distribution

Method: ML - ARCH (Marguardt) - Student's t distribution Date: 0B/27/09  Time: 11:27

Date: 06/25/09  Time: 11:47 Sarmple (adjusted): 2 2727 _

Sample: 1 2727 Included ohservat_mns: 226 aﬂz_ar adJ_ustments

Included ohservations: 2727 Convergence achleve_d after 41 iterations

Convergence not achieved after 500 iterations hé backeast: 1, Variance backcast: ON

“ariance backcast: ON LOG(GARCH) = C(3) + C"ABSRESID-)/@SORTIGARCH-1))) +
LOG(GARCH) = C(2) + CA"ABS(RESIDH V@S ORTIGARCHE) + CEPRESIDHV@SORTGARCHE) + CELOGGARCH(-1])

CEPRESIDENAR@SARTIGARCHE1)) + CEFLOG(GARCHE1)) Cosficient  Std. Emor  z-Statistic Prob

Coefficient  Std. Error z-Statistic Frob.

AR 0445191 0.333093 1.339518 0.1504
c 0000163 0000110  1.473451 01406 MA{T) 0475186 0327285 -1.451991 01465

“ariance Equation “ariance Equation
C@) 0104340 0.029337 -3.56653  0.0004 C3) 0104311 0029720 3509330 0.0004
&) 0072798 0012220 5957088 0.0000 Cr4) 0071191 0012143 58625817 0.0000
C) 0002988 0007213 0414221 06787 CE) -0.004191 0008839 -0B12885 05400
) 0995239 0002451 406.0809  0.0000 C{E) 0.995094 0002481  401.0212  0.0000
T-DIST. DOF 1216923 3110471 391234 0.0001 T-DIST. DOF 1163379 2899213 4012742 0.0001
R-zquared -0.000240  Mean dependent var 5.03E-05 R-squared 0.00087%  Mean dependent var 5.24E-05
Adjusted R-squared  -0.002078  5.0. dependent var 0.005558 Adjusted R-squared  -0.001325 5.0, dependent var 0.006558
S.E. of regression 0.006605  Akaike info criterion S7.327148 S.E. of regression 0.006603  Akaike info criterion -7.327263
Sum squared resid 0118701 Schwarz criterion -7.314140 Sum squared resid 0.1185358  Schwarz criterion -7.312085
Log likelihood 9995 562  Durbin-YWatson stat 2 041065 Log likelihood 9994.058  Durbin-Watson stat 1.984349

Dependent Yariable: USD

Method: ML - ARCH (Marguardt) - Student's t distribution Dependent “Wariable: USD

Diate: 06/27/09  Time: 1126 Method: ML - ARCH (Marguardt) - Student's t distribution

Sample (adjusted): 2 2727 Date: 06/27/09 Time: 11:28

Included observations: 2726 after adjustments Sample (adjusted): 2 2727

Convergence not achieved after 500 iterations Included observations: 2726 after adjustments

“Wariance backcast: ON Convergence not achieved after 500 iterations

LOG(GARCH) = C(2) + C(3"ABS(RESID-1)/@SCORT(GARCH{1))) + “ariance backcast: OM

CHAPRESIDEARSORTIGARCH-1Y) + CELOGGARCH-1Y) LOG{GARCH) = C(2) + C(3"ABS(RESID-1)A@SARTIGARCH-1))) +

CHPLOG{GARCHEY)

Coefficient  Std. Error  z-Statistic Prob.

Coefficient  Std. Error z-Statistic Prab.
AR -0.037808  0.020181  -1.8734587  0.06810

AR(1) -0.037341 0020166  -1.881414  0.0599

“ariance Equation
Yariance Equation

C2) -0.110833 0031036 -3.571155  0.0004
Ci3 0.073943 0.012550 5.892298 0.0000 Ci2 -0.107823 0.029846  -3.612661 0.0003
Ci) -0.003886  0.007144  -0.544021 0.5864 Ci3) 0074243 0012493 59432258  0.0000
CiE) 0.994663 0.002593 362.8221 0.0000 Cd) 0.924933 0.002470 402.8092 0.0000
T-DIST. DOF 11.34089 2.76200 4106040 0.0000 T-DIST. DOF 11.22892 277225 4132496 0.0000
R-squared 0000058 Mean dependent var 6.24E-05 R-squared 0.000053  Mean dependent var 6.24E-05
Adjusted R-gquared  -0.001730  S5.0. dependent var 0.005693 Adjusted R-squared  -0.001417 5.0, dependent var 0.006595
S.E. of regression 0.006604  Akaike info criterion -7.326972 S.E. of regression 0.0068603  Akaike info criterion -7.3275596
Sum squared resid 0118636 Schwarz criterion -7.313962 Sum squared resid 01186368 Schwarz critarion -7.316755

Log likelihood 9992662 Durbin-¥Watson stat 1.967382 Lag likelihood 9952.513  Durbin-VWatson stat 1.967122




Dependent ariable: USDL

Method: ML - ARCH (Marguardt) - Student's t distribution

Date: O6/25/09  Time: 21:02
Sample: 12727
Included observations: 2727

Corwergence not achieved after 500 iterations

Yariance backcast: ON

LOG(GARCH) = C(2) + CEABS(RESIDE 1A@SQRTIGARCH( 1)) +
CHFRESIDETY@SARTIGARCHE-1Y) + CEFLOGIGARCH(1)

Coefficient  Std. Error  z-Statistic  Prob.

c 0.000163  0.000110  -1.473245  0.1407
“Wariance Equation

C2) -0.104306  0.029350 -3.553908  0.0004
CE3 0072784 0012226 5953432 0.0000

Cid) 0002985 0007215 0413683 0.6791
CE) 0995242 0002452 4055247  0.0000

T-DIST. DOF 1217344 3108430 3916266  0.0001
R-squared -0.000240  Mean dependent var -6.03E-05
Adjusted R-squared  -0.002078  S.D. dependent var 0.006598
S.E. of regression 0.006605  Akaike info criterion -7.327145
Sum squared resid 0118701 Schwarz criterion -7.314140
Log likelihood 9996.562  Durbin-Yatson stat 2.041085

Dependent Yariable: USDL

Method: ML - ARCH (Marguardt) - Student's t distribution

Date: 06/27/02 Time: 11:19
Sample (adjusted): 2 2727

Included observations: 2726 after adjustments
Convergence not achieved after 500 iterations

“ariance backcast: ON

LOG(GARCH) = C(2) + CIABSRESIDH1 V@SART(GARCHE 1)) +
CUTRESIDE)/@SART(GARCHE1]) + CEFLOG(GARCHET)

Dependent “ariable: USDL

fethod: ML - ARCH (Marquardt) - Student's t distribution

Date: 062709 Time: 11:20
Sample (adjusted): 2 2727

Included observations: 2726 after adjustments

Convergence achieved after 36 iterations

M backeast: 1, Wariance backecast: OR

LOG[GARCH) = C(3) + CAr"ABSRESID-1)/@SORT(GARCHE1) +
CEVFRESIDENAESARTGARCHE-1)) + CEFLOG(GARCH{-1))

Coefficient  Std. Error z-Statistic Prob.
AR(1) 0.446239 0.333102 1.339646 0.1804
hAA(T) -0.475231 0327269  -1.452112 0.14B5
“Wariance Equation

Ci3 -0.104312 0.029720  -3.509840 0.0004

Cidy 0.071192 0.012143 5.8626509 0.0000

Cis) 0.004192 0.00&E539 0.612918 0.5359

CiB) 0.995094 0.002481 401.0180 0.0000

T-DIST. DOF 11.63385 2.899325 4.012605 0.0001
R-sguared 0.000279  Mean dependent war -6.24E-05
Adjusted R-squared -0.001326 S5.D. dependent var 0.006595
S.E. of regression 0.006603  Akaike info criterion -7.327263
Sum squared resid 0.1185358  Schwarz criterion -7.312085
Log likelihood 9994052  Durbin-YWatson stat 1.984355

Dependent Yariable: USDL

hethod: ML - ARCH (Marguardt) - Student's t distribution

Date: 06/2709  Time: 11:22
Sample (adjusted): 2 2727

Included observations: 2726 after adjustments
Corvergence not achieved after 500 iterations

“ariance backcast: ON

LOG{GARCH) = C(2) + C(3"ABS(RESIDE 1 V@S QARTGARCHE-11) +

Coefficient  Std. Error  z-Statistic Prob.
AR -0.037808 0020181 -1.8734358  0.0610
Yariance Equation

Ci 0110801 0.031046  -3.568881  0.0004

i 0073935 0012554 58382122 0.0000

[F] 0003534 0007146 0543527 0.5863

CiE 0994665 0.002599 3826937 0.0000

T-DIST. DOF 11.34402 2760661 4108165 0.0000
R-sguared 0.000058  Mean dependent var -6.24E-05
Adjusted R-squared  -0.001781  S.D. dependent var 0.006593
S.E. of regression 0.006604  Akaike info criterion -7.326972
Surn squared resid 0.118636  Schwarz criterion -7.313962
Log likelihood 9992662  Durbin-Watson stat 1.967380

CAFLOGIGARCHE
Coefficient  Std. Error z-Statistic Prob.
AR -0.0375941 0.020166  -1.881414  0.0559
“ariance Equation

G 0107523 0029845 -3.612661 0.0003

(M) 0.074242 012483 58243223 0.0000

Gy 0.924233 0002470 4028092 0.0000

T-DIST. DOF 1122892 2717225 413245 0.0000
R-sguared 0.000053  Mean dependent var -6.24E-05
Adjusted R-squared  -0.001417 3.0, dependent var 0.006555
S.E. of regression 0.006603  Akaike info criterion -7.327596
Surn squared resid 0.118636  Schwarz criterion -7 316755
Log likelihood 9992513 Durbin-YWatson stat 1.967122




7. Conditional Standard Deviations and Filtered Residuals from EGARCH estimation.

— CHF(+) Conditional Standard Deviation
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— RON(+) Conditional Standard Deviation
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8. QQ plots against exponential distribution. Right tails in left panel and left tails in right
panel. Concave departures from the straight line indicate heavy tails. Data is truncated in the case
of GBP(+), RON and USD series in order to eliminate information that distorts the plots.
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9. Mean Excess plots of return series against threshold values. X Axis: threshold values
(returns in percents). Y Axis: mean excess function value. Objective: find a threshold above
which the graph has a positive slope; ideal case: the graph above the threshold is linear.

ME plot of Standardized CHF returns - inference for right tail ME plot of Standardized CHF returns - inference for left tail
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Mean Excess
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ME plot of Standardized RON returns - inference for right tail

R

R -4 -2 o 2 4 B
Threshold {in percents)

ME plot of Standardized USD returns - inference for right tail

NE=3 3

+
+
e

-2 -1 0 1 2 3
Threshold (in percents)

Mean Excess

hean Excess

ME plot of Standardized RON returns - inference for left tail

-B -4 -2 o 2 4
Threshold {in percents)

ME plot of Standardized USD returns - inference for lower tail

36F

25F

-t

Threshold




10. Hill plots: left panel — shape parameter against threshold values; right panel — shape

parameter against number of observations in the tail; 99% confidence intervals in red. Objective:

find a relatively stable area on the graph. The threshold is likely to lie in that area.

*i (shape parameter)

onape parameter
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11. GPD fit for exceedances above selected thresholds. Threshold values are selected through
graphing techniques (ME and Hill plots).
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99.9% VaR of CHF - right tail

99% VaR of CHF - right tail

12. 99% and 99.9% quantiles for ML estimates (Section 5.3.2)
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99.9% VaR of GBP - left tail

99% VaR of GBP - left tail
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99.9% VaR of USD - right tail

99% VaR of USD - right tail
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