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I propose a continuous-time model of price formation in a market where trad-

ing is conducted according to a limit-order book. Strategic liquidity traders

arrive randomly in the market and dynamically choose between limit and mar-

ket orders, trading off execution price with waiting costs. I prove the existence

of a Markov equilibrium in which the bid and ask prices depend only on the

numbers of buy and sell orders in the book, and which can be characterized

in closed-form in several cases of interest. My model generates empirically

verified implications for the shape of the limit-order book and the dynamics

of prices and trades. In particular, I show that buy and sell orders can clus-

ter away from the bid-ask spread, thus generating a hump-shaped limit-order

book. Also, following a market buy order, both the ask and bid prices increase,

with the ask increasing more than the bid—hence the spread widens.

Keywords: Liquidity, price impact, limit order market, waiting costs,

continuous time game theory, game of attrition.

1. Introduction

This article presents a model of price formation in a market where agents trade via

a limit order book.2 In such a market, there is no market maker or specialist who

provides bid and ask quotes. Instead, any sellers (buyers) can place offers (bids) in the

Date: April 25, 2005.
1The author thanks Rob Battalio, Shane Corwin, Drew Fudenberg, Xavier Gabaix, Larry Glosten,
Burton Hollifield, Sergei Izmalkov, Leonid Kogan, Jon Lewellen, Andrew Lo, David McAdams, David
Musto, Stew Myers, Jun Pan, Anna Pavlova, Christine Parlour, Duane Seppi, Chester Spatt, Richard
Stanton, Dimitri Vayanos, and Jiang Wang for very helpful comments and suggestions. He is also
grateful to participants at the NBER market microstructure meeting, May 2004, and to seminar audi-
ences at MIT, UC Berkeley, Notre Dame, U Toronto, Northwestern, Carnegie Mellon, U Michigan, U
Penn, and U Chicago.
2The limit order book is the collection of all outstanding limit orders. Limit orders are price-contingent
orders to buy (sell) if the price falls below (rises above) a prespecified price. A sell limit order is also
called an offer, while a buy limit order is also called a bid. The lowest offer is called the ask price, or
simply ask, and the highest bid is called the bid price, or simply bid.
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limit order book and wait until the orders get executed; or, alternatively, they can trade

immediately by placing a market order against the existing bids (offers).

The study of price formation when market makers do not exist or only have a limited

role is very important in understanding modern financial markets. Nowadays, many

financial markets around the world are order-driven, with a limit order book at the

center of the trading process.3 A satisfactory model of order-driven markets should

therefore explain how market prices arise from the interaction of a large number of

anonymous traders, who arrive at the market at random times, can choose whether to

trade immediately or to wait, and can behave strategically by changing their orders at

any time.

In this paper, I propose a model of an order-driven market which reflects the features

mentioned above. The model is tractable and produces sharp implications about (i)

the shape of the limit order book at any point in time, and (ii) the evolution in time

of the book, and in particular of the bid and ask prices. Some of these implications

are in line with known empirical facts about the limit order book and its dynamics.

The determinants of price formation in this model are: the speed of agents’ arrival to

the market, their waiting costs, and the ratio of the numbers of patient to impatient

traders.4

The model represents a departure from classical market microstructure. In that

literature prices change because the suppliers of liquidity have to protect themselves

from traders with superior information (Glosten and Milgrom (1985), Kyle (1985)). In

particular, the bid-ask spread (and the price impact of a transaction) should be higher

when there is more asymmetric information in the market. By contrast, in the present

model prices change because the arrival of new agents modifies the balance between the

3About half of the world’s stock exchanges are organized as order-driven markets, with no designated
market makers (see Jain (2002)). Examples include Euronext, Hong Kong, Tokyo, Toronto, and various
ECN (Island, Instinet). There are also hybrid exchanges (NYSE, Nasdaq, London), where market
makers exist but have to compete with other traders, who supply liquidity by limit orders. In these
markets, the number of transactions which involve a market maker is usually small (see Hasbrouck and
Sofianos (1993).
4These variables have been showed empirically to explain a large percentage of the variation in the
average bid-ask spread (Farmer, Patelli, and Zovko (2003)). Some evidence that reasons other than
information may better explain prices can also be found for example in Huang and Stoll (1997), who
estimate that on average approximately 90% of the bid-ask spread is due to non-informational frictions
(“order-processing costs”).
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various suppliers of liquidity. In particular, the bid-ask spread should be higher when

agents arrive more slowly to the market. In that case, the whole limit order book is more

rarefied, because the traders must wait longer. Put differently, a market is traditionally

considered liquid if the amount of asymmetric information in the market is small, while

in my framework a market is liquid if it is fast.

In some sense, this paper reverts from the economics of information to the classical

framework of supply and demand, but with a few changes that make that framework

more realistic: there is no Walrasian auctioneer, agents are allowed to be strategic, and

supply and demand are revealed dynamically, via limit and market orders. From this

perspective, my model can in principle be applied to other types of markets, as long as

the buy or sell prices are determined by strategic suppliers of liquidity.

Specifically, I consider a continuous-time, infinite-horizon economy where there is only

one asset with no dividends. Buyers and sellers arrive at the market randomly. They

either buy or sell one unit of the asset, after which they exit the model. I assume that

all traders are liquidity traders, in the sense that their impulse to trade is exogenous to

the model. However, they are discretionary liquidity traders, in that they have a choice

over when to trade, and whether to place a market or limit order. After a limit order is

placed, it can be canceled and changed at will. The execution of limit orders is subject

to the usual price priority rule, and when prices are equal to the time priority rule. All

agents incur waiting costs, i.e., a loss of utility from waiting. Depending on whether

they have low or high waiting costs, traders are patient or impatient. All information

is common knowledge.

In equilibrium, impatient agents submit market orders, while patient agents submit

limit orders except for the states where the limit order book is “full.” In those states

some patient agent either places a market order, or submits a quick (fleeting) limit

order, which some trader from the other side of the book immediately accepts. This

comes theoretically as a result of a game of attrition among the buyers or the sellers. In

states where the book is not full, new limit orders are always placed inside the bid-ask

spread.5 The point where the limit order book is full coincides with the time when

5In their analysis of the Paris Bourse market (now Euronext), Biais et al. (1995) observe that the
majority of limit orders are spread improving.
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the bid-ask spread is at the minimum. That there exists a non-zero minimum bid-ask

spread is an interesting fact since the tick size is zero in this model.

Particular cases of the model can be solved in closed form. One important example

is when there are only patient sellers and impatient buyers (or buyers are simply not

allowed to place limit orders). This gives intuition for the general case by describing

the sell side of the limit order book.

The case when there are no impatient agents can also be solved in closed-form. It

turns out that in that case buyers and sellers cannot coexist in the limit order book:

there are either many sellers in the book and the buyers place market orders, or vice

versa. This shows that the existence of impatient agents (or rather of agents of different

patience) is important in order for a limit order book to function properly.

In order to discuss price impact and determine the distribution of limit orders in

the book, I allow for the possibility that multi-unit market orders arrive with positive

probability. I show that if the such orders arrive with probabilities which do not decrease

too fast with order size, then the book exhibits a hump shape, i.e., the limit orders

cluster away from the bid and the ask.6

Solving the general case is more difficult, but it has the interesting empirical impli-

cation that after a market buy order not only the ask price increases, but also the bid

price.7 The fact that the bid also increases is documented for example in Biais et al.

(1995), and has been taken as evidence of the presence of asymmetric information. I

show that even in the absence of information such dynamics may occur.

The limit order book has been analyzed in a variety of ways. A precursor of this litera-

ture is the “gravitational pull” model of Cohen, Maier, Schwartz and Whitcomb (1981),

where traders base choose between limit and market orders based on their expectations

about the evolution of an exogenous price process. The information models, which

consider market makers interacting with informed agents, are all static: see Glosten

(1994), Chakravarty and Holden (1995), Rock (1996), Seppi (1997) and Parlour and

6This effect was observed among others by Biais, Hillion and Spatt (1995), and Bouchaud, Mezard and
Potters (2002).
7The ask increases mechanically, because an offer is cleared from the book. The fact that the bid
increases as well reflects the buyers’ realization that their reservation value (the ask price) has moved
further away, so they also adjust their bids.
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Seppi (2001). Moreover, traders are restricted to placing limit orders, so they do not

have a choice to submit market orders. Dynamic models, without market makers, are

studied by Parlour (1998), Foucault (1999), Foucault, Kadan and Kandel (2004), Goet-

tler, Parlour and Rajan (2004). However, these models are typically not very tractable,

and do not allow for strategic cancellation of limit orders.

Although the present paper was developed independently from this literature, it turns

out that it is closely related to the work of Foucault, Kadan, and Kandel (2004). Their

setup is similar, with the exception that in their model traders are not allowed to cancel

limit orders, and prices can only take a set of discrete values. In order to solve the

model, they only focus on the bid-ask spread, and make two restrictive assumptions

regarding the trading process: (i) a buyer must always arrive after a seller, and vice

versa; and (ii) new orders have to be improving the existing limit orders by at least a

tick.

A related literature is on liquidity and search costs, e.g., see Duffie, Garleanu, and

Pedersen (2004), Vayanos and Wang (2003). In these models, buyers and sellers have

to search for counter-parties to trade. My contention is that on organized exchanges

search costs mostly become one-dimensional and can be better thought of as waiting

costs.8

The paper is organized as follows. Section 2 describes the model. Section 3 solves

for the equilibrium in a particular case which represents the sell side of the book: there

are only patient sellers and impatient buyers, and the two types arrive at equal rates.

Section 4 solves the similar problem when patient sellers arrive faster than the impatient

buyers. Section 5 analyzes the case of multi-unit market orders and applies the results

to analyze price impact and the shape of the limit order book. Section 6 describes the

equilibrium in the general case with all types of sellers and buyers. Section 7 solves

for the equilibrium in the homogeneous case when there are only patient agents, and

Section 8 concludes.

8In some cases, search costs are important, e.g., in the upstairs market for large (block) trades, or when
stocks are traded on more than one exchange.
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2. The Model

2.1. The Market

In this section I present the assumptions of the model. For a brief discussion about these

assumptions, see Section 2.2. Consider a market in an asset which pays no dividends.

The buy and sell prices for this asset are determined as the bid and ask prices resulting

from trading based on the rules given below. There is a constant range A > B where

the prices lie at all times. More specifically, there is an infinite supply when price is

A, provided by agents outside the model. Similarly, there is an infinite demand for the

asset when price is B. Prices can take any value in this range, i.e., the tick size is zero.

Trading. The time horizon is infinite, and trading in the asset takes place in continuous

time. The only types of trades allowed are market orders and limit orders. The limit

orders are subject to the usual price priority rule; and, when prices are equal, the time

priority rule is applied. If several market orders are submitted at the same time, only

one of them is executed, at random, while the other orders are canceled.9 Limit orders

can be canceled for no cost at any time. There is also no delay in trading, both types

of orders being posted or executed instantaneously. Trading is based on a publicly

observable limit order book.10

Agents. The market is populated by traders who arrive randomly at the market. The

arrival process is assumed exogenous, and will be described in more detail below. Once

traders arrive, they choose strategically between market and limit orders. They are

liquidity traders, in the sense that they want to trade the asset for reasons exogenous

to the model. The traders are either buyers or sellers; their type is fixed from the

beginning and cannot change. Buyers and sellers trade at most one unit, after which

exit the model forever.

9To justify this assumption, it is best to think of a market buy/sell order as a (marketable) limit order
with limit price equal to the ask/bid. Then if several market orders are submitted at the same time, one
of them is randomly executed, while the others remains as limit orders, which can be freely canceled.
10For example, on Nasdaq the Level II system displays the best bids and offers from market makers
and ECNs, and is publicly available to registered traders. On NYSE the limit order book is public
(with a 5-second delay), but orders from the trading floor and stop-loss orders are only visible to the
specialist. Also, on Euronext or the Toronto stock exchange, traders can place hidden limit orders, out
of which only a small fraction is publicly visible.
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Traders are risk-neutral, so their instantaneous utility function (felicity) is linear in

price. By convention, felicity is equal to price for sellers, and minus the price for buyers.

Traders discount the future in a way proportional to the expected waiting time.11 If τ

is the random execution time and Pτ is the price obtained at τ , the expected utility of

a seller is

ft = Et{Pτ − r(τ − t)}.

(The expectation operator takes as given the strategies of all the players, including

Nature. See the description of strategies below.) Similarly, the expected utility of a

buyer is −gt = Et{−Pτ − r(τ − t)}, where I introduce the notation

gt = Et{Pτ + r(τ − t)}.

I call ft the value function, or utility, of the seller at t; and similary gt the value function,

or utility, of the buyer, although in fact gt equals minus the expected utility of a buyer.

The discount coefficient r is constant, and can take two values: if it is low, the

corresponding traders are called patient, otherwise they are impatient. Agents’ types

are determined from the beginning and cannot change.

For simplicity, I assume that the impatient agents always submit market orders. One

can remove this assumption without much difficulty. In Remark 3 of Appendix A, I

show that the equilibrium obtained would be essentially the same. Therefore, from now

on I denote by r only the time discount coefficient of the patient agents.

Arrivals. The four types of traders (patient buyers, patient sellers, impatient buyers,

and impatient sellers) arrive at the market according to independent Poisson processes

with constant arrival intensity rates

λPB, λPS, λIB, λIS.

By definition, a Poisson arrival with intensity λ implies that the number of arrivals

in any interval of length T has a Poisson distribution with parameter λT . The inter-

arrival times of a Poisson process are distributed as an exponential variable with the

11This model also works with exponential time discounting, but the resulting formulas are slightly more
complicated.



8 ioanid rosu

same parameter λ. The mean time until the next arrival is then 1/λ. The interval until

the next arrival is called a period.

In the rest of the paper, to say that an event happens after Poisson(µ) means that

the event time coincides with the first arrival in a Poisson process with intensity µ.

Strategies. Since this is a model of continuous trading, it is desirable to set the game

in continuous time. There are also technical reasons why that would be useful: in

continuous time, with Poisson arrivals the probability that two agents arrive at the

same time is zero. This simplifies the analysis of the game.

Another important benefit of setting the game in continuous time is that agents can

respond immediately. More precisely, one can use strategies that specify: “Keep the

limit order at a1 as long as the other agent stays at a2 or below. If at some time t

the other agent places an order above a2, then immediately after t undercut at a2.”

Immediate punishment allows simple solutions, whereby existing traders do not need to

change their strategy until the arrival of the next trader.

But there are costs to setting the game in continuous time. One is that there is

no universally accepted standard of continuous time game theory. The main difficulty

comes from the fact that given a time t, there is no last time before t, and no first

time after t. Because of that, strategies may not map uniquely into outcomes (see the

discussion in Appendix B.) There are two methods of dealing with this problem: one

introduced by Simon and Stinchcombe (1989), who define a continuous-time game as a

limit of discrete-time games; the other, pioneered by Bergin and MacLeod (1993) in their

analysis of repeated games in continuous time, focuses on strategies with infinitesimal

inertia. I find the latter framework to be the more appropriate for this paper, and I

extend it in three directions.

First, suppose that in our model an impatient buyer submits a market order at time

t. What is the ask price at which that order is executed? Since there is no last time

before t, one needs to have a well defined notion of the outcome of the game immediately

before t. This means that one should use strategies that do not behave too wildly. The

technical concept, inspired from Simon and Stinchcombe (1989), is of a strategy with a

uniformly bounded number of jumps (to be defined in Appendix B).
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Also, when a market order arrives at time t, an existing limit trader exits the model,

and the next stage of the game will be played with fewer traders. But at which time will

this next game be played? No t + ε > t is satisfactory, because it would imply agents

waiting for a positive time, during which they lose utility. The best solution is to “stop

the clock,” so that the next game is also played at time t. The clock is restarted only

when in the stage game no agent submits a market order. Allowing for clock stopping

in continuous time game theory requires some care, and it is done in Appendix B.

The last extension I consider in order to define stochastic multi-stage games in con-

tinuous time is that of mixed strategies. Unlike discrete time, in continuous time mixing

can be done both over actions, and over time (choosing the time of an action). Since in

this paper Nature mixes over time by bringing agents according to a Poisson process, it

is most natural to consider strategies mixed over time. In the rest of the paper, I only

consider equilibria where mixing is done over time.

The types of equilibrium used are subgame perfect equilibrium, and Markov perfect

equilibrium (see Fudenberg and Tirole, ch. 13). Another important notion in this frame-

work is that of competitive Markov equilibrium, which is a Markov perfect equilibrium

from which local deviations can be stopped by local punishments (assuming behavior

in the rest of the game does not change). All these notions are discussed in more detail

in Appendix B.

Also, for the purposes of this paper, I also introduce the notion of rigid equilibrium,

which is a competitive stationary Markov equilibrium in which, if some agents have

mixed strategies, mixing is done only by the agents with the most competitive limit

orders (highest bid or lowest offer). In the language of Corollary 13, in case 4 only

equilibria of type c) occur.

Finally, in this paper all information, together with agents’ strategies and beliefs are

common knowledge.

2.2. Discussion

An important assumption is that the arrival of traders is exogenous. One reason for it is

methodological: in many cases economic analysis takes certain variables such as income,



10 ioanid rosu

or prices as exogenous, even though they clearly are not. Another reason is that even if

individual traders know when they themselves arrive at the market, they typically do not

know what the others will do. Attempts to explain the large observed trading volume

using measurable information so far have not produced satisfactory results. Therefore,

it might be a good strategy to remain agnostic as to why new traders arrive at the

market, and instead focus on their interaction once they do arrive.

One may question the assumption that prices lie within a fixed exogenous range

[B, A], and that A and B are known by everybody with certainty. Where do A and B

come from? One can think about them as summarizing information about the asset:

(A+B)/2 would represent the average value of an asset, while (B−A) would represent

differences of opinion among traders. A more realistic assumption would be to make A

and B stochastic, perhaps as prices coming from valuations of informed traders. Thus

they can change every time new public information arrives. Ideally, a model with private

valuations would explain not only A and B, but also where the the order flow comes

from (not all of it, some order flow should still be exogenous, due to liquidity needs).

Such generalizations are beyond the scope of this paper, and are left for future research.

Another strong assumption is that agents only trade one unit of the asset, after which

exit the model. One may argue that this is not realistic. For example, some agents may

decide to stay in the market and buy and sell securities, thus in effect becoming market

makers.12 Similarly, speculators may try to hoard liquidity and make monopoly profits.

Also, what about the existence of large trades? A partial answer to these questions

is: as long as liquidity suppliers have some constraints (for example due to inventory

reasons or risk aversion), one can consider a model as in this paper, but where traders

buy or sell at most n units of the asset, with n an appropriately large positive integer.

The model must also account for traders who keep a permanent presence in the market.

Such a model would no doubt be quite complicated.

Finally, one may worry about the assumption of independent Poisson arrivals. There

is empirical evidence that arrivals are positively correlated: for example a market buy

order is more likely to succeed another market buy order than any other type of orders

12There is evidence that market making arises endogenously in pure limit order markets. See for
example Bloomfield, O’Hara, and Saar (2003).
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(it is the diagonal effect in Biais et al. (1995)). Also, arrivals depend on bid and ask

prices: the larger the bid-ask spread, the faster patient traders arrive at the market to

supply liquidity. All these empirical facts can be accommodated into the model, but

then the number of state variables would increase and the solution would become more

difficult.

3. Equilibrium: One Side of the Book, Equal Arrival Rates

In this section, I analyze the sell-side of the limit order book, by assuming only two

types of traders: patient sellers and impatient buyers. With the notation given above,

λPB = λIS = 0. (By symmetry, one can derive similar results for the buy-side.) This

case proves to be quite tractable. Moreover, it is also useful for understanding the

general case, which can be thought as merging two one-sided models.

3.1. Main Intuition

Suppose the limit order book is empty, and a patient seller labeled “1” arrives first to

the market. Then trader 1 submits a limit sell order at the maximum level a1 = A and

remains a monopolist until some other trader arrives.13 Suppose a second patient seller

labeled “2” arrives. Now both sellers compete for market orders from the incoming

impatient buyers. If trader 1 could not cancel his limit order at A, then trader 2 would

undercut by placing a limit order at a2 = A − δ for some very small δ. Her expected

utility would then be strictly larger than that of trader 1. But trader 1 can change his

limit order, so a price war would follow. Undercutting happens instantaneously in this

model, because the game is set in continuous time (see the discussion about strategies

in Section 2).

As a result, trader 1 does not need to change his limit order as long as trader 2 places

her limit order at some level a2 < a1 = A which is low enough. How is a2 determined?

By the condition that both traders have the same expected utility. If trader 2 placed

her order above a2 where she had higher expected utility than trader 1, then trader 1

would immediately undercut by a penny, and so on. So in the equilibrium with two

13I have assumed implicitly that if the only limit sell orders in the book are at A, a market order first
clears the orders in the book, and only after relies on the infinite supply at A.
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sellers, trader 1 has a limit order at a1 = A, and trader 2 has a limit order at a2. Of

course, the values a1 and a2 are determined in equilibrium, and depend on what agents

do in other states: imagine that instead of an impatient buyer who places a market

order at a2, there comes a patient seller who will place a limit order at a3, and so on.

In solving for the equilibrium, it is surprising that allowing agents to freely cancel

their limit orders, instead of complicating the solution actually simplifies it.14 The main

intuition is the following: in equilibrium, the existing sellers in the book compete for

the incoming market orders from impatient buyers.15 The sellers have their limit orders

placed at different prices, but get the same expected utility: otherwise, they would

“undercut by a penny” those with higher utility. Thus, the sellers with a higher limit

order obtain in expectation a higher price, but also have to wait longer.16 The fact

that all sellers have the same expected utility makes the equilibrium Markov, and the

number of the sellers in the book becomes a state variable.

An important property of this equilibrium is that it is competitive, in the sense that

a local deviation from one of the traders can be stopped by another trader’s immediate

undercutting (assuming that the rest of the equilibrium behavior does not change). One

can also imagine a non-competitive equilibrium. For example, suppose that all patient

sellers queue their limit orders at A until the expected utility of the last trader equals

the reservation value B. How can this equilibrium be sustained? By Nash threats:

trader 1 can threaten with competitive behavior if trader 2 does not queue behind him

at A. Trader 2 is better off complying as long as she expects trader 3 to do the same

and queue behind her. Non-competitive equilibria may be important for example in

understanding dealer markets.17 However, in the present paper I focus on competitive

equilibria, since they are the more likely outcome of large, anonymous order-driven

markets.

14In most financial markets cancellation of a limit order is free.
15The competition among patient traders does not drive expected profits down to zero in our model.
Nor does this seem to happen in actual markets: Sandas (2001) shows that in the case of Stockholm
Stock Exchange there are positive profits to be made by limit order traders.
16The intuition is supported by empirical work. Lo, MacKinlay, and Zhang (2002) document that
execution times are very sensitive to the limit price (but not to the limit order size).
17Christie and Schultz (1994) document collusion among Nasdaq dealers in the early 1990s. Their
paper contributed to the 1997 introduction in Nasdaq of a public limit order book.
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3.2. Description of the Equilibrium

I assume a dynamic market clearing condition, namely that the arrival rates of patient

sellers and impatient buyers are equal:

λ = λPS = λIB > 0.

The relevant parameters then are: A; B, which here is the reservation value of the

sellers; r, the patience coefficient of the sellers; and λ.

I start with the easier problem of the existence of an equilibrium. In the end one

wants the equilibrium to be competitive and stationary Markov, so one can directly

look for an equilibrium where at each point in time the m sellers currently in the book

have the same expected utility fm. Since the state m follows a Markov process, fm will

satisfy a system of equations, which I call the “recursive system.” Then I show that

there exists a subgame perfect equilibrium by showing that there exists a solution to

the recursive system. The strategies are easy to define, and it is also straightforward to

show that the equilibrium is competitive, stationary, and Markov. The harder part is

to show that the equilibrium above is unique in the class of rigid equilibria.

Before I begin a formal discussion of the results, I will give some intuition about how

one searches for the equilibrium (proofs will be given later). First, the number of states

must be finite. Denote by M the largest state. As m increases, each seller is strictly

worse off, and the ask price will decrease. In state M it must be true that fM = B,

otherwise another patient seller would be tempted to join in. In this state, the bottom

seller (the one with the lowest offer) has a mixed strategy: at the first arrival in an

independent Poisson process with intensity µ, the seller will place a market order at B

and exit.

Observe that from a state m = 1, . . . ,M −1, the system can go either to: state m−1

if an impatient buyer arrives—after random time T1; or to state m+1 if a patient seller

arrives—after random time T2. Inter-arrival times of Poisson processes are exponentially

distributed, so the arrival of the first of the two states happens at T = min(T1, T2), which

is exponential with intensity 2λ (hence the expected value of T is 1
2λ

). Each event

happens with probability 1
2
. One obtains the formula fm = 1

2
(fm−1 + fm+1)− r · 1

2λ
. If
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one denotes by ε = r
λ
, the formula becomes

2fm + ε = fm−1 + fm+1.

Similarly, from the terminal state M , the system can: go to M − 1, if an impatient

buyer arrives—after random time T1 ∼ exp(λ); stay at M , if a patient seller arrives—

after random time T2 ∼ exp(λ); or go to M − 1, if the current Bottom seller places

a market order at B and exits—after random time T3 ∼ exp(µ). One can ignore

the arrival of a new patient seller, because in equilibrium he will immediately place a

market order at B and exit, without affecting the state. Then one gets the formula

fM = fM−1 − r · 1
λ+µ

. If one defines u = λ
λ+µ

∈ (0, 1], the formula becomes

fM + uε = fM−1.

Define also (this will be justified later): f0 = A.

In conclusion, fm satisfies a system of difference equations: the recursive system.

How does one solve it? Since f0 = A, the general solution is a quadratic function fm =

A−bm+ ε
2
m2. To determine b and M , one uses fM = B, together with fM +uε = fM−1.

I now begin the formal discussion of the results. Start with some parameter values

A, B, r, and λ. I define ε, M , u, µ, b as follows: First, let

(1) ε =
r

λ
.

(It turns out that the properties of the equilibrium do not depend on r and λ individ-

ually, but only on their ratio ε.) For each real number u define

Mu = 1
2
− u +

√
(1

2
− u)2 + 2(A−B)

ε
.

One can easily show that Mu is decreasing in u, and that M0 −M1 = 1. Therefore, in

the interval [M1, M0) there is a unique integer M . This integer corresponds to a unique

number u ∈ (0, 1] such that M = Mu. Finally, define

µ =
λ

u
− λ,(2)

b = ε(M − 1
2

+ u).(3)
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Definition 1. A sequence fm, m = 1, . . . ,M , is called the recursive system associated

to A, B, r and λ if for ε, M , and u defined as above the following formulas hold

(4)



f0 = A,

2fm + ε = fm+1 + fm−1, m = 1, . . . ,M − 1

fM + uε = fM−1.

fM = B.

Proposition 1. Given A, B,r,λ, there exists a unique solution fm to the associated

recursive system. It satisfies the formula

(5) fm = A− bm +
ε

2
m2, m = 1, . . . ,M.

If fm is extended for m > M via the above formula, then fm is strictly decreasing in m

if m < M , and strictly increasing if m > M .

Proof: See Appendix A. �

I now state the main result of this section. Recall that a rigid equilibrium is a com-

petitive stationary Markov equilibrium in which, if some agents have mixed strategies,

mixing is done only by the agents with the most competitive limit orders (in this case,

only by the seller with the lowest offer).

Theorem 2. Given A, B, r, λ, there exists a subgame perfect equilibrium of the game:

Let ε, M, fm, µ be defined as above. Then in equilibrium there are at most M limit orders

in the book, and the ask price in state m = 1, . . . ,M is given by

am = fm−1, if m < M ;(6)

aM = B + ε.(7)

The value function in state m is given by fm. The strategy of each agent in state m is

the following:

• If m = 1, then place a limit order at a1 = A.

• If m = 2, . . . ,M−1, place a limit order at any level above am, as long as someone

has stayed at am or below. If not, then place an order at am.
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• If m = M , the strategy is the same as for m = 2, . . . ,M − 1, except for the

bottom seller at aM , who exits after Poisson(µ) by placing a market order at B.

• If m > M , then immediately place a market order at B.

The equilibrium described above is Markov, with state variables: the number of existing

sellers m, and the ask price am. This equilibrium is unique in the class of rigid equilibria.

Proof: See Appendix A. �

Notice that there is some ambiguity in the way strategies are formulated, in the sense

that, in state m, as long as some seller has a limit order at am, the other sellers can

place their limit orders anywhere above am. This generates a whole class of equilibria,

all of them equivalent from the Markov point of view: they lead to the same evolution

of the state variables m and am. I consider the equilibria in this class to be the same

equilibrium.

Let us give an example where strategies are completely defined: Suppose that a new

seller arrives when there are already m − 1 sellers in the book. Then I define the

strategies by requiring that the new seller place an order at am, while the others stay

on their previous levels. The outcome of this equilibrium is that, in state m, traders

have their offers placed at a1, . . . am, and they never change them. One can think of

this particular equilibrium as the one where there is an infinitesimal cost to modifying

a limit order. Another example of an equilibrium is when in state m all sellers place

their orders at am.

Also, by assumption one only considers equilibria in which strategies are mixed solely

over time. If instead one considers mixing solely over actions, then there exists another

competitive stationary Markov equilibrium. In that case, in state M −1 when the limit

order book is about to become full, a newly arrived seller randomizes between entering

the full state M (by placing a limit order), and not entering it (by placing a market

order at B). The problem is that this equilibrium does not exist for all parameter

values.

One final point is about the proof of uniqueness. To show that every rigid equilibrium

is of the kind described in Theorem 2, one needs to know all the possible types of

equilibrium behavior in the various states of the system. The most delicate situation is
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in state m = M , where one needs to decide which sellers can have mixed strategies. The

more economically relevant choice seems to be the one in which only the bottom seller

randomizes (this is the “rigid” equilibrium). In all the other cases the rest of the sellers

have to randomize their orders, which seems less plausible. For more details, see the

proof of the Theorem, together with Proposition 12 and Corollary 13 in Appendix A.

4. Equilibrium: One Side of the Book, Different Arrival Rates

In this section, I assume that the patient sellers arrive faster than the impatient

buyers:

λ1 = λPS > λ2 = λIB.

There are two reasons why one might prefer this setup to the one where the arrival

rates are equal. First, it corresponds to empirical evidence: Biais et al. (1995) show

that limit orders arrive to the market faster than market orders. And second, the

assumption λ1 > λ2 has the desirable implication that there is pressure for the spread

to revert to its minimum value. This means that by using different arrival rates one can

simulate a limit order book that has the property of resiliency.18

For this reason, it should be pointed out that the case of equal arrival rates is not

a limiting case of different arrival rates. The two cases yield qualitatively different

solutions. For example, the solution of the former case has an asymptotic limit when

ε → 0, while the solution of the latter does not.

4.1. Description of the Equilibrium

As in the case of equal arrival rates, I first give the intuition for the equilibrium, and

then the formal results. Denote by fm is the value function of a seller in the state where

there are m sellers in the book. The number of states is finite, so there exists a largest

state M . Moreover, fM = B. From the state m = 1, . . . ,M − 1 the the system can go

to one of two states: m+1, if a patient seller arrives—after random time T1 ∼ exp(λ1);

or m − 1, if an impatient buyer arrives—after random time T2 ∼ exp(λ2). The arrival

18Foucault et al. (2004) define resiliency as the speed with which the bid-ask spread reverts to its
minimum value. One can also simulate resiliency in my model by allowing the arrival rates of patient
agents to depend on the spread, but this would lead to a more complicated model.
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of the first of these two states happens at min(T1, T2) ∼ exp(λ1 + λ2). Then the first

event happens with probability ω = λ1

λ1+λ2
> 1

2
, and the second with probability 1− ω.

In one lets ε = r
λ1+λ2

, one obtains

fm + ε = ωfm+1 + (1− ω)fm−1.

The characteristic equation ωx2 − x + (1 − ω) = 0 has two roots: x1 = 1 and x2 = α,

where α = 1−ω
ω

= λ2

λ1
< 1. Imposing the condition f0 = A as in the equal arrival case,

the general solution is

fm = A− C(1− αm) + εβm, with C arbitrary and β = 1
2ω−1

.

The constant C is determined by looking at the final state M . In this state, suppose

the bottom agent has the mixed strategy to place a market order at the first arrival in

a Poisson process with intensity µ. Arrival of patient seller does not matter, so one gets

the equation (λ2 + µ)fM + ε = (λ2 + µ)fM−1. Define u = 1/(1− ω + µ
λ1+λ2

). Then one

gets

fM + uε = fM−1.

One now uses this equation together with fM = B to determine M and C.

I now begin the formal discussion of the results. Start with some parameter values

A, B, r, λ1, λ2. I define ε, ω, α, β, M , u, µ, and C as follows: First, let

ε =
r

λ1 + λ2

, ω =
λ1

λ1 + λ2

>
1

2
.(8)

α =
1− ω

ω
< 1, β =

1

2ω − 1
.(9)

The integer M > 0 and u ∈ (0, 1
1−ω

] are defined to be the unique ones for which

(10) A−B + εβM =
ε(β + u)

αM−1 − αM
(1− αM).

Define

(11) C =
ε(β + u)

αM−1 − αM
, µ =

1− u(1− ω)

u
(λ1 + λ2).
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Proposition 3. Given A, B,r,λ1, λ2, there exists a unique solution fm to the associated

recursive system

(12)



f0 = A,

fm + ε = ωfm+1 + (1− ω)fm−1, m = 1, . . . ,M − 1

fM + uε = fM−1,

fM = B.

The solution fm is given by

(13) fm = A− C(1− αm) + εβm, m = 1, . . . ,M.

If fm is extended for m > M via the above formula, then fm is strictly decreasing in m

if m < M , and strictly increasing if m > M .

The proof of the next result is essentially identical to that of Theorem 2.

Theorem 4. Given A, B, r, λ1 > λ2, there exists a competitive stationary Markov equi-

librium of the game. Let ε, ω,M, fm be as defined above. Then in equilibrium there are

at most M limit orders in the book, and the ask price in state m = 1, . . . ,M is given by

am = fm−1, if m < M ;(14)

aM = B + (1− ω)ε.(15)

The value function in state m is given by fm. The strategies of agents are the same as

in Theorem 2. This equilibrium is unique in the class of rigid equilibria.

Remark 1. An interesting feature of these formulas when ω > 1
2

is that one can

calculate the limit of equation (13) when ε → 0. To see why, notice that fM = B, so

C(1− αM) = A−B + εβM . The number αM is of the order of ε, so M is of the order

of log 1
ε
. (See the proof of Proposition 5 for more details.) This implies that C = A−B

modulo terms of order ε log 1
ε
, which is of smaller order for example than ε1/2. In the

end, one gets the following formula

(16) fm ≈ B + (A−B)αm if ε ≈ 0.
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By contrast, in the case of equal arrival rates (ω = 1
2
), there is no limit of equation (5)

when ε → 0. Instead, after some rescaling, the whole recursive system has an asymptotic

limit (this is true in the general case: see Theorem 9). The limiting f is a function

defined on [0, γ], and it satisfies the following differential equation:

(17)



f ′′ = 1, such that

f(0) = A,

f ′(γ) = 0,

f(γ) = B.

(The free boundary point γ corresponds to M after the appropriate rescaling.)

4.2. The Distribution of the Bid-Ask Spread

Once the equilibrium evolution of the limit order book is known, it is interesting to look

at the properties of the bid and ask prices, and in particular at the distribution of the

bid-ask spread. What are the determinants of the average bid-ask spread? In classical

market microstructure, this is determined by the amount of asymmetric information in

the market. In this paper, the spread is determined by how fast traders arrive at the

market. More precisely, recall that λ1, λ2 are the arrival rates of patient and impatient

traders, respectively; and ω = λ1

λ1+λ2
> 1

2
represents the percentage of patient trader

arrivals of the total population arrivals. Define

ε =
r

λ1 + λ2

, β =
1

2ω − 1
, g =

ω

1− ω
.

Proposition 5. In the context of Theorem 4, let S̄ be the average equilibrium bid-ask

spread. Then when ε is small, S̄ can be approximated by

(18) S̄ ≈ β
g

log g
ε log

1

ε
.

As a consequence, asymptotically S̄ is of the order of ε log 1
ε
.

Proof: See Appendix A. �

This is to be compared with Farmer, Patelli and Zovko (2003), who in their cross-

sectional analysis of the London Stock Exchange show that with a high R2 the average
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bid-ask spread varies as ε3/4. It is interesting that Farmer et al. arrive to their formula

not from a theoretical model, but from an exogenous statistical model of market and

limit order arrivals. Their ε equals the average market order size divided by the arrival

rate of market orders (and normalized by the rate of cancellation δ of limit orders). If

in my model I take a unit to be the average market order size, then the two parameters

ε are identical up to the patience coefficient r (normalized by the cancellation rate δ).

It is assumed that r is the same across stocks.

5. Multi-Unit Market Orders and Price Impact

In the previous section, one saw that when agents have one-unit demands the only

important limit order in equilibrium is the one at the ask, and the other limit orders

can be at any level above the ask. So the only results that the one-unit framework

can tackle are for the bid and ask prices. But to determine the distribution of the

other limit orders one must consider the possibility of multi-unit orders. Let k be the

maximum number of units that a market order can have with positive probability. Then

the equilibrium offers in the book will be fixed up to k levels starting with the ask.

In the rest of the paper, the following notions are synonymous: price impact function,

configuration of limit orders, and shape of the limit order book: Given the configuration

of limit orders, i.e. the levels at which the limit orders are placed at any point in time,

one can define the (instantaneous) price impact function Imp as follows: for each integer

i > 0 define by Imp(i) = ai+1 − a1, where ai+1 is level of the i′th offer above the ask.

The price impact represents how much the price moves against a trader who submits

an i-unit market order.

What one usually calls the shape of the limit order book is a plot which on the

horizontal axis has the discrete grid of price levels above the ask, and on the vertical

axis the depth existing at that level. In this paper, since there is no tick size, prices can

be any real number. So, by convention, depth at a certain discrete value can be obtained

by collecting all the one-unit limit orders around the corresponding value. Then what

in the literature is called a hump-shaped limit order book in our model is translated

by the fact that limit orders cluster at some point above the ask. In that case depth

becomes larger around that point, thus creating a hump in the graph.
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The intuition why sellers would want to cluster above the ask is simple: they want

to take advantage in the best way possible of the incoming multi-unit market orders.

This generates an equilibrium shape of the limit order book, which I analyze next.

5.1. Description of the Equilibrium

Let k be the maximum number of units that an order can have with positive probability.

Assume that patient sellers still arrive with only one unit to sell. Define λ = arrival rate of patient sellers;

λi = arrival rate of i-unit impatient buyers, i = 1, . . . , k.

Assume that λi > 0 for all i = 1, . . . , k. Moreover, as in the previous section, one wants

the sellers to arrive faster than the units demanded by the buyers. This is equivalent to

(19) λ >
k∑

i=1

i λi.

As before, the number of states is finite, so there exists a largest state M . Moreover,

fM = B. From the state m = 1, . . . ,M−1 the the system can go to one of the following

states: m + 1, if a patient seller arrives; or m − i, i = 1, . . . , k if an impatient i-buyer

arrives. In state M there is some randomization: the bottom seller may leave after the

first arrival of a Poisson process with intensity µ.

The recursive system then takes the following form:

(20)



f0 = f−1 = · · · = f1−k = A,

(λ +
∑k

i=1 λi)fm + r = λfm+1 +
∑k

i=1 λifm−i,

(
∑k

i=1 λi + µ)fM + r = (λ1 + µ)fM−1 +
∑k

i=2 λifM−i.

fM = B.

Similar to the results of Section 4, one obtains the following result:

Proposition 6. The solution of the recursive system takes the following form

fm = C0 + C1α
m
1 + C2α

m
2 + · · ·+ Ckα

m
k + ε m, where(21)

ε =
r

λ−
∑k

i=1 iλi

> 0 and |α1|, |α2|, . . . , |αk| < 1.(22)
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The complex numbers: α0 = 1, α1, . . . , αk are the roots of the polynomial

(23) P (X) = λXk+1 − (λ +
k∑

i=1

λi)X
k +

k∑
i=1

λiX
k−i.

The description of the equilibrium is the following:

Theorem 7. Given A, B, r, λ and λi, i = 1, . . . , k which satisfy the inequalities above,

there exists a competitive stationary Markov equilibrium of the game. Denote by i0 =

min{k, m}. In equilibrium there are at most M limit orders in the book, and if i =

1, . . . , i0, then the level of the i’th limit order (counted from bottom up) in state m < M

is given by

(24) ai(m) =
λkfm−k + λk−1fm−k+1 + . . . + λifm−i

λk + λk−1 + . . . + λi

,

where by convention f0 = f−1 = · · · = f1−k = A. The value function in state m is given

by fm. The strategy of each agent in state m is the following:

• If m = 1, then place a limit order at a1(1) = A.

• If m = 2, . . . ,M − 1, look at the bottom k levels (or at all m levels if m < k),

which are a1(m), . . . , ai0(m). If any of them is not occupied, occupy it. Anything

above ai0(m) does not matter.

• If m = M , the strategy is the same as for m = 2, . . . ,M − 1, except for the

bottom seller at aM , who exits (by placing a market order at B) after the first

arrival in a Poisson process with intensity µ.

• If m > M , then immediately place a market order at B.

This equilibrium is unique in the class of rigid equilibria.

One can make these formulas more explicit. There are two cases, depending on

whether the k-unit market orders clear all the limit orders in the book or not.
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Case 1: m ≥ k.

ak = fm−k,

ak−1 =
λkfm−k + λk−1fm−k+1

λk + λk−1

,

ak−2 =
λkfm−k + λk−1fm−k+1 + λk−2fm−k+2

λk + λk−1 + λk−2

,

...

a1 =
λkfm−k + λk−1fm−k+1 + · · ·+ λ1fm−1

λk + λk−1 + · · ·+ λ1

,

Since it does not matter what happens above ak, one can also choose by convention:

ak+1 = fm−k−1, . . . , am−1 = f1, am = f0.

Case 2: m < k.

am =

∑k
i=m λiA∑k
i=m λi

= A,

am−1 =

∑k
i=m λiA + λm−1f1∑k

i=m λi + λm−1

,

...

a1 =

∑k
i=m λiA + λm−1f1 + · · ·+ λ1fm−1∑k

i=m λi + λm−1 + · · ·+ λ1

.

5.2. Price Impact of Transactions: Numeric Results

As pointed out before, in the case of multi-unit market orders it may be optimal for

agents to cluster away from the ask. What determines the shape of the limit order book

are the values λ, λ1, . . . , λk, which indicate how likely it is for an i-unit market order to

arrive.19

When one analyzes the shape of the price impact function, it turns out that a crucial

factor is how fast the rates λi decrease. To get some intuition, suppose that λ1 is larger

than the rest. For example, consider a function φ(i) which is decreasing in i, and some

19One can argue in fact that what matters here are the expectations that traders have about the arrival
rates of the incoming market orders, and not the actual values. But if one assumes that traders have
rational expectations, those values should be the same.
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Figure 1. The instantaneous price impact function Imp(i) = ai+1 − a1

plotted against i. (Imp(i) is the difference in the level of the i+1’st limit
sell order above the ask and the ask price.) The values of parameters
are A = 1, r = 0.001, δ = 0.04, k = 20, and the arrival rates are λ1 = 1;
λi = λ0φ(i), i = 2, . . . , k, where λ0 = 10−5; λ =

∑k
i=1 iλi. The top four

plots correspond to the weight function φ(j) = 1/j(j+1); the bottom four
plots to φ(j) = 4/2j. Each set of four graphs is considered for the case
when there are m = 10, 20, 30, 40 sell orders in the book. The number k
is the maximum number of units that market buy orders can have, and
φ(i) indicates how fast the arrival rate of i-market orders decreases with
i. For the top four plots (when φ(i) does not decrease too fast), notice
the concave shape of the price impact function Imp(i) in the region where
i ≤ k. For the other regions notice either linearity or convexity of price
impact.
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small value λ0 > 0 such that

λ1 = 1 and λi = λ0φ(i), if i ≥ 2.

Then set λ =
∑k

i=1 iλi, plus some small number so that one has indeed λ >
∑k

i=1 i λi

(in fact it can be equal, it does not change the analysis). Now calculate the price impact

function for different choices of φ(i), i = 2, . . . , k. Take for example

φ1(i) =
1

i(i + 1)
, φ2(i) =

4

2i
.

The price impact function in state m is defined as the change in the ask price when i

units are bought via a market order of i units:

(25) Imp(i, m) = ai+1(m)− a1(m), as a function of i (and m).

To calculate the price impact function, one can apply the theoretical results of the

previous section in the following way: Equation (20) shows that fm satisfies a recursive

formula with initial conditions f0 = f−1 = f1−k = A. This fixes k coefficients of fm

in equation (21). To fix the last coefficient, one should use the equations in (20). For

simplicity, I choose a different method: Let B become a free parameter, and choose

another parameter δ > 0, so that

f1 = A− δ.

This fixes all coefficients Ci, so one can determine M as the first m for which fm starts

increasing (according to Proposition 6). Then one determines B by B = fM . So in the

analysis that follows and in Figure 1, instead of B, I use the parameter δ.

In Figure 1, I compare the graphs of the price impact function Imp(i, m) for the two

functions φ1 = 1/i(i+1) and φ2 = 4/2i. In both cases the maximum number of sellers is

41 (so m < 41), and I display the results when the book has m = 10, 20, 30, 40 limit sell

orders. All the graphs shown are for k = 20, which means that market buy orders for

more than 20 units appear with zero probability. In the first case (for φ1), the arrival

rate λi of i-market orders does not decrease very fast in i, while in the second case the

arrival rate decreases exponentially. The top four plots refer to φ1, and the bottom four

to φ2.



a dynamic model of the limit order book 27

Notice that in the case of φ1, the price impact function Imp(i) is concave when i ≤ k

units are purchased (recall that k is the maximum size of a market buy order that sellers

in the book expect to occur). So when m itself is less than k, the price impact function

is concave everywhere, which is the case of the first two graphs. The intuition for this

finding is the following: each seller above the ask up to level k expects that his limit

order will be cleared by a market order with a probability which is not too small. Then

instead of clustering near the ask, they prefer to take advantage of the large market

orders and cluster above the ask. This leads to a concave price impact function. Above

the level k or when the probability of a large market order decreases too fast, the price

impact function is linear, and even convex. This is the case for all the graphs for φ2,

and in the region where i > k for φ1.

Overall, the conclusion seems to be that for smaller orders the price impact function

should be mildly concave, and for larger orders it should be mildly convex.20 This

reflects the existing differences of opinions in the empirical literature, which has not yet

said its final word whether the price impact is concave, linear, or convex, and in what

range.

6. Equilibrium: The General Case

Consider the general case, when all types of buyers and sellers arrive with positive

probability. For simplicity, I assume that all the arrival rates are equal:

λ = λPB = λPS = λIB = λIS > 0.

Later on, I indicate what happens when the arrival rates are different. As in the one-

sided case, the most important situation is when λ1 = λPB = λPS > λ2 = λIB = λIS.

To get some intuition about the equilibrium, consider a setup similar to that of the

one-sided case, but suppose that after a patient seller (which has a limit sell order at A)

a patient buyer arrives at the market. Then the buyer behaves as a monopolist towards

the potential incoming impatient sellers, and places a limit buy order at B. In this

20The exact predictions of the model are actually slightly different: as soon as the order reaches a
certain size (equal to the existing depth in the limit order book), the price impact becomes flat. This
is because it was assumed that as soon as prices reach A and B, an infinite number of agents from
outside the model are willing step in to supply liquidity at those prices.
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situation, if the reservation value of the seller is larger than the reservation value of the

buyer, they will not be tempted to make offers to one another, and would rather wait

to trade with future impatient agents. It follows that patient buyers and sellers behave

very much like in the one-sided case, where new patient agents just keep placing bid-ask

improving limit orders until it is better to trade immediately rather than wait. Thus,

patient agents form two queues, a descending one starting from A, and an ascending

one starting from B.

What happens in a state where the limit order book is full? Then the traders on both

sides play a game of attrition. As before, a rigid equilibrium is a competitive stationary

Markov equilibrium in which the only the bottom seller and the top buyer have mixed

strategies. In that case, without loss of generality, the bottom seller places a limit order

at some lower level h, and the top buyer immediately accepts the offer by placing a

market order. I call such a limit order fleeting. In the state where a fleeting order is

placed all traders have the same expected utility h.

Unlike the previous sections, in the general case even after restricting attention to

rigid equilibria, one still does not get uniqueness. Nevertheless, all rigid equilibria are

close to each other, in a sense that will be made precise below.

6.1. Description of the Equilibrium

I first give some intuition for the definitions made in this section, and then prove the

formal results. In the state with m sellers and n buyers, denote by am,n the ask price,

bm,n the bid price, fm,n the expected utility of the sellers, and gm,n (minus) the expected

utility of the buyers. As in the one-sided case, one can show that in a competitive

stationary Markov equilibrium the number of states (m,n) is finite. Then one defines

the state region Ω as the collection of all states (m, n) where in equilibrium agents wait

in expectation for some positive time. Also one defines the boundary γ of Ω as the set of

states where at least some agent has a mixed strategy. The role played in the one-sided

case by the states m = 1, . . . ,M is here played by Ω, while the role of M is played by

the boundary γ of the state region.
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Figure 2. The state region Ω and the boundary γ.

I conjecture that Ω is such that if (m, n) belongs to Ω, then also (m − 1, n) and

(m, n− 1) are in Ω (as long as the coordinates are non-negative). This will be justified

later in the discussion of uniqueness, but for now I just assume it. Moreover, I assume

that on each 45-degree line in the first quadrant that intersects Ω there exists a unique

point in γ. An example of such a state region is given in Figure 2. This allows one to

define various types of points in Ω, as in Figure 3.21

As in the one-sided case, it is a good idea to find a recursive structure for the value

functions f and g. From state (m,n) ∈ Ω the system can go to the following neighboring

states:

• (m − 1, n), if an impatient buyer arrives; or if a patient seller places a market

order at B (when n = 0);

• (m + 1, n), if a patient seller arrives and submits a limit order;

• (m,n − 1), if an impatient seller arrives; or if a patient buyer places a market

order at B (when m = 0);

• (m,n + 1), if a patient buyer arrives and submits a limit order;

21There are two more type of boundary points in Ω. For example, in Figure 3 assume that Ω contains
two extra points, of coordinates (7, 0) and (8, 0). These points lead to two different types of recursive
equations, but it turns out that they cannot exist in equilibrium. Therefore, to simplify the discussion,
I decided to ignore these types of points.
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• (m − 1, n − 1), if after a positive expected time a seller places a fleeting limit

order and a buyer immediately accepts.

From a state (m,n) of Type 1 the system can go only to the states (m−1, n), (m+1, n),

(m, n − 1), or (m, n + 1). The arrival of the first of these four states happens after a

random time, which is exponentially distributed with parameter 4λ. Then each event

happens with probability 1/4. One obtains the formula fm,n = 1
4
(fm−1,n + fm+1,n +

fm,n−1 + fm,n+1)− r · 1
4λ

. If one denotes by ε = r
λ
., the formula becomes

4fm,n + ε = fm−1,n + fm+1,n + fm,n−1 + fm,n+1.

Take now a point of Type 1s. In this case, after a random time T ∼ exp(µ), the bottom

seller submits a fleeting limit order at h = fm−1,n−1 = gm−1,n−1, and the top buyer

immediately accepts it. If one denotes s = µ/λ, one obtains the equation

(4 + s)fm,n + ε = fm−1,n + fm+1,n + fm,n−1 + fm,n+1 + sfm−1,n−1.
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This type of reasoning works for all the other states in Ω, which gives a recursive system

that one needs to solve. It is not hard to show that the solution to the recursive system

yields a competitive stationary Markov equilibrium.

I now start discussing the formal results. The relevant parameters are A, B, r, and

λ. Define

(26) ε = r/λ.

Definition 2. Consider a region Ω in the positive quadrant which satisfies the property:

if (m,n) is in Ω, then (m−1, n) and (m, n−1) are also in Ω, as long as they belong to the

positive quadrant. For the each boundary point (m, n) ∈ γ, consider a number sm,n ≥ 0.

Let s be the collection of all sm,n. Then I define the recursive system associated to (Ω, s)

by considering for each state (m, n) ∈ Ω the following set of equations:

• If (m, n) is of Type 0,

f0,0 = A,

g0,0 = B;

• If (m, n) is of Type 1,

4fm,n + ε = fm−1,n + fm+1,n + fm,n−1 + fm,n+1,

4gm,n − ε = gm−1,n + gm+1,n + gm,n−1 + gm,n+1;

• If (m, n) is of Type 1s,

(4 + sm,n)fm,n + ε = fm−1,n + fm+1,n + fm,n−1 + fm,n+1 + sm,nfm−1,n−1,

(4 + sm,n)gm,n − ε = gm−1,n + gm+1,n + gm,n−1 + gm,n+1 + sm,ngm−1,n−1,

fm,n = gm,n;

• If (m, n) is of Type 2a,

f0,n = A,

3g0,n − ε = g0,n−1 + g0,n+1 + g1,n;
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and similarly for Type 2b.

• If (m, n) is of Type 3a,

f0,n = A,

(2 + s0,n)g0,n − ε = (1 + s0,n)g0,n−1 + g1,n,

f0,n = g0,n;

and similarly for Type 3b.

• If (m, n) is of Type 4a,

(4 + sm,n)fm,n + ε = fm−1,n + 2fm,n−1 + fm,n+1 + sm,nfm−1,n−1,

(4 + sm,n)gm,n − ε = gm−1,n + 2gm,n−1 + gm,n+1 + sm,ngm−1,n−1,

fm,n = gm,n;

and similarly for Type 4b.

• If (m,n) is of Type 5,

(4 + sm,n)fm,n + ε = 2fm−1,n + 2fm,n−1 + sm,nfm−1,n−1,

(4 + sm,n)gm,n − ε = 2gm−1,n + 2gm,n−1 + sm,ngm−1,n−1,

fm,n = gm,n;

If (m, n) is not in Ω, and m, n > 0, consider the unique point (m′, n′) in γ that lies on

the 45-degree line that passes through (m,n). Then define fm,n and gm,n by the corre-

sponding values at (m′, n′). If the 45-degree line does not intersect γ, but it intersects

one of the coordinate axes, simply define fm,n = gm,n to be either A or B depending on

whether it is the x-axis or the y-axis, respectively. Finally, if (m, n) is not in Ω, and

n = 0, define fm,n = gm,n = B; and similarly when m = 0.

Also, given a solution of the recursive system, define a set of numbers am,n and bm,n

by the following formulas:
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• If (m, n) is of Type 1,

am,n = fm−1,n,

bm,n = gm,n−1;

• If (m, n) is of Type 2a,

a0,n = A,

b0,n = g0,n−1;

and similarly for Type 2b.

• If (m, n) is of Type 5, then for some sm,n ≥ 0,

am,n = fm−1,n + sm,n(fm−1,n−1 − fm,n),

bm,n = gm,n−1 + sm,n(gm−1,n−1 − gm,n);

the formulas for the other types of boundary points are similar.

The main result of this section is that, given an appropriate solution of the recursive

system, there exists an equilibrium of the game.

Theorem 8. Given A, B, r, and λ, suppose fm,n and gm,n are a solution of the recursive

system associated to a pair (Ω, s) as in Definition 2. Consider also the associated set of

numbers am,n and bm,n as defined above, and assume that A ≥ am,n ≥ bm,n ≥ B for all

(m, n) ∈ Ω. Then there exists a competitive stationary Markov equilibrium of the game,

which is also rigid. For this equilibrium, the state region is Ω, and the boundary of the

state region is γ. The state variables are: m, n, the ask price am,n, and the bid price

bm,n. To describe the equilibrium strategies, let (m, n) be a state, not necessarily in Ω.

As before, one only needs to describe the behavior of the bottom seller. (If the bottom

seller does not follow this strategy, then a seller above would immediately replace the

bottom seller. Also, by symmetry, the strategy of the top buyer is similar.)

• If (m, n) is in Ω, but not in γ, the bottom seller places a limit sell order at am,n,

and the top buyer places a limit buy order at bm,n.
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• If (m, n) is in γ, let µm,n = λsm,n. Then the strategy is the same as the one

above, except that after Poisson(µm,n) the bottom seller changes the limit order

from am,n to fm,n = gm,n, and the top buyer immediately accepts via a market

order. The top buyer would not accept any higher limit sell order.

• If (m, n) is not in Ω, and m, n > 0, then the bottom seller places a limit order

at fm,n = gm,n and the top buyer immediately accepts it via a market order.

• If (m,n) is not in Ω, and n = 0, then the bottom seller places a market order at

B and exits the game.

Proof: See Appendix A. �

The theorem only guarantees the existence of an equilibrium. Uniqueness is a much

more delicate matter. As a first step, one would like to show that for any rigid equi-

librium the state region Ω has a nice shape, i.e., that all interior points (surrounded

by γ and the coordinate axes) belong to Ω. This would be true if one could show the

following property: if (m, n) is in Ω, then (m− 1, n) and (m,n− 1) are also in Ω. This

in turn would be easy to show if one could prove the following intuitive conjecture.

Conjecture 1. In any rigid equilibrium, the arrival of a new seller at a state in Ω

makes the sellers worse off and the buyers better off. Moreover, the sellers are worse off

by more than the buyers are better off.

The author was not able to prove this result, although numerically it verified in all

the cases that were studied. The conjecture can be justified heuristically in various

ways. One is given in Remark 2 of Appendix A.

But even if the conjecture were true, for some values of the parameters A, B, r, λ it

turns out that there are several distinct pairs (Ω, s) for which there exists a solution to

the associated recursive system. So uniqueness in the strict sense fails, and one can only

hope that the solutions must be close to each other in some appropriately defined way.

And indeed, one can show that asymptotically the solution is unique. The recursive

system in Definition 2 that fm,n and gm,n satisfy is formed of finite difference equations,

so when ε is small one may expect f and g to approach the solution of a system of

differential equations. To see that this is true, let ε = δ2, x = mδ and y = nδ. Define
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the functions f and g at the discrete values (x, y) = (mδ, nδ) by

f(x, y) = fm,n, g(x, y) = gm,n.

Then one obtains the following asymptotic result:

Theorem 9. Any solution of the recursive system in Definition 2 converges when ε =

r/λ is small to the solution of the following system of partial differential equations with

a free boundary γ:

(27)



4f = 1,

f(0, y) = A,

∂f
∂y

(x, 0) = 0,

∂f
∂x

+ ∂f
∂y

= 0 at γ;



4g = −1,

g(x, 0) = B,

∂g
∂x

(0, y) = 0,

∂g
∂x

+ ∂g
∂y

= 0 at γ;

where the free boundary γ is determined by the condition

(28) f = g at γ.

The problem is found numerically to have a unique solution, which is symmetric in

x and y. The curve γ is slightly convex, and passes through the points (1.96, 0) and

(0, 1.96).

Proof: See Appendix A. �

Each partial differential equations is a Poisson equation in a closed region, with mixed-

derivative conditions at the boundary. The condition f = g at the boundary determines

the free boundary γ, where the limit book is full. Since the oblique derivative is never

tangent to γ, the problem is well posed, and one can write an algorithm to solve it,

using finite differences. See for example Gladwell and Wait (1979).

I close this section with a brief discussion about different arrival rates. As pointed

out in the one-sided case, this is an important case, since it leads to a resilient limit

order book. So consider the case when λ1 = λPB = λPS > λ2 = λIB = λIS. As in

Section 4, define

ε =
r

λ1 + λ2

, ω =
λ1

λ1 + λ2

>
1

2
, α =

1− ω

ω
=

λ2

λ1

< 1.
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Denote by fm,n and gm,n the solution to the corresponding recursive system as in Def-

inition 2. One can easily check that when ε is small, f , g, and γ have the following

limiting behavior:

(29)


fm,n = B + (A−B)αm,

gm,n = A− (A−B)αn,

γ : αm + αn = 1.

(Also, Ω here is the set of states for which αm +αn ≥ 1.) The intuition for this result is

that in the limit the sell-side and the buy-side of the book become decoupled, and each

value function satisfies the formula corresponding to the one-sided limit order book, as

in Equation (16). Notice that when α < 1/2, the state region Ω contains only states

with either m = 0 or n = 0. This is essentially the result of Section 7, which represents

the limiting case α = 0 when no impatient traders arrive, and all the agents are equally

patient.

6.2. Numeric Results

Having described the equilibrium based on the pair (Ω, s), one may wonder how to

actually find such a pair starting from A, B, and ε. This is far from trivial. Of course,

one could take the brute force approach and for each Ω within reasonable values try to

solve the system. But for ε small the complexity of this approach becomes daunting.

The reason is that this is a system of equations with a free boundary γ, and one needs

to simultaneously find the solution of the system and the shape of the boundary.

To find the state region Ω, one uses the intuition coming from the asymptotic result

in Theorem 9. One sees that the asymptotic boundary is slightly concave, so it is a

good idea to try regions state regions Ω which are close to being triangular (bounded

by the coordinate axes and the line X + Y = R). As one increases the size of Ω, one

will be forced to take out a few points from the triangle; otherwise, there would be no

solution to the system of equations. Indeed, in the examples I computed, the shape of

Ω is close to being triangular only when ε is relatively large. As ε gets smaller, points

on and below the diagonal X + Y = R start disappearing from Ω (see Table 1).
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Table 1. Solution in the general case with both buyers and sellers, for
A = 1, B = 0, ε = 0.09. Left bottom corner corresponds to state (0, 0).
The number in position (m, n) represents the value function fm,n for the
sellers in state (m, n). The state region Ω is the same as in Figure 2.
The vector s collects the variables corresponding to the mixed strategies
along the boundary γ, starting from (0, 6) down to (6, 0) along γ. The
value function gm,n for the buyers is given by the formula gm,n = 1−fn,m.
The bullets in positions (3, 4) and (4, 3), which are not in Ω, indicate the
departure of the shape of Ω from the triangular one.

1.000 0.965

1.000 0.905 0.824

1.000 0.828 0.726 •

1.000 0.770 0.616 0.500 •

1.000 0.726 0.526 0.384 0.274 0.176

1.000 0.697 0.468 0.300 0.177 0.095 0.035

1.000 0.682 0.440 0.260 0.131 0.045 0.000

s = [0.21, 3.97, 0.99, 34.34, 2.50, 0.30, 3.47, 0.30, 2.50, 34.34, 0.99, 3.97, 0.21].

When patient traders arrive faster than impatient traders, so λPS = λPB > λIS =

λIB, the waiting costs of patient agents increase. That implies that the limit order

book would be more “rarefied” than in the case when all arrival rates are equal. The

first guess is that the regions Ω for which one can find solutions are more convex than

when all arrival rates are equal. Numeric experiments show this to be the case. This

is consistent with the limiting case when only patient traders arrive at the market. In

Section 7, I show that indeed the region Ω becomes so convex that it collapses to the

coordinate axes.

6.3. Empirical Implication: Market Orders and the Spread

An implication of the equilibrium in the general case is that a market sell order leads

to an decrease in both the bid and the ask, but the decrease in the bid is larger. The
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intuition for this was stated before: the departure of one limit buyer makes the buyers

better off, and the sellers worse off (because of future possibility of trading with each

other when the book becomes full). But that possibility is remote enough so that the

decrease in the value function of the sellers is less than the decrease in the value function

of the buyers (recall that the value function is minus the utility for the buyers).

This implication was noticed by Biais, Hillion and Spatt (1995), in their analysis of

the order flow in the Paris Bourse. Their analysis goes as follows: “The downward

shift in the book has two components, the decrease in the bid, merely reflecting that the

large sale consumed the liquidity offered at that quote, and the subsequent decrease in

the ask, reflecting the reaction of the market participants to the large sale. The decrease

in the bid could be a transient decrease in the liquidity on this side of the book, or a

permanent information adjustment. In our one-lag analysis, we cannot differentiate the

two hypotheses. In contrast to the behavior of the bid, the decrease in the ask is likely

to reflect the information effect.”

I argue that the decrease in the ask need not reflect an information effect. Indeed, it

can simply be regarded as an adjustment made by the limit sellers, who, after the bid

decreased, realize that they now have to wait more to execute their orders, and lower

their offers accordingly.

7. Equilibrium: The Homogeneous Case

I now study the case when all agents are equally patient: λIS = λIB = 0. For

simplicity, I also assume that the arrival rates of patient sellers and patient buyers are

equal:

λ = λPS = λPB > 0.

It turns out that in this case the limit order book cannot accommodate both buyers and

sellers. This is because in general patient traders extract rents from the impatient ones.

But when all agents are equally patient, they cannot extract rents from each other, so

a bargaining game follows. In principle, there can be many equilibria, unless one puts

more structure on the bargaining problem. I do not follow this path here. Instead, I
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Figure 4. The state region in the homogeneous case (surrounding states
are marked with a circle).

give an example of a competitive stationary Markov equilibrium, which seems to be the

prototype for all such equilibria.

In this equilibrium, there are either only sellers or only buyers present in the limit

order book. The case when there are only sellers in the book is very similar to the

one-sided case (with only patient sellers and impatient buyers). In that case, the sellers

behave like patient sellers: they place their limit orders and wait, while the buyers

behave like impatient buyers: when they arrive they immediately place market orders

and exit the game. The interesting difference is that the first seller would place a limit

order not at A, but at the midpoint A+B
2

. The other sellers then queue below the first

seller, just like they do in the one-sided case with A′ = A+B
2

and B′ = B.

Without loss of generality, assume that A = 1, B = 0. Define as before ε = r/λ. As

before, one can define the state region Ω as the set of states where in equilibrium agents

wait a positive expected time.

Definition 3. Let M, µ, fm, am be as in Theorem 2 applied to A = 1
2

and B = 0 (for

the bottom half of the limit order book). Define also gm = 1 − fm and bm = 1 − am,

the symmetric values with respect to 1/2. For m > M define by extension fm = 0 and

gm = 1. Let Ω be the collection of points (0, m) and (m, 0) for m = 0, . . . ,M .



40 ioanid rosu

Theorem 10. Consider any state (m,n) in the plane. Then a competitive stationary

Markov equilibrium of the game is given by the following strategy profile. Because of

symmetry, without loss of generality one only needs to describe the strategy of the sellers.

Moreover, it is enough to describe the strategy for the bottom seller: if a bottom seller

does not follow the appropriate strategy, then a top seller would immediately follow it

instead.

• If m > n = 0, apply the same strategy as in the one-sided case. For example,

in state (m, 0) with 0 < m < M the bottom seller places a limit order at am,

and waits. If m = M , the bottom seller has a mixed strategy, and exits after

Poisson(µ) by placing a market order at B. If m > M , the bottom seller imme-

diately places a market order at B and exits. The expected utility of a seller in

this state is fm,n = fm−n = fm.

• If m > n > 0, the bottom seller places immediately a limit order at fm−n, which

the top buyer immediately accepts via market order. The expected utility of a

seller in this state is fm,n = fm−n.

• If n > m > 0, the bottom seller places immediately a market order at gn−m (but

never at a lower level) and exits the game. The expected utility of a seller in this

state is fm,n = gn−m = 1− fn−m.

• If m = n > 0, the bottom seller places immediately a limit order at f0 = g0 =

1/2, which some buyer immediately accepts via market order. The expected utility

of a seller in this state is fm,n = f0 = 1/2.

Proof: See Appendix A. �

Note that in each state (m, n), with m,n > 0, one has fm,n = gm,n. This is because

the offers are made at this level, so those who exit get expected utility fm,n. Also, those

who did not get the offer, move to the state (m− 1, n− 1) on the same diagonal, where

the value functions are by definition the same as in state (m, n).

The equilibrium is not unique, because the offers that agents make to each other can

take values in a certain interval (see the proof of the theorem). Nevertheless, the next

theorem shows that the equilibrium is essentially unique, in the sense that for all rigid

equilibria of this game, the space region degenerates to a subset of the coordinate axes.
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Recall that a rigid equilibrium is a competitive stationary Markov equilibrium in which

only the traders with the most competitive limit orders use mixed strategies.

Theorem 11. For any rigid equilibrium in the homogenous case, the state region Ω is

a subset of the coordinate axes. As a consequence, the equilibrium limit order book can

never contain both buyers and sellers for any positive expected time.

Proof: See Appendix A. �

8. Conclusions

This paper presents a tractable model of the dynamics of the limit order book. The

shape of the limit order book and its evolution in time are characterized, in several cases

in closed form. The traders’ optimal choices between submitting a limit order and a

market order are also derived.

Having a good model of the limit order book should in principle generate many

predictions about the shape of the limit order book, and the evolution of buy and sell

prices or of the bid-ask spread. I show that buy and sell orders can cluster away from

the bid-ask spread, thus generating a hump-shaped limit-order book. Also, I explain

why even in the absence of asymmetric information a market buy order would increase

not only the ask price, but also the bid price.

Some of the features of the model point to future avenues of research. One important

direction is to study the interaction of agents in this model with a market maker: an

agent may decide to have a permanent presence in the market, and take advantage

of the liquidity traders in the model—what are then the limits of arbitrage? Another

direction is to investigate how the range of prices [B, A] arises endogenously, perhaps

as the result of the interaction of traders with different valuations. These limits may

change whenever new public information arrives.

Since in this paper trades are usually for one unit, one may wish to incorporate multi-

unit trades, and even block trades. Some of this is addressed in the paper, but agents

do not have a choice over how many units to trade. A model where agents are strategic

about this choice would surely be more complicated, but the payoff is that then one

could define a meaningful notion of trading volume and analyze it within the model.
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For block trades, perhaps the confines of this type of model would not be enough, and

an alternative search model could prove more useful.

Graduate School of Business, University of Chicago, 5807 South Woodlawn Avenue,

Chicago, IL 60637, U.S.A.; http://gsb.uchicago.edu/fac/ioanid.rosu.

Appendix A. Proofs of Results

Proof of Proposition 1: One needs to show that there exists a unique solution of

the recursive system. First, let us solve the difference equation 2fm + ε = fm+1 + fm−1,

with initial condition f0 = A. This is a quadratic function

fm = A− bm +
ε

2
m2,

with b a constant. The numbers b and M are determined by using fM + uε = fM−1

and fM = B. The first equation implies that fM − fM−1 = ε
2
(2M − 1) − b = −uε, so

b = ε(M − 1
2

+ u). Replacing b in the equation fM = A− bM + ε
2
M2 = B, one obtains

(30) A + ε(1
2
− u)M − ε

2
M2 = B.

The positive solution is

(31) Mu = 1
2
− u +

√
(1

2
− u)2 + 2(A−B)

ε
.

Notice that M0 = 1
2

+
√

1
4

+ 2(A−B)
ε

and M1 = −1
2

+
√

1
4

+ 2(A−B)
ε

, so M0 − M1 = 1.

Therefore in the interval [M1, M0) there is a unique integer M which corresponds to a

number u ∈ (0, 1]. This proves both the existence and the uniqueness of a solution of

the recursive system.

The function fm is quadratic, and it is first decreasing in m, then increasing in m.

To determine where f ′(m) changes signs, solve f ′(m∗) = 0, i.e., b = εm∗. This gives

m∗ = M − 1
2

+ u, which belongs to the interval (M − 1
2
, M + 1

2
]. This shows that f is

strictly decreasing if m < M and strictly increasing if m > M . �

Before proving Theorem 2, it is important to understand what happens in the various

states of the equilibrium, when there is a fixed number of sellers in the limit order book.
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Proposition 12. Suppose m sellers lose utility in a way proportional to expected wait-

ing time with coefficient r. At random time T which represents the first arrival in a

Poisson process with intensity λ, an event happens and the game ends (this event can be

the arrival of a new agent). Then, if all the sellers wait until T , assume that each gets

a payoff of f∞. Also, at each time there exists a buyer who posts a bid for h. Assume

that if a seller accepts h until T , he gets h and all other sellers get f−. Denote by

f 0 = f∞ − r/λ. Then one has the following list of possible subgame perfect equilibria:

1. If h > max{f 0, f−}, then every seller immediately accepts h (and only one

randomly gets it).

2. If h < min{f 0, f−}, then no seller accepts h, and everybody waits until T .

3. If h ∈ [f−, f0] and f− < f 0, there are two SPE:

a) Each seller waits until T .

b) Each seller places a market order for h (if they believe the others will try

to get h, they are all better off doing the same).

4. If h ∈ [f 0, f−] and f 0 ≤ f−, this is a typical game of attrition. It has two

equilibria:

a) Some agent always accepts h, and the others never accept h.

b) All agents accept h according to some Poisson process with intensity µ (µ

is such that each agent is indifferent between accepting h now and waiting

for the other m− 1 sellers to do that).

Proof of Proposition 12: Cases 1 and 2 are obvious. In Case 3, if all agents could

coordinate and wait until the end, they would all be better off (and get utility f 0, which

is greater than both f− and h). However, if some agent deviates and accepts h, then

everyone else gets f− ≤ h, so they would be better off by rushing to accept h as well.

Case 4 is a typical game of attrition: nobody wants to wait until the end (f 0 is

smaller than both h and f−), but at the same time nobody really likes to drop from

the race and accept h, because h is less than the utility f− they would get if someone

else dropped. The fact that only equilibria of type 4a and 4b exist is standard. See for

example Fudenberg and Tirole (1991, section 4.5.2). �
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In the context of Theorem 2, behavior of type 1 appears in states m > M ; behavior

of type 2 in states m = 1, . . . ,M − 1; and behavior of type 4 appears in state m = M .

Notice that the previous result does not assume anything about sellers placing limit

orders. The next result is a simple extension of this game of attrition, where sellers

are allowed to place limit orders. Clearly, the ask price is important now, because that

might influence the payoff f∞ at T . I show that one gets two more equilibria.

Corollary 13. In the setup of Proposition 12, assume that the sellers place limit

orders as in the context of Theorem 2. Also, the event which ends the game is the

arrival of an impatient buyer, which immediately places a market order. If everybody

waits until then, assume that the top sellers get utility f∞, while the bottom seller gets

the ask price. Define f 0 as in Proposition 12. Then, if h ∈ [f 0, f−] and f 0 ≤ f−,

besides the equilibria in Proposition 12, there exist two more equilibria:

4 c) The top sellers wait, and the bottom seller randomly accepts h with Poisson(ν),

where ν is defined such that the top sellers’ utility in equilibrium is h. The ask

price is defined such that the bottom seller’s utility is also h.

4 d) Similar to 4c, except that the bottom seller waits, and the top sellers randomly

accept h with Poisson(ν).

These equilibria describe how agents behave in the states where the limit order book

is full, i.e., when m = M . Recall that a competitive stationary Markov equilibrium is

called rigid if the behavior of agents in state m = M is of type 4c.

Proof of Corollary 13: The new fact here is that the bottom seller can influence

his payoff at T by changing the ask price. That makes the bottom seller different from

the top sellers. Now, clearly either all the top sellers randomize their strategy, or none

of them does (because they mix between the same values). So there are four cases: one

in which no sellers randomize (Case 4a), one in which all sellers randomize (Case 4b),

one in which only the bottom seller randomizes (Case 4c), and one in which only the

top sellers randomize (Case 4d). �

Proof of Theorem 2: I first prove existence, i.e., that the strategies described by

the theorem lead to a competitive stationary Markov equilibrium. Denote by Fm the
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expected utility of one of the agents in state m. One needs to show that Fm is equal to

the previously defined fm, hence it is the same for all agents in state m.

In each state m > 1 there are two types of agents:

• The bottom agent, who has the lowest offer in the book, placed at am;

• The top m−1 agents, who are placed above am, or at am but have arrived after

the bottom agent (due to the time priority rule).

Inter-arrival times of Poisson processes are exponentially distributed, so each arrival

happens after some random time T , which is an exponential variable with intensity λ.

From a state m = 1, . . . ,M − 1, for a top agent the system can go to one of two states:

• m− 1, if an impatient buyer arrives—after T1 ∼ exp(λ);

• m + 1, if a patient seller arrives—after T2 ∼ exp(λ).

The first arrival occurs after T = min(T1, T2) ∼ exp(2λ), which has expected value

1/2λ. Each event happens with probability 1/2, so one obtains the formula Fm =

1
2
(Fm−1 + Fm+1)− r · 1

2λ
. Since ε = r

λ
, the formula for a top seller becomes:

2Fm + ε = Fm−1 + Fm+1.

If the agent is the bottom seller, a similar formula is true, except that in state m − 1

the bottom agent exits the game having sold the asset for am. The recursive formula

becomes 2Fm + ε = am + Fm+1. Since by definition am = fm−1, the formula for the

bottom seller becomes:

2Fm + ε = fm−1 + Fm+1.

I prove that Fm = fm by starting with the largest state M . From the state m = M ,

for a top agent the system can go to:

• M − 1, if an impatient buyer arrives—after T1;

• M , if a patient seller arrives—after T2;

• M − 1, if a current seller places a market order and exits—after T3.

One can ignore the arrival of a new patient seller, because in equilibrium he will imme-

diately place a market order at B and exit, without affecting the state. Then, as before,
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one gets the formula FM = FM−1 − r · 1
λ+µ

. So for a top seller (u = λ
λ+µ

):

FM + uε = FM−1.

The formula for the bottom seller is FM + λ
λ+µ

ε = λ
λ+µ

aM + µ
λ+µ

B. Since by definition

aM = B + ε, one can use the above equation to deduce that

FM = B = fm.

Without loss of generality, consider a seller who is the bottom agent in state m0 ∈

{1, . . . ,M}. This implies that the seller can stay in the book only in the states

m0, . . . ,M , so one needs to show that Fm = fm for all m = m0, . . . ,M . If m0 = M ,

I have already proved that FM = B = fM . Otherwise, if m0 < M , from the above

discussion it follows that Fm satisfies the same system of equations that fm satisfies. It

is easy to see that it is a non-degenerate linear system with M −m0 + 1 equations and

unknowns, so Fm = fm for all m = m0, . . . ,M .

Given that agents in each state m have the same expected utility fm, it is easy to see

that no agent would want to deviate from his strategy. Indeed, in state m if an agent

goes below am, he would get less than fm in expectation. And if he is the bottom agent

and tries to go above am, he will be immediately undercut by some other agents, so he

can do no better than fm. This shows that the equilibrium is subgame perfect. The

strategies are clearly Markov and stationary, and since the same argument given above

is local, the equilibrium is also competitive. This completes the proof of existence.

To prove uniqueness, it is enough to show that any rigid equilibrium must be of the

form described in the Theorem. For this, one first shows that in such an equilibrium

all agents have the same utility function. According to Appendix B, strategies must

satisfy Property A4 (they must have finitely many jumps), which implies that the state

variables are left-continuous. In particular, it makes sense to talk about the value of

the state variables (m, am) right before some time t.

Consider a restriction of the strategies to some time interval (t, t + δ), such that no

strategy has a jump during that interval. This restriction can be made because of the

Markov condition: history is reduced to the limit of outcomes at a single point. On this
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interval, all agents have the same utility: Otherwise, suppose the the bottom seller is

worse off than a top seller. Then the bottom seller can bid just a little bit higher, and

he will achieve a higher utility. Now, suppose the bottom seller is better off than a top

seller. Then the top seller can “undercut by a penny,” so she would be strictly better

off than before. Therefore the top and bottom sellers have the same utility.

Notice that this utility does not depend on the state variable am (the ask price),

since agents’ decisions are forward looking. The only problem would be if some agent’s

placing an order at am would prevent others from placing their desired orders. But

this does not happen in the present case, since all agents have the same utility, and

therefore order positions are interchangeable. This shows that the utility of the sellers

only depends on the state variable m. Denote this utility by fm.

It is clear that there are only a finite number of states m in which agents wait for

a positive expected time: agents lose utility proportionally to expected waiting time,

and in equilibrium their expected utility has to be larger than the reservation value B.

Define M to be the largest state in which agents wait at least a positive expected time.

Next, I show that the utility of each agent in the largest state M has to be exactly

fM = B. The case fM < B is not possible, because then the agent would not wait

in that state. Suppose fM > B. Then consider what happens in state M + 1. As in

Proposition 12, if one agent accepted h = B and exited the game, the utility of the other

agents would be f− = fM > B. Recall that f 0 is the utility of the sellers if everybody

waits. One can have either f 0 > B or f 0 ≤ B. If f 0 > B, then h is lower than both f 0

and f−, so we are in Case 2, when all sellers wait. But this is in contradiction with M

being the largest state in which agents wait. If f 0 ≤ B, this is Case 4 of the Proposition.

Since the equilibrium is rigid, agents wait in this state, which again is in contradiction

with the definition of M . This shows that fM = B.

I now prove by induction that fm = B for all states m ≥ M . The above discussion

shows that it is true for m = M . I just show the first step of the induction: fM = B

implies fM+1 = B. In state M +1, the utility that the other agents get if one agent exits

the game is f− = fM = B. As before, the case f 0 > f− cannot happen, because then

the agents would then wait in state M + 1, contradiction. The other possibility is that

f 0 ≤ f−. But, since h = B = f−, in this case only one equilibrium behavior happens,
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when some agent exits the game immediately and gets h = B. Also, the other agents

also have utility B = f−. This is precisely the behavior prescribed by the Theorem in

the case when m > M . The rest of the induction is proceeds in the same way.

Let us come back to the state m = M . From this state, the system goes either either

to state M − 1 or to M + 1, so one calculates f 0 = 1
2
(fM−1 + B) − ε

2
. The utility

f− = fM−1 ≥ B. It is easy to see that f− = fM−1 ≥ f 0. The case h = B < f 0 cannot

occur, because then all agents would wait until the end in state M and get utility

fM = f 0 > B, which is in contradiction with fM = B. If h = B ≥ f 0, only case 4c in

Corollary 13 can occur, because the equilibrium is assumed to be rigid. This is indeed

the behavior prescribed by the Theorem. Notice that in state m = M all agents have

utility fM = B. Moreover, if f− = B, agents do not wait at all in state M , which is in

contradiction with the definition of M . Since f− ≥ B, it must be that f− = fM−1 > B.

Now focus on state m = M − 1. As before, one can show that f− = fM−2 > f0. If

h = B ≥ f 0, the rigidity of the equilibrium implies that this is Case 4c of Corollary 13,

so fM−1 = B, contradiction with what was just proved before (f− = fM−1 > B). Then

it follows that h = B < f 0, and all agents wait until the end. This is exactly the

behavior prescribed by the Theorem in the cases when m < M . Another formula that

comes from the analysis of the state m = M−1 is h < f 0 < f−, i.e., B < fM−1 < fM−2.

By induction, one can extends the above reasoning to all states m < M . This completes

the proof of uniqueness. �

Remark 2. It is interesting to see how the utility fm in the one-sided limit order book

depends on B: (recall that u ∈ (0, 1])

(32)
∂fm

∂B
=

m

M − 1
2

+ u
.

Notice that ∂fm/∂B < 1 when m < M . This formula is important to get intuition

about the equilibrium limit order book with both sellers and buyers. Here is a heuristic

argument: suppose the system is in an equilibrium with m sellers and n buyers. In that

case, the existing sellers in the limit order book can be thought as being in an one-sided
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equilibrium with B equal to the bid price gm,n. One then calculates

(33)
∂fm,n

∂n
=

∂fm,n

∂B
· ∂gm,n

∂n
<

∂gm,n

∂n
.

This implies that when a new buyer arrives, the sellers are better off by less than the

buyers are worse off (recall that gm,n is minus the buyers’ utility).

Remark 3. In Section 2, I made the assumption that the impatient traders always

submit market orders. Denote by r′ the time discount coefficient of the impatient.

I now study under what conditions on r′ the equilibrium from Theorem 2 still holds

when the impatient traders are allowed to behave strategically. The way to extend the

equilibrium is to assume that the patient sellers never accept any bid from an impatient

buyer. In that case, a buyer is forced to place a market order, and the only question is

when. It may be that in certain states it would pay off to defer placing a market order

until the arrival of the next state.

The best case scenario for a buyer occurs in state m = 1. In that case, the ask is

a1 = A, while if the buyer waits, the system goes in one of two states: (i) m = 0, where

the buyer places a market order at A = f0 (it is assumed that there is always an infinite

supply at A from agents outside the model); or (ii) m = 2, where the buyer places a

market order at a2 = f1. The gain in expected utility of the buyer from this strategy is

(use equation 5 for f1)

g − g′ = A−
(

1
2
(A + f1) + r′

2λ

)
= 1

2
(A− f1)− r′

2λ
(34)

= 1
2
(b− ε

2
)− r′

2λ
= ε

2
(M − 1 + u)− ε

2
r′

r
.

A necessary and sufficient condition for the gain to be negative is

(35) r′ ≥ r(M + u− 1).

Therefore, when equation (35) is true, the equilibrium with strategic impatient buyers

is equivalent to the one described by Theorem 2.

What happens if r′ < r(M + u − 1)? Then the equilibrium can be modified to

accommodate the impatient buyer. The first seller only needs to place the first limit

order at a level a′1 which makes the gain of the impatient buyer equal to zero. One
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calculates

(36) a′1 = A− ε
2

(
(M − 1 + u)− r′

r

)
,

and the equilibrium is the same as in Theorem 2, but with A′ = a′1 instead of A. One

can calculate another formula for the top limit order: a′1 = (a1 + a2)/2 + r′/2λ.

Proof of Proposition 3: First, solve the difference equation 2fm + ε = ωfm+1 +

ωfm−1, with initial condition f0 = A. This has the characteristic equation ωx2 − x +

(1−ω) = 0, which has two solutions: x1 = 1 and x2 = α, where α = 1−ω
ω

< 1. Therefore

fm satisfies

(37) fm = A− C(1− αm) + εβm,

with β = 1
2ω−1

. The numbers M and C are determined by using fM + uε = fM−1 and

fM = B. The first equation implies that fM − fM−1 = C(αM − αM−1) + εβ = −εu, so

(38) C =
ε(β + u)

αM−1 − αM
.

Replacing C in the equation fM = A− C(1− αM) + εβM = B, one obtains

A−B

εβ
=

(
1 + u(2ω − 1)

) 1− αM

αM−1 − αM
−M.

Define the right hand side of the above equation by φ(M, u). One needs to solve

φ(M, u) = (A − B)/εβ > 0. Notice that φ(M, u) is strictly increasing in u. By defini-

tion, u belongs to the interval (u0, u1] = (0, 1
1−ω

]. Let us calculate φ(M, u) when u = u1

(note that 1 + u1(2ω − 1) = ω
1−ω

= α−1):

(39) φ(M, u1) = α−1 1− αM

αM−1 − αM
−M =

1− αM+1

αM − αM+1
− (M + 1) = φ(M + 1, u0).

Also, φ(1, 0) = 0, and, since α < 1, limM→∞ φ(M, 0) = ∞. Therefore, the function

φ(M, u), with M = 0, 1, 2, . . ., and u ∈ (u0, u1], sweeps the whole interval (0,∞) in such

a way that every value is attained only once. Define M and u as the unique solution of

the equation φ(M, u) = A−B
εβ

. This proves both the existence and the uniqueness of a

solution to the recursive system.
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Given a solution fm of the recursive system, define by gm = fm−1 − fm the first

difference of fm. This satisfies the following equations:

(40)

 ωgm+1 + ε = (1− ω)gm,

gM = uε.

Hence gm = (ωgm+1 + ε)/(1 − ω), and since gM = uε > 0, it follows that gm > 0

for m ≤ M . This proves that fm is strictly decreasing for m ≤ M . Also, gm+1 =(
(1− ω)gm − ε

)
/ω, so one can calculate gM+1 = ε

(
(1− ω)u− 1

)
/ω ≤ 0, since u ≤ 1

1−ω
.

This shows that fm is strictly increasing if m > M . �

Proof of Proposition 5: The one-sided market with different arrival rates is a Markov

system with transition matrix

(41) P =



1− ω ω 0 0 · · · 0 0

1− ω 0 ω 0 · · · 0 0

0 1− ω 0 ω · · · 0 0

0 0 1− ω 0 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 ω

0 0 0 0 · · · 1− ω ω


.

To calculate the distribution of the bid-ask spread, one needs to know the stationary

probability that the system is in state m. Denote this by xm. Define

α =
1− ω

ω
, β =

1

2ω − 1
, g =

ω

1− ω
= α−1.

Consider the row vector X with entries xm. From the theory of Markov matrices, one

knows that XP = X. Solving for X, one gets (1 − ω)xm+1 = ωxm for all m, hence

xm = C( ω
1−ω

)m = Cgm. The components xm must sum to one, so C = g−1
gM+1−1

. Then

xm =
gm+1 − gm

gM+1 − 1
≈ αM−m − αM−m+1.

To calculate the spread am − B, use the formula fm−1 − fm = gM−mε(β + u) − εβ.

From this point forward assume that there is no randomization in state M (so u = 1
1−ω

).
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Then one gets the formula fm−1 − fm = (gM−m+1 − 1)εβ, which implies

aM −B = εβ (g − 1),

aM−1 −B = εβ
(
(g − 1) + (g2 − 1)

)
,

aM−2 −B = εβ
(
(g − 1) + (g2 − 1) + (g3 − 1)

)
,

...

Notice that these spreads appear with stationary probabilities approximately equal to

1−α, α−α2, α2−α3, . . ., respectively. It would be interesting to compare this distribution

with the empirically observed one (especially at the tails of the distribution).

I give an example of calculating the first moment of the distribution, which is of

empirical interest. The exact formula for the average bid-ask spread S̄ is

S̄ =
εβ

(g − 1)(gM+1 − 1)

(
(M + 1)gM+3 − (M + 3)gM+2 + (M + 3)g − (M + 1)

)
.

This can be very well approximated by S̄ ≈ εβgM . Now I give an asymptotic formula

for M when ε is small. Recall from (10) that M is obtained by solving A−B
βε

= gM+1

g−1
(1−

αM) −M . When ε is small, M is large, so gM is much larger than M . One can drop

M from the above formula, and also approximate 1− αM ≈ 1. One then obtains

M ≈ 1

log g
log

1

ε
.

Then the average spread

S̄ ≈ β
g

log g
ε log

1

ε
,

so asymptotically S̄ behaves like

S̄ ∼ ε log
1

ε
.

�

Proof of Theorem 8: The proof follows closely the existence part of Theorem 2.

Define by Fm,n the value function of some seller in state (m, n) ∈ Ω. One needs to show

that Fm,n is equal to fm,n, hence it is the same for all sellers in state (m, n). Suppose

the system is in a state (m, n), which is a boundary point of Ω of Type 5. From this

state, the system can go to:
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• (m−1, n), if an impatient buyer arrives (after T1 ∼ exp(λ)); or if a patient buyer

arrives, so the system goes to (m,n+1), and then immediately to (m−1, n) via

a fleeting limit order at fm−1,n = gm−1,n (after T ′1 ∼ exp(λ));

• (m,n−1), if an impatient seller arrives (after T2 ∼ exp(λ)); or if a patient seller

arrives, so the system goes to (m+1, n), and then immediately to (m, n−1) via

a fleeting limit order at fm,n−1 = gm,n−1 (after T ′2 ∼ exp(λ));

• (m − 1, n − 1), if a fleeting limit order is placed at fm,n = gm,n (after T3 ∼

exp(µm,n), where µm,n = sm,nλ).

So the system moves to (m − 1, n) after min(T1, T2) ∼ exp(2λ) (with expected value

1/2λ); or to (m, n− 1) in expectation after 1/2λ; or to (m, n− 1) in expectation after

1/µm,n. The probabilities by which the system moves to each state are: 2λ/(4λ+µm,n),

2λ/(4λ + µm,n), and sm,n/(4λ + µm,n), respectively. Therefore, the utility Fm,n of a top

seller satisfies Fm,n = 2λ
4λ+µm,n

(Fm−1,n + Fm,n−1) + µm,n

4λ+µm,n
Fm−1,n−1. Rewrite this as

(4 + sm,n)Fm,n = 2Fm−1,n + 2Fm,n−1 + sm,nFm−1,n−1.

For the bottom seller, the formula is almost the same, with two exceptions: when

an impatient buyer arrives, the bottom seller gets am,n and exits the game, while the

top sellers get fm−1,n; and when a fleeting order is placed at fm,n, the bottom seller

gets fm,n, while the top sellers get fm−1,n−1. Therefore, the utility Fm,n of the bottom

seller satisfies (4 + sm,n)Fm,n = Fm−1,n + am,n + 2Fm,n−1 + sm,nFm,n. But by definition

am,n = fm−1,n + sm,n(fm−1,n−1 − fm,n). So for the bottom seller

4Fm,n + sm,nfm,n = Fm−1,n + fm−1,n + 2Fm,n−1 + sm,nfm−1,n−1.

Notice that the utility of the top sellers and of the bottom seller satisfy formulas which

are the same if we replace F by f . So, just as in the proof of Theorem 2, one proceeds by

focusing on a particular seller, and show that the seller’s utility Fm,n satisfies the same

system of linear equations that fm,n satisfies. That shows that Fm,n = fm,n, which is

what we wanted to show. The rest of the proof of existence is now straightforward. �
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Proof of Theorem 9: I first show that 4f = 1. Start with equation 4fm,n + ε =

fm−1,n + fm+1,n + fm,n−1 + fm,n+1, and divide throughout by ε = δ2. Then one gets

fm−1,n − 2fm,n + fm+1,n

δ2
+

fm,n−1 − 2fm,n + fm,n+1

δ2
= 1.

But this is the finite difference approximation of the PDE(
∂2f

∂x2
+

∂2f

∂y2

)
(mδ, nδ) = 1,

which is exactly 4f(x, y) = 1.

Now equation 3fm,0 + ε = fm−1,0 + fm+1,0 + fm,1 becomes after division by δ:

fm−1,0 − 2fm,0 + fm+1,0

δ2
· δ +

fm,1 − fm,0

δ
= δ.

After passing to the limit when δ goes to zero, one gets

∂f

∂y
(x, 0) = 0.

If one picks a point on γ of type 1, one has (4 + sm,n)fm,n + ε = 2fm−1,n + 2fm,n−1 +

sm,nfm−1,n−1, which after division by δ becomes

2
fm,n − fm−1,n

δ
+ 2

fm,n − fm−1,n

δ
+ sm,n

fm,n − fm−1,n−1

δ
= −δ.

After passing to the limit when δ goes to zero, one gets

∂f

∂x
(x, y) +

∂f

∂y
(x, y) = 0.

For a point on γ of type 2, one has (4 + sm,n)fm,n + ε = fm−1,n + 2fm,n−1 + fm,n+1 +

sm,nfm−1,n−1, which becomes

fm,n − fm−1,n

δ
+

fm,n − fm−1,n

δ
+

fm,n−1 − 2fm,n + fm,n+1

δ2
· δ + sm,n

fm,n − fm−1,n−1

δ
= −δ.

In the limit one gets the same condition ∂f
∂x

(x, y) + ∂f
∂y

(x, y) = 0.

Finally, the condition f = g on γ is obvious. �

Proof of Theorem 10: Using the one-deviation property, assume that in all other

states except (m, n) agents behave as mentioned above, and show that for each agent
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the behavior in state (m, n) is optimal. As mentioned before, without loss of generality

one can focus on the behavior of the bottom seller.

Start with the case when m > n = 0. When m > 1, the bottom seller competes with

other sellers for the incoming market orders, and the intuition why this is optimal is the

same as in Theorem 2. When m = 1, the bottom seller has no reason to have a limit

order below a1 = f0 = 1
2
, because an incoming buyer is ready to accept it. The limit

order cannot be any higher than 1
2
, because in equilibrium an incoming buyer would

not accept it.

Suppose m > n > 0. This implies that m ≥ 2. If the bottom seller does not

immediately place a limit order at fm−n, then some other seller will. This seller would

leave the game together with the top buyer, so the system would move to state (m −

1, n− 1). In this state, the utility of the remaining sellers is f(m−1)−(n−1) = fm−n, so the

bottom seller has no incentive to deviate.

Suppose n ≥ m > 0. If m ≥ 2, then the bottom seller would not want to deviate, for

the same reason as above. If m = 1, suppose that n ≥ 2. As in Proposition 12, define

by g∞1,n (minus) the expected payoff of the buyers if they all wait until the arrival of a

new agent. Then the expected utility (taking into account the waiting costs) is

g0
1,n = g∞1,n + ε

2
= 1

2
(g2,n + g1,n+1) + ε

2
= 1

2
(gn−2 + gn) + ε

2
= gn−1.

It follows that the seller cannot extract more than gn−1 = bn in that state, because the

buyers would not be interested. An alternative would be for the seller to wait until a

new arrival. The expected utility for the seller from this strategy would be

f 0
1,n = 1

2
(f2,n + f1,n+1)− ε

2
= 1

2
(gn−2 + gn)− ε

2
= gn−1.

Again, this strategy would produce nothing better than gn−1, so the seller has no in-

centive to deviate from placing a market order at bn = gn−1.

Finally, suppose that m = 1 and n = 1. Then define f∞1,1 the expected payoff of the

sellers if they all wait, and by g∞1,1 the same notion for the buyers. One calculates

f∞1,1 = 1
2
(f1,2 + f2,1) = 1

2
(g1 + f1) =

1

2
,
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since f1 +g1 = 1 (by definition f and g were chosen symmetric with respect to 1
2
). Then

the discounted value to time zero is f 0
1,1 = f∞1,1 − ε

2
for the sellers, and g0

1,1 = g∞1,1 + ε
2

for the buyers. Since f 0
1,1 < g0

1,1, it follows that both the buyer and the seller are better

off making each other an offer in the interval [1
2
− ε

2
, 1

2
+ ε

2
]. In particular f0 = g0 = 1

2

belongs to this interval. �

Proof of Theorem 11: Consider a rigid equilibrium of this game. By a proof very

similar to that of Theorem 2, one shows that in each state where agents wait for a

positive expected time, all sellers have the same utility function (and the same for the

buyers).

A state (m, n) in Ω is called interior if in that state all agents wait until the arrival

of a new agent. A state in Ω is called boundary if agents wait for a positive expected

time, and at least one trader has a mixed strategy. A state not in Ω is called fleeting.

Recall that a fleeting limit order is by definition a limit order made quickly by a trader,

and immediately accepted by a trader on the other side of the book. A diagonal passing

through the point (m, n) is defined to be the set of points of the form ∆ = {(m+ k, n+

k) | m + k ≥ 0, n + k ≥ 0, k ∈ Z}.

Consider a diagonal ∆ that intersects Ω. Denote by (M, N) the largest state on ∆

which is in Ω. Then the following facts are true:

(a) The state (M, N) is a boundary state, and fM,N = gM,N .

(b) All the states (m, n) ∈ ∆ above (M, N) are fleeting, and fm,n = gm,n, which is

the same number as fM,N = gM,N .

(c) All the states (m, n) ∈ ∆ below (M, N) are interior, and fm,n > gm,n.

If the diagonal ∆ does not intersect Ω, then the following fact is true:

(d) All the states (m,n) ∈ ∆ are fleeting, and fm,n = gm,n, which has the same value

for all states in ∆.

To prove (a), suppose on the contrary that fM,N > gM,N . Since there is no waiting

in (M + 1, N + 1), it follows that there must be a fleeting limit order at h.22 Using the

notation of Proposition 12, one has f− = fM,N , and g− = gM,N . Since f− > g−, either

22Technically, it could also happen, for example, that one seller decides to exit by placing a market
order at B. But then the same proof can be used as in the case of a fleeting limit order to arrive at a
contradiction with fM,N > gM,N .
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f− > h or g− < h. Without loss of generality, assume that f− > h. There are two cases:

(i) f 0 > h: then, as in Case 2 of Proposition 12, agents wait in state (M + 1, N + 1);

(ii) f 0 ≤ h: this is a game of attrition, so by the rigidity of the equilibrium it follows

that agents have to wait in state (M + 1, N + 1). Both cases lead to a contradiction, so

it must be true that fM,N = gM,N .

Fact (b) is proved by using essentially the same argument as for (a): since there is

no waiting in (M + k + 1, N + k + 1), then it must be true that fM+k,N+k = gM+k,N+k.

Moreover, from the proof one notices that the fleeting limit order must be made at

h = f− = fM+k,N+k (otherwise there would be waiting in (M + k + 1, N + k + 1)). But

the utility of all sellers in (M +k +1, N +k +1) is h, so fM+k+1,N+k+1 = h = fM+k,N+k.

To prove (c), I first show that if (m, n) is a boundary state, then (m− 1, n− 1) is an

interior state: From Proposition 12, one knows that mixing is done only when f− ≥ h ≥

f 0, and g− ≤ h ≤ g0. But f− = fm−1,n−1, g− = gm−1,n−1, and h = fm,n = gm,n. So one

obtains fm−1,n−1 ≥ h ≥ gm−1,n−1. But since there is waiting in state (m, n), either f≥h

or g≤h is a strict inequality. In either case, one gets that fm−1,n−1 > gm−1,n−1. Since

for boundary or fleeting states it has already been shown that fm,n = gm,n, it follows

that (m− 1, n− 1) is a interior state. To complete the proof of (c), notice that it was

just proved that (M − 1, N − 1) is interior. Suppose not all the states (m, n) below

(M, N) are interior. Then there must be some state (m0, n0) which is either boundary

or fleeting. But because of (b), in either case all the states above (m0, n0) would be

fleeting, and one knows that for fleeting states f = g. This is in contradiction with

fm−1,n−1 > gm−1,n−1.

Finally, fact (d) is just a consequence of (b), since by definition Ω only contains

boundary and interior states, so all the states (m, n) ∈ ∆ are fleeting.

I now proceed with the proof of the Theorem. By contradiction, suppose that Ω

also contains states not on the coordinate axes. Let (m, n) be such a state, which is

boundary, and has the extra property that the states (m + 1, n) and (m,n + 1) are not

in Ω. The definition makes sense, because of (a) and the fact that Ω is finite. From (c)

it follows that state (m− 1, n− 1) is interior, therefore

(42) fm−1,n−1 = 1
2
(fm−1,n + fm,n−1)− ε

2
.
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As in the proof of (c), mixing in a boundary state can be done only when f− > h ≥ f 0.

In our case, f− = fm−1,n−1, and f 0 = 1
2
(fm,n+1 + fm+1,n) − ε

2
. But, because the choice

of (m, n), the states (m+1, n) and (m,n+1) are fleeting, so according to (b), fm,n+1 =

fm−1,n, and fm+1,n = fm,n−1. Therefore one obtains

(43) fm−1,n−1 > 1
2
(fm−1,n + fm,n−1)− ε

2
.

This inequality contradicts formula (42) above, so it follows that Ω must be a subset of

the coordinate axes.

�

Appendix B. Continuous Time Game Theory

In this paper the strategic interaction of agents is modeled as a multi-stage game with

observed actions in continuous time (for the discrete time version, see Fudenberg and

Tirole (1991), ch. 4). The framework I use borrows heavily from the theory of repeated

games in continuous time, as developed by Bergin and MacLeod (1993). I extend their

framework by allowing stochastic moves by Nature, and entry of new players.

Before I go to the formal definitions, here is a brief discussion about game theory in

continuous time. First of all, this theory is not a straightforward extension of discrete

time game theory. There are a few conceptual problems, as pointed out by Simon and

Stinchcombe (1989), or Bergin and MacLeod (1993). To understand why, suppose one

tries to replicate a typical punishment strategy from discrete time repeated games:

Continue to cooperate if the other player has not defected yet; if the

other player defected at any point in the past, immediately defect and

continue to defect forever.

The difficulty to make this strategy precise is two-fold. First, in continuous time there

is no first time after t, which makes it difficult to “continue” a certain course. One

way to get around this problem is to allow strategies to have inertia. But this creates

a second problem, since the other players can take advantage of inertia.23 One way

to allow players to react immediately is to enlarge the concept of strategy to include

23One could force the players to all have the same inertia, but then this would be equivalent to forcing
the game to take place in discrete time.
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sequences of faster and faster responses. The mathematical concept that allows to do

that is completion with respect to a metric (see below).24

A third problem that arises in continuous time is that there is no first time before t.

This issue is important when one needs a description of the game right before t. For

example, suppose an impatient trader submits a market buy order at t. This market

order is supposed to be very fast, and not give time for the existing traders to change

their limit orders. One can model this by allowing the market order to be placed

“immediately before” t, and the game at t will be played with one less player, namely

the trader whose limit order was cleared. Since there is no first time before t, it is not

obvious at which price the market order is to be executed. The solution of this problem

is to allow only strategies that behave well immediately before any time t. The technical

concept, inspired from Simon and Stinchcombe (1989), is of a strategy with a uniformly

bounded number of jumps (to be defined below).

As mentioned in Section 2, besides the usual problems with game theory in continuous

time, there is an extra problem when dealing with multi-stage games. To wit, suppose

a trader submits a market order at t and exits the game. When is then the next stage of

the game played? Since in continuous time there is no first time after t, one is compelled

to have the next stage-game played also at t. I do this by introducing “layered times,”

i.e., by allowing multiple games to be played at at the same time.

In order to define a game, one must define the spaces of actions, outcomes, and

strategies. The definitions follow closely those of Bergin and MacLeod (1993). I extend

their framework in several directions: (i) there is a well-defined description of the game

right before any time t; (ii) I allow for entry decisions of new agents; and (iii) I account

for the possibility of having more than one game played at the same time. I start with

an infinitely countable set of players I. Since they arrive according to independent

Poisson processes, with probability one at each point in time there are only finitely

many traders. I want to include the case where at some times t the game is played more

than once. I do this by taking the product of the time interval [0,∞) with the set of

natural numbers N, to indicate how many time a game has been played at some time t.

24Another way to define immediacy is by using infinitesimal numbers, which is the mathematical field
of non-standard analysis.
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Define

(44) T = [0,∞)× N

the set of times at which players can move, counted with multiplicity. Notice that if ≤ is

the lexicographic order, (T ,≤) is a totally ordered space. Denote the element (0, 0) ∈ T

also by 0. Define intervals in T in the usual way: for example, if T = (t, n) ∈ T define

[0, T ) = {T ′ ∈ T | 0 ≤ T ′ < T}. When there is no danger of confusion, write t instead

of (t, n). Also, define a measure on [0,∞) so that bounded measurable functions are

integrable:

(45) µ(dt) = e−atdt.

In general, I want the action space for player i to be a compact complete metric space

(Xi, di). Typically, Xi is a compact subset of Rn and di is the inherited metric. In this

paper, the action space for player i ∈ I can be defined as a subset of R2:

(46) Xi =
(
[B, A]× {0, 1}

)
∪ {out},

where out is some point in R2 which does not lie on [B, A]×{0, 1}. An action (xi, 1) ∈ Xi

is interpreted as a limit order at xi ∈ [B, A]. An action (xi, 0) ∈ Xi is interpreted as

a market sell (buy) order, in which case xi is the current bid (ask) price, respectively.

The action xi = out indicates that either (i) player i has not entered the game yet; or

(ii) player i exited the game before. One could also allow agents to exit freely at time t.

This will not happen in equilibrium if the utility from exiting is very small, so in order

to simplify the description of the game I do not allow free exit. Define also projections

on the first and second factor, π1 : Xi → [B, A] ∪ {out} and π2 : Xi → {0, 1} ∪ {out},

in the obvious way.

I now define outcomes of the game. Let BXi
and BX be the Borel sets of Xi and X =∏

i∈I Xi, respectively; and let B be the Borel sets of [0,∞). A function ν : [0,∞) → N is

said to have finite support if ν is zero everywhere except on a finite set M1 = {t1, . . . , tK}

(its support). One also associates the set M = {(t1, n1), . . . , (tK , nK)}, where all nk =
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ν(tk) > 0. Vice versa, for any such set M one can define a function νM : [0,∞) → N

with finite support by sending t ∈ [0,∞) to zero if t /∈ M1; and to nk if t = tk ∈ M1.

Definition 4. Let X be a space with measure. A function f : T → X is called layered

if there exists a function ν : [0,∞) → N with finite support such that ∀t ∈ [0,∞) and

∀n, n′ > ν(t) one has f(t, n) = f(t, n′). If f : T → X is layered, associate a function

f ν : [0,∞) → X by f ν(t) = f(t, ν(t)). I say that f is a layered measurable function

if f ν is measurable. An outcome for player i is a layered Borel measurable function

hi : T → Xi.

So an outcome is like a regular measurable function hi : [0,∞) → Xi, except that at

a finite set {t1, . . . , tK} (the support of ν) it can take several values, up to the integer

number ν(tk). This corresponds to the idea that at some times tk the game can be

played more than once (in my case, if some agent places a market order).

I call the function ν the layer of f . Sometimes I also call the layer of f the associated

set M = {(t1, n1), . . . , (tK , nK)}, with nk = ν(tk). Also, if f1 and f2 are two layered

functions with layers ν1 and ν2, one can take the combined layer of f1 and f2 to be

ν = max{ν1, ν2}. This is useful for situations where one has to compare f1 and f2.

Consider a layer ν. Then I define: T ν , the set of layered times associated with ν; Hi,

the space of outcomes for player i; and Hν
i , the space of outcomes associated with ν:

T ν = {(t, n) ∈ T | n ≤ ν(t)},(47)

Hi = {hi : T → Xi | hi layered measurable},(48)

Hν
i = {hi : T → Xi | hi layered measurable with layer ν}.(49)

This is a metric space with the metric Di : Hν
i ×Hν

i → R+ given by

(50) Di(hi, h
′
i) =

∫
[0,∞)

di

(
hν

i (t), h
′ν
i (t)

)
µ(dt) +

K∑
k=1

ν(tk)∑
n=0

di

(
hi(tk, n), h′i(tk, n)

)
.

Rewrite this as

(51) Di(hi, h
′
i) =

∫
T ν

di

(
hi(T ), h′i(T )

)
µν(dT ).
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Since the space of measurable functions fi : [0,∞) → Xi is compact and complete, so is

Hν
i . Now, if ν ≤ ν ′, there is an inclusion Hν

i → Hν′
i . Also, one knows that for every two

layers ν1 and ν2 one can take their maximum ν = max{ν1, ν2}, which satisfies ν1, ν2 ≤ ν.

This means that one can regard Hi as the limit of Hν
i when ν becomes larger and larger.

Because of this, Hi is a metric space, but it might not be either complete or compact.

I now define the space H of outcomes of the game. For this, let Hν =
∏

i∈I Hν
i the

product space with the metric D =
∏

i∈I
1
2i Di. It is a standard exercise in measure

theory to see that Hν is compact and complete. As before, if ν ≤ ν ′, there is an

inclusion Hν → Hν′ . I then define H as the union of all Hν for all layers ν. This is

still a metric space, but it might not be complete or compact. To justify this definition,

consider an outcome h ∈ H. Since h belongs to a union of Hν over all layers ν, there

must exist a particular ν so that h ∈ Hν (in which case, I say that ν is the layer of h).

This corresponds to the fact that all agents are in the same game, played at the times

described by the layer ν.

Also, if Z ⊂ T ν is layered measurable, and hi, h
′
i ∈ Hν

i , define a metric relative to Z

by Di(hi, h
′
i, Z) =

∫
Z

di

(
hi(T ), h′i(T )

)
µν(dT ). Define also a metric D on H relative to

Z in the same way it was done for the product metric above.

Now I define strategies. In discrete time, pure strategies map histories to actions,

while mixed strategies map histories to probability densities over actions. For technical

reasons it is easier to think of a history as an outcome of the game together with a

time t at which history is taken. This way, one can define a strategy as a map from

{outcomes× times} to {actions}. Formally, a strategy for agent i is a map

(52) si : H × T → Xi

which satisfies the following axioms

A1. The function si is layered measurable on H × T .

A2. For all h, h′ ∈ H and T ∈ T such that D(h, h′, [0, T )) = 0, one has si(h, T ) =

si(h
′, T ).

The second axiom ensures that future does not affect current decisions. Rewrite

h ∼T h′ ⇐⇒ D(h, h′, [0, T )) = 0.
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As it was discussed above, these two axioms alone do not ensure that strategies uniquely

determine outcomes. For that, one needs some inertia condition. If t ∈ [0,∞) and ν is

a layer, denote by tν = (t, ν(t)), and t = (t, 0).

A3. The function si displays inertia, i.e., for any h ∈ Hν and any t ∈ [0,∞), there

exists ε > 0 and xi ∈ Xi such that

Di

(
si(h

′), xi, [t
ν , t + ε)

)
= 0

for every h′ ∈ Hν such that h ∼tν h′.

Denote by Si the set of functions si on H × T which satisfy A1, A2, A3. Denote by

S =
∏

i∈I Si. The next theorem shows that a strategy profile s = (si)i, i.e., a set of

strategies si for for each player i ∈ I, uniquely determine an outcome on every subgame.

More precisely one has the following result:

Proposition 14. Let s ∈ S. Then for every h ∈ H and T ∈ T , there exists a unique

(continuation) outcome h̃ ∈ H so that h ∼T h̃ and D(s(h̃), h̃, [T,∞)) = 0.

Proof: The proof is the same as in Bergin and MacLeod (1993), but one has to make

sure that one works in Hν for some layer ν. �

Given (h, T ) ∈ H ×T and s ∈ S, denote by σ(s, h, t) the outcome which agrees with

h on [0, T ) and is determined by the strategy s on [T,∞). Let si, s
′
i ∈ Si. I now define

a metric on Si:

(53) ρi(si, s
′
i) = sup

H×T ×S−i

D
(
σ((si, s−i), h, T ), σ((s′i, s−i), h, T )

)
.

One also has to introduce an axiom which ensures that for each t the outcome of the

game right before t is well defined. One way of doing this is to restrict to strategies si

that lead to locally constant outcomes with a uniformly bounded number of jumps.

A4. For the strategy si there exists M (depending only on si) such that for any

strategies s−i of the other players, the outcome σi

(
(si, s−i), h, t

)
for player i is

locally constant and has at most M jumps.

Redefine Si to include on the strategies that satisfy A4. Now recall that at each t ∈

[0,∞) the strategies have inertia for some ε (depending on t). I want inertia to be
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infinitesimal, because I want to allow for immediate responses. This can be done by

completing the space of strategies: Denote by S∗i the completion of Si with respect to

the metric ρi, and by S∗ =
∏

i∈I S∗i . Completion is done so that the upper bound for

the number of jumps is the same for all. More precisely, a point in S∗i corresponds to a

Cauchy sequence (sn
i )n of strategies in Si, and one demands that there exists M so that

for each n, sn
i jumps at most M times, regardless of the other players’ strategies. The

following result shows that to each strategy in S∗ one can associate a unique outcome

in H.

Proposition 15. For every s ∈ S∗ and every (h, T ) ∈ H ×T , there exists a unique h∗

such that σ(sn, h, T ) → h∗ for any Cauchy sequence (sn)n in S converging to s.

Proof: If (h, T ) ∈ H × T , there exists a layer ν so that h ∈ Hν and T ∈ T ν . The

result then follows easily since Hν is compact and complete. �

I have just showed that for s ∈ S∗ one can associate a unique outcome of the (whole)

game, which I denote by σ∗(s). Because completion is done using the same upper bound

for the number of jumps, the following result is straightforward. The result allows one

to talk about the outcome of a game right before some time t.

Proposition 16. The outcome σ∗(s) associated to a strategy s ∈ S∗ is left-continuous.

I am almost done in defining the game. The only thing that is left is to describe

the payoff for some strategy s ∈ S∗ in a subgame defined by a history (h, T ) ∈ H × T .

Since strategies uniquely define outcomes in every subgame, as long as there exists some

payoff ui(σ
∗(s, h, T )) for each agent i. Define now the equilibrium concept:

Definition 5. A strategy profile s ∈ S∗ is an ε-Nash equilibrium (ε-NE) if for any

h ∈ H

(54) ui

(
σ∗(s, h, 0)

)
≥ ui

(
σ∗((s′i, s−i), h, 0)

)
, ∀i ∈ I, ∀x′i ∈ S∗i .

A strategy profile s ∈ S∗ is an ε-subgame perfect Nash equilibrium (ε-SPE) if for any

(h, T ) ∈ H × T

(55) ui

(
σ∗(s, h, T )

)
≥ ui

(
σ∗((s′i, s−i), h, T )

)
, ∀i ∈ I, ∀x′i ∈ S∗i .
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For ε = 0 in the above inequalities one obtains the concepts of Nash equilibrium (NE)

and subgame perfect Nash equilibrium (SPE). One has the following important result.

Proposition 17. A strategy profile s ∈ S∗ is a subgame perfect equilibrium if and only

if for any Cauchy sequence (sn)n converging to s, there is a sequence εn → 0 such that

sn is an εn-subgame perfect equilibrium.

Proof: The proof is essentially the same as in Bergin and MacLeod (1993), but again

one has to make sure that one works in Hν for some layer ν. �

I now discuss mixed strategies. For simplicity of discussion I omit the presence of

layers, so one takes T = [0,∞). Consistent with this philosophy of locally constant

outcomes and inertia strategies, I want to have mixed strategies randomly switch over

a small interval. More formally, let Xi be the space of actions for player i, and [0,∞]

the metric space with metric d(x, y) = |e−x − e−y|. Define a mixed strategy to be a

measurable function

(56) si : H × T → Xi ×Xi × [0,∞],

where the first component of si is the initial action in Xi; the second component is the

action to which si will switch in the interval of time right after t; the third component

is the Poisson intensity of switching. I call this type of strategy “mixed over time,”

because randomness only comes from the time of switching, while the actions before or

after switching are deterministically chosen. One can also allow for mixing over actions,

in which case one has to replace Xi by Φ(Xi), the set of probability densities over Xi,

i.e., the set of non-negative integrable functions on Xi with total integral equal to one.

Since Φ(Xi) is compact if Xi is compact, the analysis is essentially the same.

I say that the strategy si has inertia in a similar way as before, but one adds the

requirement that, after switching, the action to which player i switched will be also

held constant for a small period of time. Then one has to modify the description of

outcomes, which are now stochastic processes that are built in a very similar way to

Poisson processes. The space of strategies is also constructed by taking a completion,

in the same way it was done for pure strategies.
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To see how a strategy mixed over time works, consider the general case of trading

game in this paper, where Nature moves at each time t by bringing new players to the

game. One can consider in fact four instances of Nature (four distinct players), each

of whom brings one type of trader to the game. The space of actions for each instance

of Nature, e.g., the one that brings patient sellers, is the set 2I of all subsets of I (in

principle I allow Nature to add or remove any players from the game). Nature plays

the following strategy: if (h, t) ∈ H × T is the history at t, and J = It− is the set of

players in the game right before t, then sN(h, t) = (J, J ∪ {PS}, λPS).

I now briefly discuss the notions of equilibrium employed in this paper. The notions of

subgame perfect equilibrium and Markov (perfect) equilibrium are simple extensions of

the corresponding concepts in discrete time (see Fudenberg and Tirole (1991)). In this

paper, I also use the notion of competitive Markov equilibrium. This is a Markov perfect

equilibrium from which local deviations can be stopped by local punishments, assuming

behavior in the rest of the game does not change. In other words, if one truncates the

equilibrium strategies by looking at some time interval (t, t + δ) (truncation is possible

because of the Markov condition), the restrictions of the strategies to this time interval

remain a Markov equilibrium.
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