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1. INTRODUCTION 
 

 

 1.1. PURPOSE 

 
Measuring mutual fund performance is a topic of interest among the practitioners as 

well as for the theoreticians, especially since the mutual fund industry burst in the 

United States, in the 1960’s. This is the time since when the first attempts to model 

the evolution of mutual funds portfolio were made. Ever since then the market timing 

ability of the fund managers appeared to be the most relevant determinant of fund 

performance. That is the topic that the greatest part of the studies tried to address.  

Some of the classical measures of fund performance will be briefly presented here in 

connection with a presentation of the concept of market timing. 

 This paper pursues the Bowden (2000) article, which introduces the measure 

of ordered mean difference (OMD) as a portfolio performance measure applicable to 

all risk averse investors, no matter what is his degree of aversion to risk. The OMD 

function can be obtained by both parametric and non-parametric procedures and 

represents “a function whose value at any point R is equal to the running mean 

difference between the fund return and the benchmark return” (as pointed out in 

Bowden (2000)).  

As it will be shown, there is a tight connection between OMD and stochastic 

dominance. The utility function used to construct the OMD measure has the form of 

the payoff of a put option for a short position, as indicated in Merton (1981) and 

Henriksson and Merton (1981), and this represents exactly the opposite of the poverty 

gap function, as defined in Davidson and Duclos (2000). The poverty gap function 

appears in the context of the stochastic dominance. Bowden (2000) shows that the 

OMD construct can, relatively easily, be used for testing for second order stochastic 

dominance (SSD). 

The choice of this type of utility function is motivated in literature by 

arguments that will be discussed in this paper. The idea comes from a Robert C. 

Merton’s article (1981), where it is shown that there is a correspondence between 

certain option strategies, namely a protective put strategy, and the strategy used by a 
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market timer fund manager, and so, the return on the market timing performer fund 

can be expressed as the return on a portfolio that used such a strategy. 

This paper is structured in three parts: the first part is the introduction, the 

second lights the theoretical background needed for understanding the OMD, and the 

final, the third part, is the empirical one. 

After presenting in the first part the concept of market timing and some of the 

most known classical measures of portfolio performance (Treynor-Mazuy, Jensen, 

Sharpe), which have the merit of introducing the risk in the context of measuring 

mutual fund performances, the second part introduces, in Section 2.1., the concept of 

equivalent margin, which is the fundament and the starting point in construction of the 

OMD function. Section 2.2. describes the utility function and the motivation for its 

usage. A connection with the stochastic dominance theory will be made in order to 

identify the similarity between the utility function and the poverty gap function and 

shows how this similarity can be interpreted. There is a deeper connection that will be 

made, relating the definitions of  risk employed by Rotschild and Stiglitz (1970) and 

their equivalence. This equivalence will re-appear later, in Section 2.4., where it will 

be presented how the OMD function can be used a statistic for testing for second 

order stochastic dominance. Before that, section 2.3. is dedicated to constructing the 

OMD schedule. This section is probably the core of the paper. It is also shown here 

that the OMD formula can be used to identify how aggressive or defensive a fund has 

been. It will be shown that the equivalent margin is a weighted sum of OMD 

schedules, which means that any risk averse investor can be seen as a spectrum 

elementary investors, each of them having a put option profile utility function that 

differ from each other by the exercise price (or “focal point”, as it will be called). The 

econometric model is constructed in Section 2.5., on the theoretical background 

presented all across the second part. 

The third part employs the econometric model for a parametric estimation of 

OMD and reports the results obtain for a Romanian mutual fund. It is verified if the 

fund has been OMD dominant over the market and/or stochastically dominant. The 

final section of the paper connects the OMD principle with the econometric concept 

of cointegration between time series. The approach is motivated by the fact that both 

the OMD and the cointegration analysis are long term approaches. 
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 1.2. CLASSICAL MEASURES OF PORTFOLIO PERFORMANCE 

 
By market timing one can understand the ability of a fund manager to predict 

the changes in the market and to react accordingly. Thus, in terms of the CAPM 

model, the fund manager would change the composition of the portfolio such as to 

increase its beta if he expects a bull market,  and decrease the beta in anticipation of a 

bear market, such that the rising in the fund’s return would be greater than the rising 

in the benchmark in the situation of a bull market, and the decreasing of the fund’s 

return would not be more than the decreasing of the benchmark when bear market. Or, 

when the portfolio is a fixed-income one, the fund manager will try to modify the 

portfolio structure so as to increase the duration of the portfolio when he expects a 

falling in interest rates and vice-versa. 

Henriksson and Merton (1981) make a distinction between “macroforecasting” 

and “microforecasting”. By microforecasting they understand the “forecasting of price 

movements of individual stocks relative to stocks generally,” while 

“macroforecasting” is “forecasting price movements of the general stock market 

relative to fixed income securities”. Only the latter Henriksson and Merton refer to as 

“market timing,” while the former is called “security analysis”. 

Merton (1981) developed a method for testing for market timing. One can find 

reminiscences of this methodology in Bowden’s (2001) article that constitutes the 

starting point of the present paper. The connection will be presented in Section 2.  

 There have been developed several measures of measuring market timing 

ability and performance of mutual fund portfolios. 

The Treynor measure expresses the portfolio’s excess return per unit of risk, 

assuming complete diversification of the portfolio. 

 

i

i RFRRT
β
−

= ,  where: 

 

- Ri: average rate of return for the portfolio during a specified period of time 

- RFR: average rate of return of a risk-free investment during the same period of 

time 

- βi: the slope of the security market line (the portfolio’s beta coefficient). 
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The larger the value of T, the more preferable for all investors the fund is. T itself 

can be regarded as a slope, respectively the slope of the line connecting the fund 

performance with the risk free rate. We can say that T is the equivalent of the 

difference between the market return and the risk free rate in the SML equation.  

Another common measure used to measure the performance of a portfolio has 

been the Jensen’s Alpha, which is defined as the intercept term in an equation based 

on CAPM: 

ittMtitit RFRRRFRR εβα +−+=− )( , where: 

 

Rit: the return on the portfolio i at time t 

RFRt: risk free interest rate at time t 

βi: the systematic risk of the portfolio 

RMt: the return on the market portfolio 

α: the intercept, that shows whether the portfolio manager has superior (α>0) or 

inferior (α<0) market timing ability. (An α that is not significantly different from 0 

means that the manager conducted a naïve buy and hold policy). 

εit: the disturbance term 

The Jensen’s α reflects the part of the return attributable to the manager’s 

market timing ability. The Jensen’s measure is different from the other measures by 

the fact that requires a different risk free rate for each period of time. The Jensen’s α 

represents the difference between the fund return and the return of a portfolio on the 

securities market line with the same β. If this difference is positive (that is, α > 0), the 

line of the fund return lies above the SML, and the fund is considered to have superior 

performance relative to the market. Like the Treynor’s measure, the Jensen’s α 

presumes a completely diversified portfolio, because the risk premiums are given by 

β, which is the systematic risk. 

 Also derived from the CAPM and very close to the Treynor measure is the 

Sharpe Ratio: 

 

i

i RFRRS
σ
−

= , where: 

 

Ri: the rate of return for the portfolio 
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RFR: the risk free interest rate 

σi: the standard deviation of the return on the portfolio during a period of time. 

 Apart from the Treynor’s and Jensen’s measures, Sharpe uses the standard 

deviation of the return of the fund instead the beta coefficient as the measure of risk. 

This means that the presumption of well diversification does not hold in Sharpe’s 

measure, and the ability of the fund manager to diversify the portfolio can also be 

checked. If the portfolio is perfectly diversified, the Sharpe ratio will equal the 

Treynor ratio. 

An alternative approach to performance evaluation measurement is furnished 

in Chrétien and Ahn (2000). They pointed out the trade-off between precision and 

incorrect inference in performance measurement that is inherent in an analysis of a 

portfolio performance. All the studies presented above and the one that we will use in 

the empirical part of this paper have in view to obtain a maximal precision in the 

performance measurement and produce a point estimate of the performance measure. 

The trade-off  is that they have to make auxiliary assumptions, and the so-called “bad 

model problem” may appear from this fact. 

In their paper, Chrétien and Ahn follow the alternative path of the trade-off: 

they construct performance evaluation bounds, which give the admissible range of 

performance measure values a mutual fund is allowed to have, instead of making a 

point estimate. Proceeding this way, they lose in the precision of the evaluation, but 

avoid the “bad model problem“. The performance bounds they construct can then be 

used to compare alternative performance measures suggested in the literature: if the 

candidate performance measure falls between the lower and the upper bound, it is 

admissible, since, by construction, the Chrétien and Ahn range includes the entire set 

of admissible measures. 

Chrétien and Ahn (2000) develop three alternative ranking rules for mutual 

funds: strong form dominance, semi-strong form dominance and weak form 

dominance. In what follows, we will use the notation and definitions provided by the 

authors. 

They consider two funds: A and B, and the corresponding performance bounds 

are: PMA= [ ])(),( AA xx αα  and PMB= [ ])(),( BB xx αα  respectively. The definitions of 

strong, semi-strong and weak form dominance are: 
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• Strong form dominance: Fund A dominates fund B in the sense of strong form 

dominance, denoted by BA
SD
> , if the lower bound on the performance measure of 

A is greater than the upper bound on the performance measure of B: i.e., 

)()( BA xx αα > . 

• Semi-strong form dominance: Fund A dominates fund B in the sense of semi-

strong form dominance, denoted by BA
SSD
> , if the lower bound on the differential 

in performance measures of A and B is positive. 

• Weak form dominance: Fund A dominates fund B in the sense of weak form 

dominance, denoted by BA
WD
> , if the lower and upper bounds on the performance 

measure of A are greater than the lower and upper bounds on the performance 

measure of B respectively: i.e., )()( BA xx αα >  and )()( BA xx αα > . 

 

 

2. CONSTRUCTION OF THE MODEL 
 

 

 2.1. THE EQUIVALENT MARGIN 

 

 The problem with those classical measures is that they depend upon the degree 

of risk aversion of a particular investor.  They do not constitute a general-applicable 

measure of performance for all investors. The same results will be interpreted 

distinctly by a two investors with different degrees of risk aversion. This means that a 

fitted regression by itself does not automatically constitute a formal performance 

assessment in terms of any investor’s welfare criterion. 

 The ordered mean difference (OMD) represents, as introduced in Bowden 

(2000), the function whose value at any point R is equal to the running (progressive) 

mean difference between the fund return (r) and the benchmark return (R) up to that 

point, where the observation are ordered by the benchmark return. Graphically, the 

OMD represents the area between the regression curve of the fund return on the 

benchmark return and the benchmark itself, on the abscissa. So, in order to measure 

by OMD the performance of a given fund, one will have to order the time series by 
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the benchmark return and to calculate the mean difference between the fund return 

and the benchmark return at every point R. If this difference is always positive it 

mean that the fund OMD-dominated the market over the period of analysis, so that the 

investors had a surplus by investing in the fund. 

 The roots and the connections of the OMD criterion are multiple. At its base 

sits the notion of equivalent margin, which is borrowed from welfare economics and 

is used to formulate the definition of the investor’s surplus. 

 Let us consider R the return on the benchmark  and r the return on the fund we 

want to compute the OMD for. As benchmark, a market index is usually taken into 

account, but we one can take another fund’s return as R, if a comparison between two 

funds is desired. We consider an investor who wants to form a portfolio from x units 

of the fund and 1-x units of the benchmark. Taking the premise that the investor is risk 

averse, so he has a von Neumann – Morgenstern utility function, his problem consists 

in maximisation of his utility function ( )RxrxUE Rr ⋅−+⋅ )1(, . 

We consider further that a tax t is levied to penalise the return on the fund, r. 

The investor’s decision problem becomes, in this case: 

 

( )RxtrxUE Rr )1()(max , −+− . 

 

We can think of the tax t as a rent margin generated by the manager’s market 

timing ability. Supposing that an investor is long in fund (x>0), the tax that is 

necessary to drive the holding to zero represents the equivalent margin. The higher the 

t, the more valuable the fund is considered to be. If the investor is short in the fund 

(x<0), the tax (or margin) t represents how much the investor has to be compensated 

to hold the fund. So, a positive t means that the fund has value for the investor if he 

holds long the fund, and if t is less than 0, the fund’s superiority is derived from going 

short. Thus, this welfare measure (welfare gains or losses) is itself a rate of return. 

This criterion can be regarded as a measure relating to what in Bowden (2001) 

is called relative efficiency. A benchmark portfolio R is said to be efficient relative to 

fund (or security) r if there is no utility value in adding further units of r to the 

benchmark portfolio R; if there is utility value from going long or short in r, the 

existing benchmark portfolio is not efficient for the investor. If the manager can add 

value by combining with the benchmark portfolio R, it means that the latter is not 
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efficient relative to r. Because the manager can always use the alternative of investing 

in the benchmark, a better portfolio than the benchmark portfolio can be formed, and 

the fund manager has added a source of value. 

 A graphical representation looks like this: 

 
Figure 1 

 

 

 

 

 

 

 

 

 

 

The figure represents two portfolios, A and B, of returns rA and rB, against a common 

benchmark. The “natural” (free of tax) portfolios are represented by xA(0) and xB(0); 

the “natural” positions are: long  in fund A and short in fund B. For the fund A, the 

tax will be positive, because it derives value from going long, and for B, which 

derives value from going short, the tax will be negative. 

 Mathematically, we can determine t, the equivalent margin, by maximising the 

utility function with respect to x and solving the first order condition. t is the 

argument that maximises the expected utility function. 

 

{ } .0)(])[('

].)[(])1()([
])1()([maxarg ,

=−−⋅+−−=
∂
∂

+−−=−+−

−+−=

tRrRxtRrUE
x

EU
RxtRrEURxtrxEU

RxtrxUEt RrU

 

 

The equivalent margin is that value of t for which x is 0 (the tax that reduces the 

holding x to zero). That means: 

 

xA(t) 

xB(t) 

0
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.

)]('[
)](')[(

0)](')(')[(0)](')[(

RUE
RURrEt

RUtRURrERUtRrE

U
⋅−

=⇒

⇒=⋅−⋅−⇔=⋅−−
(1) 

 

If we note ( )
( )[ ]RUE
RUR

'
')( =π , it follows that )]()([ RrREtU −⋅= π .         (2) 

Thus, we can interpret the equivalent margin as representing the expected 

weighted sum of the differences between the fund return and the benchmark return, 

with weights π(R). The weights are positive and sum in probability to unity. It means 

that the differences between the two returns are weighted with the marginal utilities of 

the benchmark realisations: states of the world in which the benchmark marginal 

utility is greater receive higher weightings. The weightings could be seen as a degree 

of risk-aversion. In this context, we could give an equivalent interpretation: states of 

the world in which the fund performs better than the benchmark receive a higher rate, 

depending on the investor’s degree of risk aversion. So, when the fund performs well 

and the benchmark performs badly, the marginal utility U'(R) is high, and investors 

are interested in holding the fund. 

Or, in terms of martingale measures, we could write expression (2) as 

)( RrEt Q
U −= , where Q denotes a revised probability measure. In this world, 

investors are risk-neutral, and the welfare generated by r relative to R is nothing but 

the expectation of the difference r-R. 

We can re-write expression (1) so as to introduce into the equivalent margin 

formula the regression of r on R. 

Let us consider r as a function of R: ε+= )(Rer , where e(R) = E[r|R] and 

E[ε] = 0. e(R) represents the conditional expectation of r given R and ε is a 

disturbance term. Substituting this into (1) yields: 

 

( )[ ].
)]('[

)(')(
RUE

RURReEtU
⋅−

=                                               (3) 

 

From expression (3), it is obvious that tU is positive if e(R)>R (because U is a Von 

Neumann – Morgenstern utility function: U'(▪)>0 and U''(▪)<0). This means that if for 

any given realisation of the benchmark R, the fund performs better, and the area 

between the theoretical regression curve of r on R and the 45º line is always positive. 
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This area could be regarded as a cumulative investor surplus, as suggested in Bowden 

(2001). Though, as a criterion for superiority it is too demanding to require e(R) to be 

greater than R for every R, because there may be temporary falls below the 45º line 

that does not have a serious impact on the overall welfare gain. 

 We could instead use the area between the regression curve of r on R and R 

itself, accumulated up to some given point P. This is what the OMD techniques, by 

large, does. If this area, pondered, as we shall see, with the relative frequency of R, is 

always positive, then we may conclude than the fund has been superior, over the 

period considered, to the benchmark. 

 It also obvious that t depends upon the particular utility function utilised to 

evaluate it. This inconvenient can be removed by introducing a set of utility 

generators, as named in Bowden (2000 and 2001), which have a strong connection 

with the second order stochastic dominance principle. 

 

 

 2.2. THE UTILITY FUNCTION AND THE POVERTY GAP FUNCTION. 

STOCHASTIC DOMINANCE 
 

 

 Merton (1981) shows that certain kinds of market timing can be regarded as 

equivalent to suitably chosen option strategies with puts or calls on the market index, 

using a non-linear theoretical regression of the fund return on the market: when the 

market return rises, the return on the fund rises more, and when the market index falls, 

the return on the fund falls less than the index. He showed that “the pattern of returns 

from successful market timing has an isomorphic correspondence to the pattern of 

returns from following certain option investment strategies where the (implicit) prices 

paid for options are less than their fair or market value.” 

 He showed that the random variable end of period value of the assets, from the 

investor’s point of view, can be written as: 

 

 [ ])()(,0max)()()()1( tZtRtAtZtAtV MM −⋅+⋅=+ , where: 

 

V(t+1) – the dollar return on the assets of the fund; 
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A(t) – the total value of investment in securities by the fund at time t; 

ZM(t) – the return per dollar on the market; 

R(t) – the return per dollar on the riskless asset. 

 According to this formula, the dollar return on a the assets of the fund is 

identical to the dollar return on a portfolio which follows the investment strategy of 

going long A(t) shares at $1 per share of the market portfolio and a put option on A(t) 

shares of the market portfolio with an exercise price per share of R(t). This is a 

protective put strategy. It means that the successful market timer that follows the 

investment strategy described above will earn the gains, but is insured against the 

losses. If he had held only the market shares, he would have been exposed both to the 

gains and losses. The principal benefit of market timing, in this vision, seems to be 

providing insurance. In fact, the put option can be seen analogous to a term insurance 

policy, where the item insured is the value of the underlying asset and the face value 

of the policy (also called maximum coverage) - the exercise price. 
 These reasons led Bowden (2000) to considering the utility function as having 

a short put pay-off profile with strike price P and the premium disregarded. For a 

fixed number P, the utility function is defined as: 

 

 ),,0max()( yPyU P −−=  with ∞<<∞− y . 

 

By a mathematical abuse, we consider that U'(P) exists; then 0)(' ≥yU P , and 

0)('' <yU P , so that it is a von Neumann – Morgenstern utility function. 

Graphically: 

 
Figure 2 

 

 

 

 

 

 

 

 

P 
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>
≤−

=−−=
PR

PRPR
RPRU P ,0

,
),0max()( . 

 This type of utility function is motivated by the presumption that the investor 

is interested in obtaining a target return P, being indifferent to values of R in excess of 

this and negatively exposed if the return falls linearly below the target. The investor 

will fix his target according to his appetite for risk. A more complex interpretation of 

P will be made later in this paper. 

The profile of the utility function comes very close to the so-called poverty 

gap function, as presented in Davidson and Duclos (2000), which is obtained on the 

stochastic dominance ground. 

 Considering two distributions of income1 with cumulative distribution 

functions FA and FB, defined on R+, we note: 

 

 ∫∫ ===
x

A

x

AAA dyyfydFxFxD
00

1 )()()()( ,  

 

Analogously we define: 

 

dyyfydFxFxD
x

B

x

BBB )()()()(
00

1 ∫∫ === . 

 

where fA(y)  and fB(y) represent the associated probability distribution functions. 

 

We say that A first order stochastically dominates B (FSD) up to a poverty 

line z if 11
BA DD ≤ (that is )()( xFxF BA ≤ ) for all zx ≤ and x∈R+ . The graph of FA(x) 

will always be to the right of the graph of FB(x) as long as the FSD condition holds. 

The cumulative probability under the fA distribution is less than (or equal to) the 

cumulative probability under the fB distribution. The interpretation in terms of welfare 

economics is that “the headcount of individuals below the poverty line is always 

greater in B than in A for any poverty line not exceeding z” (Davidson-Duclos, 2000). 

Or, in other words, the probability of being beyond a given poverty threshold is 

greater in B (the dominated distribution) than in A (the dominant distribution). 

                                                            
1 The term income is used by Davidson and Duclos in a larger sense, meaning a measure of individual 
welfare, not necessarily only money income. 
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The first order stochastic dominance holds only if the two distributions do not 

cross within the range of poverty lines. Otherwise, second order stochastic dominance 

(SSD) should be checked. 

A second order stochastically dominates B (SSD) up to a poverty line z if 

22
BA DD ≤ , that is, dyyDdyyD

x

B

x

A )()(
0

1

0

1 ∫∫ ≤  for all x≤ z. 

The graphical explanation of SSD is: alternative A dominates alternative B if the area 

under the cumulative distribution function of A (FA) is less than (or equal to) the area 

under the cumulative distribution function of B (FB), or, equivalently, the cumulative 

area between FB and FA is non-negative for all x. 

 The derivation of the SSD condition is treated separately in what follows. For 

now, it is worth saying that, if FSD requires only that the decision maker’s utility 

function should be increasing [U'(·)>0], independent of concavity, the SSD rule 

requires a demising marginal utility of the income [U''(·)≤0]. 

We must start by assuming that individuals are utility maximisers and their 

utility functions are of classical von Neumann – Morgenstern type, as mentioned 

above. Given two mutually exclusive alternative investments, A and B, with the 

probability functions fA and fB respectively, and cumulative distribution functions FA 

and FB respectively, we write that alternative A is preferred to B if: 

 

0)()()()( >−∫ ∫
∞

∞−

∞

∞−
dxxfxUdxxfxU BA , or 

I = [ ] 0)()()( >−∫
∞

∞−
dxxfxfxU BA , where U(x) is the utility function. 

 

We integrate I by parts and obtain: 

 

I = [ ] =−∫
∞

∞−
dxxFxFxU BA )(')(')(  

 [ ] [ ]dxxFxFxUxFxFxU BABA ∫
∞

∞−

∞

∞−
−−−= )()()(')()()(  

As 0)(lim =±∞→ xFx , it follows that: 

I = [ ] 0)()()(' >−− ∫
∞

∞−
dxxFxFxU BA . 
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But U'(x)>0, from which it follows the definition of the first order stochastic 

dominance: A dominates B by FSD  (I >0) if 0)()( <− xFxF BA . 

We integrate once more I by parts: 

 

 I = [ ]dxxDxDxU BA∫
∞

∞−
−− )(')(')(' , where ∫ ∞−

=
x

dyyFxD )()(  

 I = [ ]
4444 34444 21
444 3444 2143421

0

00

)(')(')('

>

<<

−− xDxDxU BA + [ ] 0)()()(" >−∫
∞

∞−
dxxDxDxU BA  

As U"(x) is negative, it follows that, in order to respect the presumption of A 

dominating B (I >0), DA(x)–DB(x) must be also negative. Thus we obtain the 

definition for second order stochastic dominance. 

 

Generally, dyDxD
x ss ∫ −=

0

1)(  for any 2≥s , s∈Z. 

Davidson and Duclos demonstrate that )()(
)!1(

1)(
0

1 ydFyx
s

xD
x ss ∫ −−⋅

−
= . 

 

Then, the SSD condition can be written as: 

 

⇔BA
SSD
f ( ) ( ) )()(

00
ydFyxydFyx B

x

A

x

∫∫ −≤−  for all zx ≤ .              (4) 

 

 When the poverty gap is z, the poverty gap function is defined as: 

 

( ) ( )zyzyzyzg ,min0,max),( −=−= .                                     (5) 

 

The last term – min(y,z) – is called the censored income defined for the poverty line z, 

and the difference z-y is called the poverty gap, denoting how far is the individual’s 

income from the given poverty threshold z. 

Using (5), it appears that )(2 xD  represents the average poverty gap up to z. 

From (4) and (5) it follows that second order stochastic dominance up to z implies that 

the average poverty gap in B (the dominated distribution) – 2
BD – is greater than in A 

(the dominant distribution) – 2
AD – for all poverty lines less than or equal to z. There is 
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a longer way from the actual level of income B to the poverty threshold than from the 

actual level of income A to the same poverty threshold. 

 Sometimes in literature2 the graph of D1(x) is called the poverty incidence 

curve, and the graph of D2(x) – the poverty deficit curve. 

 The symmetry between the poverty gap function and the option-like utility 

function is clear: the latter is just the opposite of the former. We can interpret the 

poverty gap as a dis-utility function. Alternatively, we can see the utility function as 

showing, just like the poverty gap function, the difference between the actual level of 

income and the poverty threshold, but now the difference is positive: how far are we 

from the poverty threshold, after we surpassed the threshold. 

 Graphically, the first and the second order stochastic dominance is represented 

in figure 3, where alternative A dominates alternative B by SSD. The two 

distributions cross each other once. 

 
Figure 3 

 

 

 

 

 

 

 

 

 

 One can find an interesting link to SSD in Rotschild and Stiglitz (1970), who 

show that the SSD condition can be thought as a preference for mean preserving 

inequality reducing changes in the distribution function. They consider two random 

variables, X and Y, with the corresponding density functions, f and g, respectively, 

where g is obtained by adding a so-called step function, s, to f so that g has the same 

mean as f, and adding s to f shits probability weight from the centre to the tails. If 

                                                            
2 For example, Ravaillon, M (1994): Poverty Comparisons, Fundamentals of Pure and Applied 
Economics, Harwood Academic Publishers, Switzerland, quoted in Davidson and Duclos (2000) 

)(2 xDA
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[ ]dxxFxGyT
y

∫ −=
0

)()()( , then 0)1( =T and 0)( ≥yT . These are the integral 

conditions. T(y) would be, in terms of stochastic dominance theory, D2(y). 

Setting that “a definition of greater uncertainty is a definition of partial 

ordering on a set of distribution functions,” they define that GF I≤ (F is less risky 

than G, with riskiness judged as before: a variable is riskier than another having the 

same mean if it has more probability weight on the tails and less on the centre than the 

other) if and only if G - F satisfies the integral conditions, where F and G are the 

cumulative distribution functions of X and Y. 

They further demonstrate that this approach to defining riskiness is equivalent 

to the more common definition involving von Neumann – Morgenstern utility 

functions (every risk averter prefers X to Y if )()( YEUXEU ≥ ). The partial ordering 

corresponding to this approach to riskiness is defined by Rotschild and Stiglitz as 

follows: “ GF u≤  if and only if for every bounded concave utility function U, 

∫ ∫≥
1

0

1

0
)()()()( xdGxUxdFxU ,” or [ ]dxxGxFxU∫ −

1

0
)()()( . 

X dominates Y if the integral is greater than 0. But since U(x) is a von Neumann – 

Morgenstern utility function, U'(x)>0. It follows that 0])()([
1

0
≥−∫ dxxGxF , which is 

exactly the second order stochastic dominance condition. 

 

 

 2.3. THE THEORETICAL MODEL FOR OMD 
 

 

In section 2.1. was derived formula (3) for the equivalent margin: 

 

( )[ ]
)]('[

)(')()(
RUE

RURReEPt ⋅−
= ,                                   (3) 

 

and, in the last section, we established the formula for the utility function, as in 

Merton (1981): 
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We now develop the equivalent margin formula in order to obtain the ordered 

mean difference formula. 

In what follows, F(R) and G(r) denotes the cumulative distribution functions for R 

and r, respectively, and f(R) and g(R) – the distribution functions for the two returns. 

 

( )[ ] [ ] [ ] )()()()()(')( RdFRRedRRfRReRURReE
PP

∫∫ ∞−∞−
−=−=⋅− .         (6) 

444 3444 21
32143421321

0

0)(1

)()(')()(')()(')(' dRRfRUdRRfRUdRRfRUREU
P

RdF

P
⋅+⋅== ∫∫∫

∞

∞−

∞

∞−
. 

(Anyhow, we are not interested but up to the given point P.) 

)()()()()()('
0

PFFPFRFRdFREU
P P =−∞−===⇒ ∫ ∞− ∞− 321 . 

)()(' PFREU = .                                          (7) 

Introducing relations (6) and (7) into (3), we obtain: 

)(])([
)(

1)( RdFRRe
PF

Pt
P

∫ ∞−
−=  or 

∫ ∞−
−=

P
dRRfRRe

PF
Pt )(])([

)(
1)(      (8) 

 

This is the schedule for the OMD. The result of this formula is called the 

conditional ordered mean difference (COMD) and represents the expected value of 

the ordered mean difference function at any point P. We will show that if COMD is 

positive over the entire range of R values, then the fund will be preferred to the 

benchmark by any risk averse investor, independently of his specific utility function. 

Thus, if t(P)≥0 for all P, it will be concluded that the fund is superior to the 

benchmark even if temporarily e(R) happens to fall below R. 

 Graphically, expression (8) represents the average area between the regression 

line of r on R and R itself, accumulated up to the chosen point P, weighted with the 
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relative frequency of the benchmark (f(R)), and divided by the number of observations 

(F(P) - the cumulative probability up to P, since ∫ ∞−
=

P
dRRfPF )()( )). The weights 

denote the degree of risk aversion. 

An extension is to check for the degree of aggression or defensiveness of the 

fund relative to the benchmark. This is equivalent to check for the sign of t'(P). 

As stated before, the conditional ordered mean difference is nothing but the 

running mean of the differences between the return on the fund and the benchmark 

return. We can therefore assume the notation dRRfR
PF

RE
P

P )()(
)(

1)]([ ∫ ∞−
= φφ  for 

t(P), where EP[•] denotes the running mean operator and RReR −= )()(φ , the excess 

function. 

Differentiating with respect to P gives: 

 

)()(
)(

1)()(
)(
)(')(

2 PfP
PF

dRRfR
PF
PF

dP
RdE P

P φφφ
∫ ∞−

+⋅−= . 

But F'(P) = f(P); then: 

⇒



















⋅−⋅= ∫ ∞−
4444 34444 21

)(

)()(
)(

1)(
)(
)()(

RE

PP

P

dRRfR
PF

P
PF
Pf

dP
RdE

φ

φφφ  

[ ])()(
)(
)()( REP

PF
Pf

dP
RdE

P
P φφφ

−⋅=⇒ .   (9) 

 

From equality (9), we can define the fund of return r as aggressive with respect to the 

benchmark (of return R) if for all values R, 0)(' ≥Pt  (meaning that the OMD is 

increasing), and defensive if 0)(' ≤Pt  (meaning that OMD is decreasing). 

We showed until now that the theoretical OMD is the equivalent margin for a 

special sort of utility function, namely the put payoff–like function, in which utility is 

linear for R=P and 0 thereafter. The result can be generalised for any risk-averse 

utility function. Bowden (2000) demonstrates a very important result: he shows that 

the equivalent margin tU (equality (3)) can be expressed as a weighted average of 

OMD schedules t(P) (equality (8)) for an arbitrary concave twice differentiable utility 

function U. 
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From (3): 

( )[ ] [ ] )()(')()(')()(' RdFRURReRURReEREUtU ⋅−=−=⋅ ∫
∞

∞−
.  (10) 

 

From (8): 

[ ] )()()()( RdFRRePFPt
P

∫ ∞−
−=⋅ .      (11) 

 

Deriving (11) in point R, it follows that: 

 

[ ] [ ] )()()()( RdFRReRFRtd −=⋅ .      (12) 

 

Introducing (12) in (10), it results that: 

 

∫
∞

∞−
⋅= )]()([)(')(' RFRtdRUREUtU . 

 

Integrating by parts (13), we obtain: 

 

∫
∞

∞−

∞
∞− −= dRRFRtRURFRtRUREUtU )()()(")()()(')('  

 

∫
∞

∞−
−−∞−∞−∞−∞∞∞= dRRFRtRUFtUFtUREUtU )()()(")()()(')()()(')('

0

01 444 3444 21
321321  

∫
∞

∞−
−∞∞= dRRFRtRUtUREUtU )()()(")()(')(' . 

 

We divide both sides of the equation by EU'(R): 

 

∫
∞

∞−
−

∞∞
= dRRFRtRU

REUREU
tUtU )()()("

)('
1

)('
)()(' .    (13) 

 



 21

U being a concave utility function, we are entitled to consider that 0)(' =∞U . On the 

other hand, if we note: 
)('

)()(")(
REU

RFRURw −= , with ∫
∞

∞−
= dRRfRUREU )()(')(' , 

then: 

 

∫
∞

∞−
= dRRtRwtU )()( , 

 

which is equivalent, if we change the variable of integration, with: 

 

∫
∞

∞−
= dPPtPwtU )()( ,        (14) 

where 
)('

)()(")(
PEU

PFPUPw −= .      (15) 

 

Thus, we demonstrated that the equivalent margin is a weighted average of a 

set of OMD functions. 

From (15), since U"(P) < 0, and F(P) and EU'(P) > 0, it follows that w(P) > 0. 

 We further show that the weightings w(P) sum in probability to 1. Returning 

to R as a variable of integration, we have: 
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dRRfRUFUFU
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So, ∫
∞

∞−
= 1)( dPPw . 
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 Thus, we can write the equivalent margin tU as: 

 

∫
∞

∞−
⋅= dPPtPwtU )()( , where  

)(
)('

)("
2
1)( PF

REU
PUPw ⋅⋅−= ,             0)( ≥Pw ;  ∫

∞

∞−
= 1)( dPPw . 

 

w(P) represents weights denoting the degree of risk aversion of the investor.  

From expression (14) it follows that if PPt ∀≥ ,0)( , then the equivalent 

margin tU will also be positive, meaning that the fund performed better than the 

benchmark. 

It also can be seen from (14) that the equivalent margin can be decomposed in two 

factors: 

- the effect due to the fund return: t(P) 

- the effect due to the investor’s risk degree of risk aversion: w(P) 

The immediate idea following from the fact that the equivalent margin is a 

weighted average of OMD schedules is that the investor can be seen as a spectrum of 

elementary investors (“gnomes”, as Bowden (2001) names them), each of them 

having a put option profile utility function and the “gnomes” differing from each other 

by the “strike price”, or, “focal point” (P). Each gnome has a different degree of risk 

aversion. So, every investor is viewed as having attached different weights at every 

level of risk aversion, denoted by a focal point. The risk aversion decreases as the 

focal point P moves to the right (but in inter-personal comparisons, for the same level 

P, the degree of risk aversion may have different values) because the investor fixes a 

higher level of performance for the fund, so he is willing to accept a higher level of 

risk. As P moves to the right, the risk premium declines, and this can relatively easy 

be deduced from the formula of w(P). 

The spectrum of weights attached to the focal points for every “gnome” is 

what makes the difference between investors concerning their appetite for risk: an 

investor who has a higher proportion of “gnomes” with lower focal points is more risk 

averse than another investor who has a higher proportion of “gnomes” with higher 

focal points. 
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 2.4. TESTING FOR STOCHASTIC DOMINANCE VIA OMD 
 

 

The definition of stochastic dominance was given in the preceding paragraph. In the 

present paragraph we will show it is not necessary to drive a separate test for 

stochastic dominance as long as we test for OMD because the OMD criterion is a 

sufficient condition for stochastic dominance. 

 According to the definition presented earlier in this paper, we say that r 

dominates R by SSD if and only if ∫ ∫∞− ∞−
≤

P P
dRRFdrrG )()( , for all P, where G(r) and 

F(R) denote the cumulative distribution functions for r and R, respectively. 

 

 ∫∫ ∞−∞−
≤⇔

PPSSD
dRRFdrrGRr )()(f .    (15) 

 

One can infer: 

 

=+== ∫ ∫ ∫
∞

∞− ∞−

∞P

PP dRRfRUdRRfRUdRRfRUREU )()()()()()()(  

( )[ ] =⋅+−−= ∫∫
∞

∞− 4434421
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)(0)(
P

P
dRRfdRRfRP  

( ) =−−= ∫ ∞−
dRRfRP

P
)(  

( ) =−−= ∫ ∞−
)(RdFRP

P
 

∫ ∞−
−=

P
dRRF )( . 

 

In a similar way: 

 

∫ ∞−
−=

P

P drrGrEU )()( . 

 

It follows that expression (15) is equivalent with this one: 

 )()( REUrEURr PP

SSD
≥⇔f , for any concave U.  (16) 



 24

This finding comes to hold the result of Rotschild and Stiglitz (1970), who 

showed that defining risk by means of how much probability weight a variable has in 

the tails and its centre is similar to the definition of risk invoked by the theory of 

expected utility maximisation. The discussion has been carried out in paragraph 4. 

 In words, if r dominates R by SSD, then t(P)≥ 0, ∀P; if there exists a P such 

that t(P)< 0, then r does not dominate R by second order stochastic dominance. We 

can therefore create a sufficiency test for SSD using the OMD formula. To 

demonstrate that, we have to take r as a benchmark and evaluate R against r. 

 All across the present paragraph, in order to avoid confusion, we will use the 

following notations: tR(P) will be the OMD function for R, with r as benchmark, and 

tr(P) will be the usual OMD function, as defined in the preceding paragraph, with R as 

benchmark for r. To define tR(P), we have to introduce, as before for r, the regression 

function of R on r: )(]|[ rrRE γ= . The analogous regression, of r on R, has been 

defined before as )(]|[ ReRrE = . We then have the two OMD functions: 

 

 ( )[ ]
)('

)(')()(
REU

RURReEPt
P

Pr
R

⋅−
=     and 

 

 ( )[ ]
)('

)(')()(
rEU

rUrrEPt
P

Pr
r

⋅−
=

γ . 

 

Demonstrating that r dominates R by SSD reduces to demonstrating that 

COMD with r as benchmark is semi-negative for every P. Or, mathematically written: 

 

RrPPt
SSD

r f⇒∀≤ ,0)( . 

 

We start from the inequality: 

 

)(')()()( RURrRUrU ⋅−+≤  

 

Applying the mean operator over the joint distribution, it follows that: 
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( )[ ])(']|[)()( RURRrEERUErUE rRRr ⋅−+≤ = 

  = ( )[ ])(')()( RURReERUE RR ⋅−+ = 

  = )(')()( REUPtRUE RR ⋅+ . 

 

Similarly, 

)(')()()( rUrRrURU ⋅−+≤  and 

( )[ ])(']|[)()( rUrrREErUERUE rrrR ⋅−+≤ = 

  = ( )[ ])(')()( rUrrErUE rr ⋅−+ γ = 

  = )(')()( rEUPtrUE rr ⋅+ . 

 

(All utility functions considered in this demonstrations are the utility functions of the 

“gnomes”, so we had, to be more correct, to write them with the subscript P.) 

We have: 

 





⋅+≤
⋅+≤

).(')()()(
)(')()()(

rEUPtrUERUE
REUPtRUErUE

rrR

RRr               (17) and (18) 

 

From inequality (18): 

 

)()()(')( RUErUErEUPt Rrr −≤⋅−      (19) 

 

and from inequality (17) we have: 

 

)(')()()( REUPtrUERUE RrR ⋅≤−      (20) 

 

Put together, inequalities (19) and (20) give: 

 

)(')()()()(')( REUPtRUErUErEUPt RRrr ⋅≤−≤⋅− . (21) 

 

It is obvious in inequality (21) that if tr(P)≤0, then, as U'(r)>0, 

ErU(r)≥ERU(R), and r dominates R by SSD. In other words, we showed that if 

tR(P)<0 for all P, then r second order stochastically dominates R. 
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Concluding, we can establish the following: 

– if r dominates R by SSD, then tR(P)≥0; 

– if tr(P)≤0, for all P, then r dominates R by SSD. 

In other words, tR(P)≥0 is a necessary, but not sufficient condition for r to SSD R. 

SSD rule needs also that tr(P)≤0. 

It may happen a fund to be OMD dominant over the benchmark, but 

dominated by the market in terms of SSD. 

However, the OMD criterion is superior to SSD by the fact that, while the 

SSD condition is cast in terms of marginal distributions of the two series of returns, 

the OMD involves joint distribution of returns r and R. The SSD criterion ignores the 

conditionally by retaining only the marginal returns of two funds, so it does not utilise 

important information about market timing. 

 

 

 2.5. THE ECONOMETRIC MODEL 
 

 

Either a parametric or a non-parametric approach can be employed to estimate the 

COMD. The non-parametric estimate will be treated later in this paper and we will 

use it to verify the result obtained by parametric testing. The non-parametric method, 

though it has the advantage of simplicity, has some inconvenience that makes it 

improper. 

 We have to estimate the function in expression (8), which is the OMD 

function and its value at point P is the COMD. 

 

 ∫ ∞−
−=

P
dRRfRRe

PF
Pt )(])([

)(
1)(     (8) 

Two series of return are needed: 

- the observations for the benchmark, that will be noted as R1, R2, …, RN, and will 

represent the exogenous variables; 

- the observations for the fund return, that will form the vector of the dependent 

variables: ri, Ni ,1=  
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We proceed by specifying a functional form for the theoretical regression of 

the fund return, r, on the benchmark return, R. We note it e(R, θ). By using a 

transformation that will immediately be presented here, we will make the regression 

as a function of a parameter G instead of R, so as the regression polynomial be an 

orthogonal polynomial, which has some desirable properties. G is obtained from R by 

means of Forsyth polynomials. 

The initial regression of r on R is: iii Rer εθ += ),( , where iε  are random 

variable with zero mean and constant variance. At this point, a transformation will be 

made. It is desirable that the independent terms of the regression polynomial should  

be orthogonal, so that the variables Ri  not to be correlated. The inexistence of 

correlation between the independent variables in a regression model implies that the 

multiple regression slopes are equal to the slopes in the individual simple regressions. 

This is an important property for our model because it will be constructing by 

eliminating some terms. In order to insure that the regression polynomial is 

orthogonal, we will use the Forsyth polynomials, that transform the initial polynomial 

in an orthogonal one. 

Using the Forsyth polynomials, we construct a set G0, G1, G2,…GK of new 

regressors, with order K chosen at will, as follows: for each observation i = 1,2,…N, 

we define: 

 

( ) 2,1,, −− ⋅−⋅−= kikkikiki ggRg ρϕ , where 
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ρ , for k = 1, 2, …K. 

 

We need to specify gi,-1= 0 (not used among the regressors) and gi,0= 1, and consider 

02
1, =−ig . Proceeding this way, we obtain an orthogonal matrix G'G (all the off 

diagonal elements are zero), where G is the matrix of the regressors. 

 The new regression model is defines as a function of Gi and parameters θ. 

(From now, we will use capital letters for G): 
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iii Ger εθ += ),( , where ki

K

k
ki GGe ,

0

),( ⋅= ∑
=

θθ .  

 

The regression polynomial that will be used to estimate the OMD (by OLS) will be: 

 

KiKiii GGGr ,2,21,10 ... ⋅++⋅+⋅+= θθθθ     (22) 

 

 Until now we will have obtained just an estimation for r. Our objective is to 

estimate t(P), not r. After applying OLS (ordinary least squares method), we obtain 

the estimates of the parameters, θ̂ , and the fitted values of r, )ˆ,(ˆ θii Gee = . The next 

step is to work out the values of tj at each sample point j = 1, 2,…N, obtaining a set of 

estimated values of t(P): 

 

 ( )∑
=

−=
j

i
iij Re

j
t

1

ˆ1ˆ , where )ˆ,(ˆ θii Gee = .    (23) 

 

 

3. EMPIRICAL APPLICATION 
 

 

 3.1. THE DATA 

 

 

In this section we will apply the econometric model described in the preceding section 

on a set of real data. The two series of data are represented by: 

– the monthly return of a mutual fund, respectively Capital Plus, managed by 

Certinvest management company, calculated as the change in the net asset value 

(NAV) per share; 

– the monthly rising in the mutual fund index (MFI), as the benchmark. 

Capital Plus is one of the first Romanian mutual funds. It was funded in 1995 

and started its activity on September 6, 1995, under the initial name of Credit Fond; 

beginning with July 20, 1999, it changed its name in Capital Plus. The management 

company is Certinvest, which exists from September 1994, and has another two 
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mutual funds under administration: Tezaur, a money market fund, established in June 

30, 1999, and Intercapital. The custodian is the Romanian Bank for Development - 

Société Générale. 

According to the Prospectus, the investment policy of Capital Plus is to obtain 

the highest possible return while maintaining all the liquidity and risk parameters at 

the levels required by the National Commission of Securities3 (CNVM). Capital Plus 

is situated in the middle risk class (the second from four in ascending order of risk), 

according to the methodology presented in Settlement no. 9, which is the fundamental 

act in the Romanian mutual fund legislation. 

The majority of the Romanian mutual funds are money market funds because 

of the poor development of the exchange market, and very few mutual funds invest in 

stocks and corporate bonds. Capital Plus is one of them.  

The mutual fund index (MFI) is a unofficial index of the Romanian mutual 

funds, which is calculated since July 10, 1998, and was officially launched on 

September 18, 1998. The index is constructed after the model of the exchange 

indexes. It is calculated weekly on the basis of the net asset value and the net asset 

value per share of the selected mutual funds. Presently, there are 20 mutual funds 

which enter the portfolio of the mutual fund index.  The reference data is July 10, 

1998, when to the index was attributed the value 1,000 points. The calculus formula 

of the index is: 

1000
1 0

0

0

⋅







⋅= ∑

=

N

i
T

i

i

i
k

k A
A

C
CIFM , where: 

- IFMk: the value of the index in the day before the day for which it is calculated (k); 

- N: the number of funds that enter in the composition of the index; 

- Ci
k: NAV per share of the fund i, on day k; 

- Ci
0: NAV per share of the fund i, on the reference day; 

- Ai
0: NAV of the fund i, on the reference day; 

- AT
0: NAV of the fund i, on the reference day. 

 The reason for choosing this index as a benchmark was that it seemed the most 

adequate. The BET index has initially been tested, but it proved unable to provide a 

satisfactory regression. 

                                                            
3 the Romanian homologue for the Security and exchange Commission in the United States 
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Unlike the inspiring article (Bowden, 2000), who uses monthly data, I used 

weekly data, from January 3, 2000 to April 1, 2002, including 118 observations. The 

reason for this deviation from the original is the non-existence of sufficiently long 

time series, as the Romanian mutual funds are very young. A drawback arising from 

this is that the calculus with the Forsythe polynomials are more laborious, there are 

more explanatory variables in the regression model. 

Table A.1. in the annex presents the two series of returns (in percents). 

 

 

 3.2. REGRESSION ESTIMATION 

 

 

As shown in Section 2.5, the initial form of the regression polynomial just 

doesn’t matter. Practically, one does not need to have a regression of the fund return 

on the benchmark. The two series of return alone are all we need for the beginning. 

Actually, a quadratic regression of the fund return on the benchmark return has 

plotted, but it has not exhibited any evidence that it was a correct presumption (the R2 

was 0.18). We are therefore obliged to try the Forsyth transformation. 

We have the two time series and apply to them the Forsythe polynomial in 

order to obtain an orthogonal regression polynomial. Proceeding thus, we ensure of 

the absence of multicollinearity among the explanatory variables of the regression 

model, as shown in Section 2.5. There was also shown there that the regression 

polynomial will be constructed having as regressors a set G0, G1, …, GK, which are 

the output of the Forsythe polynomial. In an Excel sheet I calculated the values for 33 

such regressors. I chose the order K to be 33 to ensure of the completitude of the 

equation. 33 is the maximum number technically allowable by the spread sheet 

because of the high exponential order of the numbers representing intermediate 

calculus and values of regressors. Anyway, the econometric estimation demonstrated 

that 26 regressors would have been sufficient for a 5% confidence interval for the 

Student statistic.  

Practically, applying the Forsyth transformation means that the mutual fund 

index (the benchmark) is divided into several virtual indices, independent of each 
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other, and we shall have a regression of the fund return on those indexes instead of 

having a regression of the fund return on a single index. 

After applying the Forsyth polynomial, I obtained a gross regression equation 

having the form:  

 

iiiiii GGGGVUAN εθθθθ +⋅++⋅+⋅+⋅= 33,202,21,10,0 ... ,  (24) 

 

where VUANi is return on the fund, denoting the rising in net asset value per share, 

and, as specified before, Gi,0 = 1 for all i = 1, 2,… 118. 

The estimation was made using the E-Views 3.0 econometric program. The 

output in table 1 (page 32) 

The value of R2 (0.76) indicates a good measure of the goodness of fit of the 

equation. The value of the Durbin Watson statistic (1.97) indicates that the (positive) 

correlation between residuals is insignificant. The matrix of regressors is orthogonal, 

as we expected after applying the Forsythe polynomial, meaning that there is no 

multicollinearity between explanatory variables.  

 The next step is to obtain the regression equation that will be used in 

computing the COMD. The procedure is to eliminate the terms in the gross equation 

using as a criterion the t-statistic with at a significance level of 5%. The far right 

column reported by E-Views (Prob) indicates that we should not reject the null 

hypothesis that the slope coefficient is 0 in the cases of the terms G2, G4, G9, G10, 

G11, G12, G13, G16, G17, G18, G19, G20, G21, G23, G24, G27, G28, G29, G31, 

G32 and G33. This means that we will drop these regressors when constructing the 

new equation regression. The orthogonality of the matrix of regressors ensures us that 

the slopes of the remaining coefficients will be unchanged.  

The new regression equation will be: 

 

+++++++++= 15,1514,148,87,76,65,53,31,10,0 iiiiiiiiii GGGGGGGGGVUAN θθθθθθθθθ
  iiiii GGGG εθθθθ +++++ 30,3026,2625,2522,22 . 
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Table 1: OLS estimation of eqation (24) 

Dependent Variable: VUAN 
Method: Least Squares 
Sample: 1/03/2000 4/01/2002 
Included observations: 118 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
G0  0.844308  0.016420  51.41817  0.0000
G1  0.721442  0.089822  8.031870  0.0000
G2  0.231633  0.296339  0.781651  0.4366
G3 -3.706504  0.918718 -4.034432  0.0001
G4 -5.779245  3.108811 -1.858989  0.0665
G5  67.27390  13.13017  5.123611  0.0000
G6 -205.8248  51.42069 -4.002763  0.0001
G7  634.0910  180.6416  3.510216  0.0007
G8 -4115.715  592.9830 -6.940697  0.0000
G9  790.3135  2412.627  0.327574  0.7440
G10  2326.279  10287.52  0.226126  0.8217
G11  4759.479  52970.16  0.089852  0.9286
G12  268513.3  283858.2  0.945942  0.3469
G13  3412154.  1763473.  1.934905  0.0564
G14  25329806  9918047.  2.553911  0.0125
G15  2.80E+08  58030655  4.830550  0.0000
G16  6.89E+08  3.51E+08  1.964330  0.0528
G17  4.52E+09  2.28E+09  1.979642  0.0510
G18  1.55E+10  1.45E+10  1.071569  0.2870
G19  1.71E+11  9.02E+10  1.898840  0.0610
G20  5.40E+11  6.04E+11  0.894064  0.3738
G21 -7.06E+12  3.90E+12 -1.810508  0.0738
G22 -4.80E+13  2.33E+13 -2.059404  0.0426
G23  8.51E+13  1.28E+14  0.665235  0.5077
G24 -9.27E+14  8.82E+14 -1.050649  0.2964
G25 -1.24E+16  5.43E+15 -2.279886  0.0251
G26 -1.05E+17  3.41E+16 -3.092572  0.0027
G27 -2.04E+17  2.71E+17 -0.752069  0.4541
G28 -1.97E+18  2.09E+18 -0.942986  0.3484
G29 -1.11E+19  1.54E+19 -0.724615  0.4707
G30 -2.20E+20  1.10E+20 -1.999961  0.0487
G31 -8.47E+20  8.30E+20 -1.020105  0.3106
G32  3.15E+21  6.20E+21  0.508184  0.6127
G33  1.42E+22  3.97E+22  0.357082  0.7219

     
R-squared  0.760581     Mean dependent var  0.844309
Adjusted R-squared  0.666524     S.D. dependent var  0.308882
S.E. of regression  0.178371     Akaike info criterion -0.373495
Sum squared resid  2.672571     Schwarz criterion  0.424837
Log likelihood  56.03623     F-statistic  8.086360
Durbin-Watson stat  1.970102     Prob(F-statistic)  0.000000

     

 

After re-applying the ordinary least squares method, we eliminate the terms 

G22 and G30 because of their higher than 0.05 p-values. The remaining equation, 

which will be used in determining the COMD, therefore, is: 
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++++++++= 14,148,87,76,65,53,31,10,0 iiiiiiiii GGGGGGGGVUAN θθθθθθθθ  

iiii GGG εθθθ ++++ 26,2625,2515,15 .     (25) 

 

The output produced by E-Views is presented in table 2: 

(Another way to get this result could have been the stepwise regression procedure, as 

indicated in Bowden (2000), but the references in the econometric literature suggest 

that this method is rather inappropriate). 

 

Table 2: OLS estimation of regression equation (25) 
Dependent Variable: VUAN 
Method: Least Squares 
Sample: 1/03/2000 4/01/2002 
Included observations: 118 

     
Variable Coefficient Std. Error t-Statistic Prob. 

     
G0  0.844309  0.017582  48.02112  0.0000
G1  0.721467  0.096177  7.501475  0.0000
G3 -3.706143  0.983709 -3.767520  0.0003
G5  67.27757  14.05902  4.785365  0.0000
G6 -205.8137  55.05829 -3.738106  0.0003
G7  634.1467  193.4205  3.278590  0.0014
G8 -4115.562  634.9318 -6.481895  0.0000
G14  25329839  10619671  2.385181  0.0188
G15  2.80E+08  62135869  4.511404  0.0000
G25 -1.24E+16  5.82E+15 -2.129257  0.0355
G26 -1.05E+17  3.65E+16 -2.888251  0.0047

     
R-squared  0.650351     Mean dependent var  0.844309
Adjusted R-squared  0.617674     S.D. dependent var  0.308882
S.E. of regression  0.190990     Akaike info criterion -0.384610
Sum squared resid  3.903045     Schwarz criterion -0.126326
Log likelihood  33.69198     F-statistic  19.90212
Durbin-Watson stat  2.036243     Prob(F-statistic)  0.000000

     

 

We start by verifying the OLS presumptions. Table 3 (page 34) synthesises the 

results presented above concerning the assumption of the OLS estimation. 

 

• Durbin Watson test 

As the Durbin-Watson statistic indicates (see tables 2 and 3), there is no 

evidence of first order correlation between residuals. The value of the statistic is 2.03, 

which is close enough to 2 to accept the null hypothesis of absence of first order 
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autocorrelation. We check for higher degrees of autocorrelation by carrying other 

econometric tests. 

 

Table 3 – Summary of statistics for the equation regression (25) 
Test Distribution Value 5% critical 

value 
Non-autocorrelation between residuals 
Durbin-Watson – 2.036234 (2.00) 

χ2 (4) 0.875133 9.49 
χ2 (8) 9.214078 16.92 
χ2 (16) 16.78303 26.30 

Breusch-Godfrey 
(LM Test) 

χ2 (32) 30.48619 45.91 
Ljung-Box χ2 (4) 0.7470 9.49 

χ2 (8) 7.5695 16.92 
χ2 (16) 13.060 26.30 

(Q-Statistic) 

χ2 (32) 35.822 45.91 
Homoscedasticity 

χ2 (41) 19.91572 56.66 White 
R2 0.168777 – 

Koenkar-Basset χ2 (8) 0.032296 14.07 
χ2 (4) 0.052959 9.49 
χ2 (8) 0.533095 15.51 
χ2 (16) 1.212054 26.30 

Engle (ARCH LM) 

χ2 (32) 19.88728 45.91 
Standard normality of residuals 
Skewness – 0.488062 (0.00) 
Kurtosis – 4.332561 (3.00) 
Jarque-Berra χ2 (2) 13.30163 5.99 
 

• Breusch-Godfrey Test 

The result of the LM test with 4, 8, 16 and 32 lags is presented in table 4 

above. The tabulated value for the χ2 statistic with 4 degrees of freedom at a 5% level 

of significance is much greater than the Breusch-Godfrey LM statistic for all the 

levels of significance. Therefore, the null hypothesis of no autocorrelation will be 

clearly accepted in all the cases. The very low values of the statistic indicate that 

probably the test would produce the same results even at 1% significance level. 

 

• Ljung-Box Q statistic and correlogram 

Table 3 shows that we cannot speak of autocorrelation up to 36th order in 

terms of Ljung-Box statistic neither. The Q values are less than the corresponding 

critical values for the χ2 distribution (with degrees of freedom equal to the number of 

lags), which leads to the acceptance of the null hypothesis of no autocorrelation. 
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The autocorrelation (AC) and partial autocorrelation (PAC) figures fall 

between the two standard error bounds, meaning that they are not significantly 

different from zero at (approximately) the 5% significance level. 

 

• White Test 

The E-Views output for the White heteroscedasticity test is presented in table 4: 

 
Table 4 – White Test 
White Heteroscedasticity Test: 

     
F-statistic  0.376380     Probability  0.999528 
Obs*R-squared  19.91572     Probability  0.997755 

 

The White statistic (Obs*R-squared) is asymptotically distributed as a χ2 

distribution with degrees of freedom equal to the number of slope coefficients in the 

test regression, respectively 414. The critical value for χ2 with 41 degrees of freedom, 

at a 5% significance level, is 56.66, which is greater than the value of the White 

statistic for our model (19.915). We should therefore accept the null hypothesis of 

homoscedasticity. The high p-value for the F-statistic leads to the same decision. 

More, the R2 coefficient of the auxiliary regression (0.168777) is insignificant, 

also leading to accepting the null hypothesis of homoscedasticity. (I omit to present 

the table with the E-Views estimation output because it is too large, and from that 

table we are interested only in the value of the R2 coefficient). 

Actually, the White test is more general, in the sense that it refers not only to 

the heteroscedasticity aspect, but also to other aspects concerning the (possible) 

misspecification of the model, such as the residuals’ independence of the regressors. 

Obtaining an insignificant test statistic implies that neither the homoscedasticity, nor 

the errors’ independence of the regressors is violated. 

 

• Koenkar-Basset test 

I performed this test instead of Breusch-Pagan test because of the non-normality 

of the residuals (as it will later be shown), and, as Greene (1993) points out, “the 

Breusch-Pagan test is quite sensitive to the assumption of normality”. Under the 

                                                            
4 The test regression is a regression of the square of the  residual term having as regressors the cross 
products of the explanatory variables in the initial regression model. In this particular case, we have 11 
regressors in the regression model, so we’ll have 41 regressors in the test regression, after excluding the 
redundant cross products 
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hypothesis of homoscedastivity, the Koenkar-Basset statistic is, as the Breusch-Pagan 

statistic, asymptotically distributed as χ2 with degrees of freedom equal to the number 

of variables in the estimated function. 

The Koenkar-Basset test also leads to the rejection of the alternative hypothesis of 

heteroscedasticity presumption: the statistic is 0.032296, while the critical χ2 value is 

14.07. The statistic was computed using as explanatory variables for the function that 

is estimated the regressors G0, G1, G3, G4, G5, G6, G7 and G8 of the regression 

equation. I could not use the entire set of regressors because their matrix is a singular 

one, so it could not be inverted, and the inverse matrix of regressors is required in the 

computation of the test statistic5. 

 

• ARCH LM test (Engle) 

This is a test for determining whether autoregressive conditional 

heteroscedasticity effects are present in the residuals. Table 3 shows the statistics and 

the corresponding critical χ2 values for several lags. In all cases we accept the null 

hypothesis that there are no ARCH effects up to that lag. 

         
• Jarque-Berras test 

E-Views produces the following output (figure 4): 

 
Figure 4 

 

 

 

 

 

 

 

 

The mean is insignificantly different from zero, but the hypothesis of 

normality is clearly rejected by the high value of the Jarque-Bera statistic and the 

significant values of skewness and kurtosis, which indicate that the residual series is 

                                                            
5 The hypothesis of homoscedasticity is being tested against the alternative hypothesis that the variance 
has the form: )...( 1,10

22
ppii zzf ααασσ +++⋅= . If the model is homoscedastic, then αI=0. 
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Series: RESID
Sample 1/03/2000 4/01/2002
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Mean -0.009717
Median -0.013709
Maximum  0.485411
Minimum -0.357526
Std. Dev.  0.149699
Skewness  0.488062
Kurtosis  4.332561

Jarque-Bera  13.30163
Probability  0.001293
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both asymmetric (skewness greater than 0) and leptokurtic (kurtosis greater than 3). 

From the histogram, one can observe that there are some extreme values in the 

residual series that may be the main cause in the non-normality. We could therefore 

check for normality after eliminating these extreme values. The result indeed suggests 

that without the extreme value the residual series appears to be closer to a standard 

normal distributed series with zero mean and constant variance: the new skewness is  

-0.205514 and the new kurtosis, 3.058781. It follows that the new Jarque-Bera 

statistic is 0.818897 (and the p-value 0.664016), which is closer to the critical value of 

5.99 (a χ2 distribution with 2 degrees of freedom, for a 5% confidence interval). 

 The problem of non-gaussian errors is treated in Hamilton (1994), pp. 208-

214. It is demonstrated that under non-Gaussian conditions, the estimated parameters 

of the regression model continue to be unbiased and consistent, and their asymptotic 

distribution can be approximated by the asymptotic distribution of the estimated 

parameters under conditions of Gaussian disturbances. It is also shown there that the 

critical values for the t and F tests do not differ significantly if the sample is 

sufficiently large. 

 

Testing the assumption of the independence between errors and regressors 

A simple way of testing is to look at the covariance matrix. Table 5 below presents the 

covariances between the residuals and each regressor. 

 

Table 5 - Covarriances between residuals and regressors 
G G0 G1 G3 G5 G6 G7 

RESID -1.04E-32 -3.24E-18 -8.61E-20  4.83E-20  2.15E-20 -1.49E-21
 

Table 5 (cont’d) 
G G8 G14 G15 G25 G26 

RESID -8.46E-22 -3.78E-26 -1.93E-26  6.22E-35 -4.15E-36
 

We cannot find any evidence of correlation between residuals and explanatory 

variables, which means that the independence presumption required by the OLS 

method is satisfied. 

Although the dependent variable in the model (VUAN) is non-stationary (as 

well as the IFM series), the residuals series is stationary, which means that the Gauss-

Markov theorem holds: the OLS estimators are the most efficient linear unbiased 
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estimators. The ADF and Phillip-Perron tests have been used to check for the 

residuals’ staionarity. The results are presented in table 6 and 7 (page 38): 

 

Table 6 – Unit root ADF test for residuals series 
ADF Test Statistic     1%   Critical Value* 

    5%   Critical Value 
-3.4890
-2.8870

 

-3.744255 

    10% Critical Value -2.5802
*MacKinnon critical values for rejection of hypothesis of a unit root. 

 

Table 7 – Unit root Phillips-Pérron test for residuals series 
PP Test Statistic     1%   Critical Value* 

    5%   Critical Value 
-3.4870
-2.8861

 

-10.93526 

    10% Critical Value -2.5797
*MacKinnon critical values for rejection of hypothesis of a unit root. 
Lag truncation for Bartlett kernel: 4    ( Newey-West suggests: 4 )
 

Both the ADF and the Phillip-Pérron tests indicate the rejection of the 

hypothesis of existence of a unit root in the residuals series. 

On the other hand, the fact that both VUAN and IFM are non-stationary, but 

the residuals of the regression of VUAN on IFM are stationary suggests that the two 

series must be cointegrated. This question is to be treated in Section 3.5. 

 

 

 3.3. COMPUTATION OF OMD. EXPONENTIALLY WEIGHTED OMD 
 

 

 The next step is to compute the conditional ordered mean difference. We have 

therefore to estimate the function (8) at each point of the sample. Formula (8) 

represents, as noted at that point, the average area between the regression line of r on 

R and R itself, accumulated up to the chosen point P, weighted with the relative 

frequency of the benchmark, and divided by the number of observations, or the 

average difference between the values of the fund return and the benchmark return. It 

is therefore straightforward to think of an estimator of (8) as having the form: 
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where iê  is the estimated value of the fund return at observation i: )ˆ,(ˆ θii Gee = . Gi is 

the ith Forsythe polynomial, calculated over the entire range of R values, after the 

methodology presented earlier. 

It is important to note that for the calculation of the differences and the values 

of the OMD function, the series of benchmark returns must be sorted in 

ascending order, so as every new value of the benchmark return to represent a new 

threshold of aversion to risk. 

Proceeding this way, we obtain the following plot of the OMD function – see 

figure 5: 

 
Figure 5 – OMD 

 

 

 

 

 

 

 

 

 

On the horizontal axis, we have the IFM series (taken as benchmark), and on the 

vertical axis is represented the COMD values, in percents. 

As one can see from the graph, t(P) is positive over the entire set of the 

benchmark values. We can therefore conclude that the fund manifested superiority 

over the market for the period under analyse, in terms of any risk averse investor, no 

matter his degree of aversion to risk. The only restriction we have to put in order to 

validate this conclusion is that the investors have a concave and increasing utility 

function. The conclusion is valid for all investors who enter this class because, as it 

was demonstrated in Section 2.3., the equivalent margin is the weighted average of 

OMD (t(P)) schedules, at points P (each one representing a level of risk aversion, 

more exactly, the level of the benchmark return he requires the fund manager to 

equal), and if t(P) is greater than 0 for all P, then the equivalent margin will also be 

greater than 0, meaning that the fund is judged to be superior by all the investors). 
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The OMD curve, being uniformly positive, is preferred by both less and more 

risk averse investors, but a slightly downward trend can be detected for the lower 

values of the benchmark, which means that, though, the more risk averse investors are 

more likely to prefer the fund than the less risk averse ones. However, we should be a 

little circumspect concerning the downward trend for the first values of the function, 

because the OMD schedule was constructed as a running mean: for the first values in 

the series, the running mean was computed from few values of the differences 

between the fund return and the benchmark return, which means that it is less 

significant. The number of observation increases with the values for the benchmark 

return, since the series have been first ascending ordered by the benchmark 

realisations, and the more observations from which the OMD was calculated we have, 

the more significant the OMD is. I shall return to this aspect just after two paragraphs. 

As specified in Section 2.1., we could as well see the OMD as an area, 

respectively the average area between the regression of the fund return on the 

benchmark return and the benchmark return itself. Figure 6 presents the respective 

area. Note that the area in the figure is not exactly the OMD, since, as underlined 

before, the OMD is an average area. 
 

Figure 6 – the fund return regressed against the benchmark return. The average area between the curve 
and the Ox axis represents the OMD 

Graph 6 shows that for all the benchmark returns, the fund returns were above 

them. The considered area is positive for the entire set of benchmark returns, which 

means that the average area up to every point must be positive, too, which leads to the 

conclusion already spelled: that the fund is judge to have been superior by all the 

investors, no matter their appetite for risk. 
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We conclude that the fund was OMD dominant over the market 

(represented by the benchmark), though there have been points and short periods 

when the fund return fell under the benchmark return (as one can see from table A1 in 

the annex). But, overall, these falls under the benchmark had not an important effect 

on the long run performance of the fund. 

The inconvenient caused by the fact that for the computation of the first values 

for OMD there are few observations available can be removed in several ways; 

Bowden (2000) suggests (but he does not applies anything) using a bootstrapping 

method or a Baysian approach. In the present paper, I try to implement a rather 

simpler methodology, based on a exponentially weighting of the differences between 

the fund returns and the benchmark return. The difficulty consists in choosing the 

value of the weighting coefficient. The results and the interpretation may be 

dramatically different according to the different values specified for this coefficient. 

The computation of the exponentially weighted ordered mean difference is 

similar to that of the OMD, just that a weighting coefficient is introduced in the 

formula. One will have: 
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1 ,     (27) 

 

where, as in the initial OMD formula, r and R are the returns on the fund and on the 

benchmark, respectively, and δ is the weighting coefficient, which must be between 0 

and 1. The weighting coefficient I used in the present paper was calculated from the 

initial (un-weighted) values of the OMD and from the series of differences between 

the fund return and the benchmark return, after the following formula: 
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The value of δ that enters formula (20) is simply the average of all the δj, with j =1, 

2,…n. In our case, n is 117. The idea for this formula for the weighting coefficient 

comes from the old exponentially weighted moving average models that were used to 

estimate the volatility on the financial markets. 
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 Proceeding this way, I obtained a δ of 0.98333, that led to the following graph 

of the EWOMD: 

 
Figure 7 – EWOMD 

 

 

 

 

 

 

 

 

 

Of course, the computation of the weighting coefficient is rather arbitrary, one 

could find a better value for δ. Also, the bootstrapping procedure or the bayesian 

inference using Monte Carlo simulations – methods suggested in Bowden (2000) – 

could lead to better results. 

 Anyway, the OMD and the EWOMD will not produce opposite results in what 

concerns the judgement of the superiority of the fund over the market; only the 

judgement in terms of kinds of investors that are more likely to be satisfied by the 

fund performances relative to the market may change. In our case, it is obvious that, 

after weighting, the less risk adverse investors seem to be the most satisfied investors. 

 

 

 3.4. TESTING FOR STOCHASTIC DOMINANCE 
 

 

We established in Section 2.4. that tR(P)>0 for all P (OMD with the market return as a 

benchmark) is a necessary, but not a sufficient condition for the fund (r) to second 

order stochastically dominates the market (R). A sufficient condition would be to 

demonstrate that the OMD calculated for the market return (with r as a benchmark) to 

be semi-negative: tr(P)≤0. 

As noted in Section 2.4., the OMD formula holds if one is wishing to test for 

stochastic dominance. To do that, we have to compute again the OMD function, but 
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taking the market index return as the dependent variable and the fund return as the 

benchmark. So, we’ll have a regression of the market index (R) on the fund return (r): 

)(]|[ rrRE γ= . The OMD function with r as a benchmark will be: 
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where: f(r) denotes the probability distribution of the fund return, and F(P) is the 

cumulative probability up to point P, ∫
∞−

=
P

r drrfPF )()( . The subscript r is used in 

order to avoid confusion between the two OMD functions (with R and r, respectively 

as a benchmark). In section 6, it was demonstrated that if 0)( ≤Ptr for all P, then r 

dominates R by SSD. 

 The estimated OMD function for R (having r as a benchmark) will be: 
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where iγ̂  is the estimated value of the fund return at observation i: )ˆ,(ˆ λγγ ii G= . Gi is 

the ith Forsythe polynomial, used as an explanatory variable in the regression model. 

Of course, there are other G terms than those used before. The computational 

procedure is similar to that employed when the OMD function for the fund was 

introduced. 

 First, the set of regressors is calculated and introduced in an initial regression 

equation of IFM on VUAN. Then, regressors whose coefficients are not significant in 

terms of the t-test are eliminated. The final regression equation is a 12-term one: 

 

++++++++= 8,86,65,54,43,32,21,10,0 iiiiiiiii GGGGGGGGIFM λλλλλλλλ  

iiiii GGGG ελλλλ +++++ 20,2016,1614,1410,10 .    (32) 

 

The estimation output produced by E-Views is restored in table 8 (page 44). 
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Table 8: OLS estimation of the regression equation 
Dependent Variable: IFM 
Method: Least Squares 
Included observations: 118 
Newey-West HAC Standard Errors & Covariance (lag truncation=4) 

Variable Coefficient Std. Error t-Statistic Prob. 
G0  0.688869  0.013991  49.23573  0.0000
G1  0.254860  0.023855  10.68367  0.0000
G2 -0.204722  0.034906 -5.864945  0.0000
G3 -0.510475  0.058354 -8.747823  0.0000
G4 -0.638084  0.131906 -4.837393  0.0000
G5  0.458839  0.208995  2.195454  0.0303
G6 -2.456533  0.456506 -5.381167  0.0000
G8 -6.862339  1.204977 -5.694995  0.0000
G10 -23.29743  6.716903 -3.468478  0.0008
G14  1119.356  577.8509  1.937102  0.0554
G16  29408.48  5847.269  5.029439  0.0000
G20 -12247177  4429749. -2.764757  0.0067

R-squared  0.617662     Mean dependent var  0.688869
Adjusted R-squared  0.577986     S.D. dependent var  0.183587
S.E. of regression  0.119263     Akaike info criterion -1.318826
Sum squared resid  1.507710     Schwarz criterion -1.037061
Log likelihood  89.81071     F-statistic  15.56745
Durbin-Watson stat  1.462238     Prob(F-statistic)  0.000000

 

As before, we are interested in testing whether the OLS restrictions are 

satisfied. The principal results are summarised in table 9 (page 45). The figures in 

parenthesis in the “Value” column are the probability values associated to the value of 

the calculated statistic, as provided by E-Views. I considered they were necessary 

because the Newey-West methodology for calculating the standard errors was used. 

The table indicates the presence of serial correlation between residuals until 

the 19th lag and the presence of ARCH effects in the residuals until the 10th lag. The 

White statistic leads us to accepting the null hypothesis of homoscedasticity, at least 

at a 5% level of significance (looking at the p-value). However, in the presence of 

autocorrelation in the residuals series, the estimators will still be unbiased and 

consistent, but they will no longer be efficient, meaning that the standard errors are no 

longer valid, and neither the statistics constructed by using these standard errors. 

In order to avoid such problems, I used the Newey-West adjustment to correct 

the standard errors. The truncation lag set by E-Views is the one suggested by Newey 

and West, respectively the integer of 4(T/100)2/9 (where T is the number of 

observations). The effect can be contemplated looking at the level of rejecting a null 

hypothesis. If we look, for example, at the Breusch-Godfrey test, we can see that, 

according to the tabulated values, we can accept the alternative hypothesis of serial 
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correlation between residuals until the 18th lag inclusively, but the Newey-West 

adjusted p-values suggest that the alternative hypothesis of serial correlation is 

maintained until the 19th lag inclusively. A similar conclusion can be drawn relating 

the White and the ARCH LM tests. 

 

Table 9 – Summary of statistics for the IFM regression 
Test Distribution Value 5% critical 

value 
Non-autocorrelation between residuals 
Durbin-Watson – 1.462238 – 

χ2 (16) 29.73198 
(0.019443) 

26.30 

χ2 (18) 30.01623 
(0.037289) 

28.75 

χ2 (19) 30.01635 
(0.051591) 

30.14 

LM (Breusch-Godfrey) 

χ2 (20) 30.03075 
(0.069357) 

31.41 

Homoscedasticity 
χ2 (32) 11.13074 45.91 White 

R2 0.094328 – 
χ2 (9) 19.15946 

(0.023871) 
16.92 

χ2 (10) 19.15025 
(0.038395) 

18.31 

χ2 (11) 19.50315 
(0.052638) 

19.68 

ARCH LM (Engle) 

χ2 (12) 19.26912 
(0.082237) 

21.03 

Standard normality of residuals 
Skewness – 0.863407 (0.00) 
Kurtosis – 9.057571 (3.00) 
Jarque-Berra χ2 (2) 195.0739 

(0.0000) 
5.99 

 

An interesting observation can de drawn from the correlogram (not presented 

here): we cannot reject the hypothesis of correlation between residuals until the 17th 

lag, but the values of the autocorrelation and partial autocorrelation functions appear 

to be significant at a 5% level only for the first two lags. 

As before, the residuals are not normally distributed: the Jarque-Berra statistic 

is far greater than the critical value of a χ2 distribution at a 5% significance level, 

deviations generated especially by the excess kurtosis. But, as stated earlier, this 

seems not to be too troublesome, since the asymptotic distribution of the estimated 

parameters can be approximated by their asymptotic distribution in terms of standard 

normality, and the values of the t and F statistics do not differ significantly. 
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The independence between the regressors is insured by construction of the 

model, using the Forsythe polynomials, and the independence between the regressors 

and the regressors can also be checked if one is looking at the covariance matrix –

table 10 below: 

 
Table 10 – Covariance matrix between the residuals and the regressors 
 G0 G1 G2 G3 G4 G5 
RESID  1.34E-32 -2.40E-17 -6.98E-18  1.67E-17  4.74E-20 -2.67E-18 

 
Table 10 (continued) 
 G6 G8 G10 G14 G16 G20 
RESID  1.06E-18 -1.40E-19  1.03E-20  4.47E-22  2.21E-23  9.16E-26 

 

We can therefore compute the OMD function for the market index with 

VUAN as independent variable, in a similar manner that we proceeded when 

constructed the OMD function for the fund return. Now, the series are ordered by the 

VUAN values. The OMD for the IFM is graphically presented in figure 8. 

 
Figure 8 – OMD for IFM 

 

 

 

 

 

 

 

 

 

Graph 8 emphasises the regression of the mutual fund index (IFM) (on the 

vertical axis) on the fund return (on the horizontal axis). As one can see, the OMD is 

not negative over the entire range of VUAN values. Therefore, we cannot say that 

the fund second order stochastically dominated the benchmark over the entire set 

of fund returns, though, as it was demonstrated in Section 3.3., it dominated the 

market in terms of OMD. It means that we are in the situation when the fund is OMD 

dominant over the Benchmark, but not SSD. 

We can say that the fund is dominant in terms of SSD only for the greater 

values of the fund returns. This finding comes to strengthen the conclusion we drawn 
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after the computation of OMD: the fund was preferred more by the more risk averse 

investors, those investors who fix lower levels they wish the fund attain. 

The same discussion concerning the disadvantage induced by the fact that the 

OMD is computed only from few observations at the beginning, that has been carried 

when the OMD for the fund return was computed is valid now, too.  

 

 

 3.5. AN APPROACH TO COINTEGRATION 
 

 

The OMD is a measure of performance that has a sense if it is computed over a 

sufficient long period of time; a fund is said to have been superior over the market in 

terms of OMD (or, OMD dominated the market) if the average area between the 

regression curve of the fund on the benchmark and the benchmark itself (whose 

values are taken on the abscissa) is always positive, over the entire set of the 

benchmark values. There might have been temporary falls of the returns on the fund 

under the returns on the benchmark, but if the specified area remains positive, the 

fund is said to have been superior to the market for the analysed period. 

This type of assessing performance seems close enough to the cointegration 

concept in econometrics, which describes the common behaviour of two time series 

on the long run. As Alexander (2001) points out, “the fundamental aim of 

cointegration analysis is to detect any common stochastic trends in the price data, and 

to use these common trends for a dynamic analysis of correlation in returns.” In the 

present section, the cointegration analysis will be made not on yield data, but on 

return data, for two reasons: (1) because of the atypical situation of the Romanian 

mutual funds: if, generally, in a market, the yield and the price series are non-

stationary, and, after differencing once, the obtained return series is stationary, in the 

Romanian mutual fund context, the situation is exactly conversely; (2) because the 

OMD measure is stated in terms of return data. More, algebraically, the OMD 

measure is a running mean difference between the two series of returns: on the fund 

and on the benchmark, and this may be seen as an analogy with the cointegration 

principle, which implies a linear combination between the two series of return. 
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My aim, in this section, is to make a connection between the OMD and the 

cointegration principle, in the sense that the result obtained in this section must be 

consistent with the conclusion drawn when applying OMD. 

As specified in Section 2.3, the VUAN and the IFM series are both integrated 

of order 1, or, formally writing, VUAN ~ I(1) and IFM ~ I(1)6. The ADF test result 

demonstrates this, as can be seen from table 11. 

 

Table 11 – ADF unit root test for VUAN and IFM series 
Hypothesis VUAN IFM McKinnon critical values 
I(1) vs. I(0) -1.721831 -2.075862 
I(2) vs. I(1) -8.475460 -7.039432 
   

1%             
5% 

10% 

-3.4895         
-2.8872         
-2.5807 

 

In section 2.3. the residuals series of the regression of VUAN on IFM (split in 

several regressors) was shown to be stationary (see table 7, page 37). It follows that 

the two series are cointegrated.  

An Engle-Granger methodology was first tried to find a cointegrating vector 

between VUAN and IFM, but the R2 for the two regressions (on VUAN on a constant 

and IFM and the reciprocal) was 0.315224, as one could contemplate in the annex 

tables A.3. and A.4., which means that two different cointegrating vectors would have 

resulted. The Johansen methodology removes this disadvantage. 

We can apply the Johansen methodology to find a cointegrating vector and 

then to check to see if the long run relation defines approximately the OMD series. I 

used a VAR(3) system of two equations: IFM and VUAN: 

 





+++++++=

+++++++=

−−−−−−

−−−−−−

tttttttt

tttttttt

IFMIFMIFMVUANVUANVUANIFM
IFMIFMIFMVUANVUANVUANVUAN

,23262251243232221212

,13162151143132121111

εββββββα
εββββββα

 

The t statistics display good enough values to validate this model, as one can 

see from table 12 (page 49), the E-Views output, and from tables A.4. and A.6. in the 

annex. 

 
 
 
 
 
                                                            
6 The problem of non-stationarity of the dependent variable did not affect the OLS estimation in 
Section 2.3. since the residuals series is stationary, as shown in the same section. 
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Table 12 – VAR estimation 
 Sample(adjusted): 1/24/2000 4/01/2002 
 Included observations: 115 after adjusting endpoints 
 Standard errors & t-statistics in parentheses 

   
 VUAN IFM 
   

VUAN(-1) -0.220995 -0.052969 
  (0.08615)  (0.05761) 
 (-2.56529) (-0.91945) 
   

VUAN(-2)  0.204817  0.065782 
  (0.07629)  (0.05102) 
  (2.68478)  (1.28946) 
   

VUAN(-3)  0.196593  0.093302 
  (0.06740)  (0.04507) 
  (2.91671)  (2.07000) 
   

IFM(-1)  0.444879  0.546320 
  (0.14812)  (0.09905) 
  (3.00358)  (5.51567) 
   

IFM(-2)  0.121431 -0.014198 
  (0.16046)  (0.10730) 
  (0.75676) (-0.13231) 
   

IFM(-3)  0.579342  0.121583 
  (0.14079)  (0.09415) 
  (4.11508)  (1.29143) 
   

C -0.113444  0.142792 
  (0.08491)  (0.05678) 
 (-1.33598)  (2.51464) 
   

 R-squared  0.565360  0.499676 
 Adj. R-squared  0.541214  0.471881 
 Sum sq. resids  3.879313  1.734785 
 S.E. equation  0.189525  0.126739 
 Log likelihood  31.70533  77.97988 
 Akaike AIC  31.82707  78.10162 
 Schwarz SC  31.99415  78.26870 
 Mean dependent  0.836723  0.685719 
 S.D. dependent  0.279808  0.174399 

   
 Determinant Residual Covariance  0.000454 
 Log Likelihood  116.2009 
 Akaike Information Criteria  116.4443 
 Schwarz Criteria  116.7785 

   
 

A LR test has been applied to verify if the lag order of the VAR had been 

chosen correctly. The null hypothesis of 2 lags was rejected with an LR statistic of 

44.82642, while the corresponding χ2(4) 95% critical values is 9.49. The test statistic 

was calculated after the formula: 
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82642.44)2009.11678769.93(2)(2 32 =−⋅−=−⋅−= llLR > 9.49, 

where 2l and 3l  are the log-likelihood values for VAR(2) and VAR(3), respectively.

  A similar test has been carried to test the hypothesis of VAR(3) versus 

VAR(4). The test indicated the acceptance of the null hypothesis of VAR(3): 

 0854.1)7436.1162009.116(2)(2 43 =−⋅−=−⋅−= llLR < 9.49. 

The critical value was that for χ2 with 4 degrees of freedom because there were 4 zero 

restrictions when passing from a lag order of 2 to a lag order of 3, respectively from 

one of 3 to one of 4. 

 The fact that VAR(3) is a better specified model relative to VAR(2) results 

also when looking at the serial correlation of the residuals series for the two equations 

in the system. The annex contains four tables (A.4.– A.7.) with the E-View output for 

the two equations in the two cases (order lag of 2 and order lag of 3 for VAR). Table 

13 below presents the main results of testing the hypothesis of serial correlation of the 

residuals in the four cases. 

 

Table 13 – OLS separate estimation for the VAR equations 
VAR(3) VAR(2)  

VUAN IFM VUAN IFM 
Distribution Critical 

value 
DW 1.981266 1.968314 2.198261 2.138932 – (2.00) 

Q(1) 0.0059 0.0100 2.4452 0.6026 χ2 (1) 3.84 
Q(2) 0.3807 0.0479 2.4772 0.8041 χ2 (2) 5.99 
Q(3) 1.5806 3.2863 6.6508 0.8046 χ2 (3) 7.82 
Q(4) 1.8126 5.0729 9.0332 1.3943 χ2 (4) 9.49 

BG(2) 0.969355 0.216748 14.07406 4.232258 χ2 (2) 5.99 
BG(3) 5.207536 7.043206 14.16348 4.927487 χ2 (3) 7.82 
BG(4) 6.387876 15.02648 14.27377 6.733587 χ2 (4) 9.49 
BG(6) 
 

7.358067 18.56603 15.08536 7.051775 χ2 (6) 12.59 

White 31.6205 
[χ2(27)] 

81.92332 
[χ2(27)] 

35.87982 
[χ2(14)] 

16.12749 
[χ2(14)] 

χ2 (27) 
χ2 (14) 

40.11 
23.69 

ARCH-LM(2) 4.698600 6.781785 7.482439 3.278474 χ2 (2) 5.99 
ARCH-LM(3) 4.744544 7.043206 10.03964 3.637078 χ2 (3) 7.82 
ARCH-LM(4) 6.781491 8.752868 10.63870 4.196441 χ2 (4) 9.49 
       
Note:  DW is the Durbin-Watson statistic, Q is the Ljung-Box statistic and BG is the 
Breusch-Godfrey statistic 
 

Actually, the equation for IFM in VAR(2) behaved better than in VAR(3) 

(residuals series in the IFM series in VAR(3) indicate general heteroscedasticity and 
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autocorrelation at lags of order greater than 4), but overall, as demonstrated before, 

VAR(3) is a better model than VAR(2). 

The Johansen test has been performed assuming no deterministic trend and no 

intercept in the regression equation. To be sure, I performed the Johansen test 

specifying no intercept but also having an intercept. The LR test was convincing in 

removing the intercept: 

3622.5)9594.1142783.112(2 =−⋅−=LR < 5.99, the χ2 (2) critical value. 

The E-Views output for the Johansen test is restored in table 14 below. 

 

Table 14 – Johansen test (E-Views output) 
Sample: 1/03/2000 4/01/2002   
Included observations: 114 
Test assumption: No deterministic trend in the data 
Series: VUAN IFM  
Lags interval: 1 to 3 

 Likelihood 5 Percent 1 Percent Hypothesized 
Eigenvalue Ratio Critical Value Critical Value No. of CE(s) 
 0.190826  25.03568  12.53  16.31       None ** 
 0.007839  0.897136   3.84   6.51    At most 1 

 *(**) denotes rejection of the hypothesis at 5%(1%) significance level 
 L.R. test indicates 1 cointegrating equation(s) at 5% significance level 

     
 Unnormalized Cointegrating Coefficients: 

VUAN IFM    
-0.845297  1.029964    
 0.019400  0.109297    

     
 Normalized Cointegrating Coefficients: 1 Cointegrating Equation(s) 

VUAN IFM    
 1.000000 -1.218465    

  (0.03033)    
     

 Log likelihood  112.2783    

 

One cointegrating relation between VUAN and IFM series was found. The long run 

equilibrium relationship between the two returns is given by: 

 

0218465.1 =⋅− IFMVUAN .  

 

This means that, on the long run, the fund return was 1.22 times greater than the 

benchmark return. This result is consistent with the previous conclusion (Section 

3.3.): the fund has been superior over the market for the analysed period. 
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We could investigate more aspects relating the fund behaviour if we construct 

the error correction model (ECM). The E-Views output for the ECM is restored in 

table 14. 

 
Table 14 – ECM estimation 
Sample(adjusted): 1/31/2000 4/01/2002 
 Included observations: 114 after adjusting endpoints 
 Standard errors & t-statistics in parentheses 

   
Cointegrating Eq:  CointEq1  

   
VUAN(-1)  1.000000  

   
IFM(-1) -1.218465  

  (0.03033)  
 (-40.1729)  
   

Error Correction: D(VUAN) D(IFM) 
   

CointEq1 -0.741434  0.058970 
  (0.16147)  (0.10821) 
 (-4.59176)  (0.54494) 
   

D(VUAN(-1)) -0.465839 -0.196431 
  (0.13235)  (0.08870) 
 (-3.51979) (-2.21461) 
   

D(VUAN(-2)) -0.234239 -0.152625 
  (0.10593)  (0.07099) 
 (-2.21129) (-2.14990) 
   

D(VUAN(-3)) -0.027458  0.001851 
  (0.07063)  (0.04734) 
 (-0.38875)  (0.03910) 
   

D(IFM(-1)) -0.496704 -0.278560 
  (0.20894)  (0.14003) 
 (-2.37723) (-1.98929) 
   

D(IFM(-2)) -0.408305 -0.193728 
  (0.17825)  (0.11946) 
 (-2.29065) (-1.62170) 
   

D(IFM(-3))  0.142931 -0.147749 
  (0.14665)  (0.09828) 
  (0.97464) (-1.50330) 
   

 R-squared  0.637885  0.239768 
 Adj. R-squared  0.617579  0.197138 
 Sum sq. resids  3.904379  1.753632 
 S.E. equation  0.191022  0.128020 
 Log likelihood  30.56469  76.18805 
 Akaike AIC  30.68750  76.31085 
 Schwarz SC  30.85551  76.47887 
 Mean dependent -0.008551 -0.003381 
 S.D. dependent  0.308897  0.142875 
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 Looking at the coefficients of the lagged values of IFM in the VUAN equation 

and vice-versa, we can see that for the first two lags they are significant, which means 

that both IFM Granger caused VUAN and VUAN Granger caused IFM. This not an 

unexpected result since Capital Plus enters the composition of IFM. 

The adjustment coefficients (-0.7414 and 0.0589) indicate a rather slow speed 

of adjustment to the long run equilibrium. The fact that they are of contrary signs, is 

consistent with the theory. 

 

 

 CONCLUSIONS 
 

 

This paper presented the ordered mean difference, which is a  measure of portfolio 

performance introduced by Roger Bowden by a series of articles. The ordered mean 

difference (OMD) is derived from the equivalent margin formula, which represents 

the penalty that is necessary to make an investor reconsider his participation in a 

mutual fund. The biggest the penalty, the more performant the funs is considered to 

be. OMD is a special case of the equivalent margin, namely when the utility function 

has the form of a short put. The investor is interested in obtaining a fixed level of 

return, being indifferent at what happens above that level and negatively exposed 

when the return is below that level.  The “exercise price” is the threshold he imposes, 

and it is established in accordance with his appetite for risk. The more risk averse the 

investor is, the lower level he fixes.  

The idea of this type of utility function is older: it was introduced by Robert C. 

Merton as an alternative for the classical assumption of the fund return being a linear 

function of the benchmark return. On the other hand, the put-like utility function is the 

converse of the poverty gap function, introduces by Davisdon and Duclos (2000), 

which represents how more the investor has until he gets his threshold. These two 

authors demonstrated that the second order stochastic dominance condition can be 

written as to show the average poverty gap up to the given poverty threshold. 

Returning to OMD, Bowden (2000) showed that the equivalent margin is the 

weighted average of a set of OMD’s. This means that the equivalent margin is a 

measure of performance that is independent of the degree of aversion to risk of the 
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investor. It was demonstrated that if OMD is positive over the entire range of values 

of the benchmark, then the equivalent margin also positive. OMD is constructed as a 

running mean of the differences between the fund return and the benchmark return, 

with the observations sorted ascending after the benchmark values, and represents the 

average area between the regression curve of the fund on the benchmark and the 

benchmark itself. If this area is always positive, the fund is considered to have been 

superior over the market in the analysed period. 

OMD can be used to check for stochastic dominance: if the inverse regression, 

of the market index on the fund return, taken as a benchmark is negative, then the 

fund second order stochastically dominated the market. 

The empirical part of this paper employed a regression of the fund return on a 

set of regressors that were obtained by using the Forsythe polynomials, which split the 

benchmark series in several series. The advantage of using these explanatory variables 

instead of defining a quadratic or a non-linear regression is that doing so, we insure 

against the collinearity between  regressors. More, the coefficient of determination 

proved to be larger. 

The fund, Capital Plus, proved to be OMD dominant over the market, but not 

SSD. As the benchmark was considered the mutual fund index, which is an index 

constructed in the same manner as an exchange index. A large comment about the 

superiority of the fund was made in Sections 3.3. and 3.4. 

The final section of the paper made an approach to the cointegration theory in 

econometrics and it was there where I showed that the conclusion of superiority of the 

fund over the market is sustained by the cointegrating relation that was found between 

the fund return and the benchmark return. The idea of associating OMD with the 

cointegration theory comes from the fact that they both have a long run perspective. 

The OMD measures allows the fund return to temporary fall below the market index 

without affecting the general result if these falls were not very drastic. 

Econometric tests have been applied in constructing and verifying the 

regression models that were used. 
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 ANNEXES 
 

 

Table A.1. Data used: the fund (VUAN) and the benchmark (IFM) series of returns (%)* 
Date VUAN (%) IFM (%) 

1/03/00  2.102349  0.273778 

1/10/00  1.187074  1.060852 

1/17/00  0.115866  1.094163 

1/24/00  1.222423  0.879864 

1/31/00  1.372017  0.845694 

2/07/00  1.113774  0.840499 

2/14/00  1.924149  1.056570 

2/21/00  0.937073  0.817404 

2/28/00  1.023243  0.919398 

3/06/00  1.710491  0.930866 

3/13/00  1.140935  0.858966 

3/20/00  1.141106  0.854243 

3/27/00  1.237831  1.159580 

4/03/00  1.203592  0.883068 

4/10/00  1.271080  0.997416 

4/17/00  1.099789  0.841937 

4/24/00  1.173868  0.966209 

5/01/00  1.324262  0.884884 

5/08/00  1.318945  0.838033 

5/15/00  1.094675  0.914215 

5/22/00  1.012584  0.873304 

5/29/00  1.014022  0.963179 

6/05/00  0.917800  0.640486 

6/12/00  0.784403  0.424300 

6/19/00  0.851616  1.300761 

6/26/00  1.426015  1.271949 

7/03/00  0.711253  1.016490 

7/10/00  2.069419  0.745379 

7/17/00  0.745548  0.422375 

7/24/00  0.921046  0.424001 

7/31/00  0.870437  0.452555 

8/07/00  0.810627  0.464176 

8/14/00  0.762606  0.465513 

8/21/00  0.705349  0.676120 

8/28/00  0.516360  0.771493 

9/04/00  0.727328  0.661988 

9/11/00  0.701878  0.644184 

9/18/00  0.707015  0.661197 

9/25/00  0.707030  0.651411 

10/02/00  0.865223  0.578969 

10/09/00  0.700946  0.618567 

10/16/00  0.793419  0.591970 

10/23/00  0.816149  0.736072 

10/30/00  0.795171  0.742869 

11/06/00  0.798403  0.732870 

11/13/00  0.683640  0.786777 

11/20/00  0.655584  0.693830 

11/27/00  0.683880  0.706091 

12/04/00  0.771648  0.595412 

12/11/00  0.554817  0.754244 

12/18/00  0.652075  0.699735 

12/25/00  0.702215  0.667619 

1/01/01  0.643333  0.552119 

1/08/01  0.701801  0.571947 

1/15/01  0.781250  0.781813 

1/22/01  0.753171  0.669036 

1/29/01  0.852459  0.723302 

2/05/01  0.775899  0.759319 

2/12/01  0.838746  0.720575 

2/19/01  0.648354  0.715612 

2/26/01  0.796745  0.638349 

3/05/01  0.697948  0.652183 

3/12/01  0.830898  0.719631 

3/19/01  0.915152  0.749481 

3/26/01  0.808371  0.652166 

4/02/01  0.810030  0.731756 

4/09/01  1.130582  0.724820 

4/16/01  0.798531  0.728187 

4/23/01  0.895191  0.735171 
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Date VUAN (%) IFM (%) 

4/30/01  0.828361  0.769719 

5/07/01  0.868279  0.775381 

5/14/01  0.853084  0.764469 

5/21/01  0.899453  0.762286 

5/28/01  0.845915  0.765235 

6/04/01  0.944141  0.716937 

6/11/01  0.909226  0.740630 

6/18/01  0.853028  0.778314 

6/25/01  0.721321  0.720799 

7/02/01  0.872473  0.704278 

7/09/01  0.764019  0.699843 

7/16/01  0.736767  0.620439 

7/23/01  0.770432  0.635012 

7/30/01  0.799775  0.699807 

8/06/01  0.796924  0.627576 

8/13/01  0.801026  0.635769 

8/20/01  0.849702  0.598962 

8/27/01  0.842543  0.699514 

9/03/01  0.622400  0.588931 

9/10/01  0.753017  0.582242 

9/17/01  0.563878  0.568744 

9/24/01  0.753152  0.551796 

10/01/01  0.470906  0.571301 

10/08/01  0.803015  0.561945 

10/15/01  0.702325  0.591213 

10/22/01  0.729715  0.545229 

10/29/01  0.743661  0.591671 

11/05/01  0.722263  0.569167 

11/12/01  0.713925  0.550989 

11/19/01  0.712001  0.540970 

11/26/01  0.710081  0.545239 

12/03/01  0.701982  0.539036 

12/10/01  0.703231  0.498265 

12/17/01  0.673924  0.522566 

12/24/01  0.651239  0.549037 

12/31/01  0.713232  0.718306 

1/07/02 -0.062750  0.210378 

1/14/02  1.195993  0.548565 

1/21/02  0.602748  0.492539 

1/28/02  0.613821  0.420315 

2/04/02  0.604238  0.621109 

2/11/02  0.600609  0.516521 

2/18/02  0.628749  0.499956 

2/25/02  0.627687  0.504186 

3/04/02  0.626620  0.479986 

3/11/02  0.639701  0.501477 

3/18/02  0.632822  0.447634 

3/25/02  0.441587  0.468799 

4/01/02  0.247649  0.494434 

 

* The blue figures indicate observations where the fund return fell under the 

benchmark return 
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Table A.2. Why not Engle-Granger (Section 3.5.; page 48) 
Dependent Variable: VUAN 
Method: Least Squares 
Date: 06/14/02   Time: 18:33 
Sample: 1/10/2000 4/01/2002 
Included observations: 117 
VUAN=C(1)+C(2)*IFM 

 Coefficient Std. Error t-Statistic Prob. 
C(1)  0.214249  0.087932  2.436546  0.0164
C(2)  0.894414  0.122929  7.275862  0.0000

R-squared  0.315224     Mean dependent var  0.833556
Adjusted R-squared  0.309270     S.D. dependent var  0.287177
S.E. of regression  0.238673     Akaike info criterion -0.010499
Sum squared resid  6.550951     Schwarz criterion  0.036718
Log likelihood  2.614173     F-statistic  52.93817
Durbin-Watson stat  1.924629     Prob(F-statistic)  0.000000

 
 
Table A.3. Why not Engle-Granger (Section 3.5.; page 48) 
Dependent Variable: IFM 
Method: Least Squares 
Date: 06/14/02   Time: 18:33 
Sample: 1/10/2000 4/01/2002 
Included observations: 117 
IFM=C(1)+C(2)*VUAN 

 Coefficient Std. Error t-Statistic Prob. 
C(1)  0.398641  0.042686  9.338814  0.0000
C(2)  0.352437  0.048439  7.275862  0.0000

R-squared  0.315224     Mean dependent var  0.692416
Adjusted R-squared  0.309270     S.D. dependent var  0.180269
S.E. of regression  0.149822     Akaike info criterion -0.941796
Sum squared resid  2.581351     Schwarz criterion -0.894580
Log likelihood  57.09508     F-statistic  52.93817
Durbin-Watson stat  1.173491     Prob(F-statistic)  0.000000
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Table A.4. VUAN equation in VAR(3) (Section 3.5.) 
Dependent Variable: VUAN 
Method: Least Squares 
Date: 06/15/02   Time: 13:56 
Sample(adjusted): 1/24/2000 4/01/2002 
Included observations: 115 after adjusting endpoints 
VUAN=C(1)*VUAN(-1)+C(2)*VUAN(-2)+C(3)*VUAN(-3)+C(4)*IFM(-1)+C(5)*IFM(-2) 
        +C(6)*IFM(-3)+C(7) 

 Coefficient Std. Error t-Statistic Prob. 
C(1) -0.220995  0.086148 -2.565286  0.0117
C(2)  0.204817  0.076288  2.684777  0.0084
C(3)  0.196593  0.067402  2.916706  0.0043
C(4)  0.444879  0.148116  3.003579  0.0033
C(5)  0.121431  0.160462  0.756756  0.4508
C(6)  0.579342  0.140785  4.115084  0.0001
C(7) -0.113444  0.084915 -1.335978  0.1844

R-squared  0.565360     Mean dependent var  0.836723
Adjusted R-squared  0.541214     S.D. dependent var  0.279808
S.E. of regression  0.189525     Akaike info criterion -0.429658
Sum squared resid  3.879313     Schwarz criterion -0.262575
Log likelihood  31.70533     F-statistic  23.41362
Durbin-Watson stat  1.981266     Prob(F-statistic)  0.000000

 
 
Table A.6. VUAN equation in VAR(2) (Section 3.5.) 
Dependent Variable: VUAN 
Method: Least Squares 
Date: 06/15/02   Time: 13:53 
Sample(adjusted): 1/17/2000 4/01/2002 
Included observations: 116 after adjusting endpoints 
VUAN=C(1)*VUAN(-1)+C(2)*VUAN(-2)+C(3)*IFM(-1)+C(4)*IFM(-2)+C(5) 

 Coefficient Std. Error t-Statistic Prob. 
C(1) -0.040984  0.089949 -0.455639  0.6495
C(2)  0.113911  0.077813  1.463895  0.1460
C(3)  0.256640  0.163333  1.571271  0.1190
C(4)  0.756188  0.148735  5.084111  0.0000
C(5)  0.065965  0.094647  0.696956  0.4873

R-squared  0.407989     Mean dependent var  0.830508
Adjusted R-squared  0.386655     S.D. dependent var  0.286516
S.E. of regression  0.224389     Akaike info criterion -0.108726
Sum squared resid  5.588889     Schwarz criterion  0.009963
Log likelihood  11.30609     F-statistic  19.12410
Durbin-Watson stat  2.198216     Prob(F-statistic)  0.000000
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Table A.6. (Section 3.5.) 
Dependent Variable: IFM 
Method: Least Squares 
Date: 06/15/02   Time: 14:38 
Sample(adjusted): 1/24/2000 4/01/2002 
Included observations: 115 after adjusting endpoints 
IFM=C(1)*VUAN(-1)+C(2)*VUAN(-2)+C(3)*VUAN(-3)+C(4)*IFM(-1)+C(5)*IFM(-2) 
        +C(6)*IFM(-3)+C(7) 

 Coefficient Std. Error t-Statistic Prob. 
C(1) -0.052969  0.057609 -0.919451  0.3599
C(2)  0.065782  0.051015  1.289455  0.2000
C(3)  0.093302  0.045074  2.069998  0.0408
C(4)  0.546320  0.099049  5.515673  0.0000
C(5) -0.014198  0.107305 -0.132312  0.8950
C(6)  0.121583  0.094146  1.291428  0.1993
C(7)  0.142792  0.056784  2.514635  0.0134

R-squared  0.499676     Mean dependent var  0.685719
Adjusted R-squared  0.471881     S.D. dependent var  0.174399
S.E. of regression  0.126739     Akaike info criterion -1.234433
Sum squared resid  1.734785     Schwarz criterion -1.067350
Log likelihood  77.97988     F-statistic  17.97672
Durbin-Watson stat  1.968314     Prob(F-statistic)  0.000000

 
 
Table A.7. (Section 3.5.) 
Dependent Variable: IFM 
Method: Least Squares 
Date: 06/15/02   Time: 14:39 
Sample(adjusted): 1/17/2000 4/01/2002 
Included observations: 116 after adjusting endpoints 
IFM=C(1)*VUAN(-1)+C(2)*VUAN(-2)+C(3)*IFM(-1)+C(4)*IFM(-2)+C(5) 

 Coefficient Std. Error t-Statistic Prob. 
C(1)  0.000470  0.051802  0.009079  0.9928
C(2)  0.102081  0.044813  2.277943  0.0246
C(3)  0.586036  0.094064  6.230195  0.0000
C(4)  0.020452  0.085657  0.238771  0.8117
C(5)  0.180835  0.054507  3.317624  0.0012

R-squared  0.489740     Mean dependent var  0.689240
Adjusted R-squared  0.471352     S.D. dependent var  0.177732
S.E. of regression  0.129226     Akaike info criterion -1.212362
Sum squared resid  1.853628     Schwarz criterion -1.093672
Log likelihood  75.31698     F-statistic  26.63406
Durbin-Watson stat  2.138932     Prob(F-statistic)  0.000000
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