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1. Introduction

Traditional methods used by financial institutions for portfolio construction and risk

management are based on security return covariance matrices. Since these matrices are

notoriously difficult to estimate and very unstable in time, they often fail to be consistent

with market conditions. Moreover mean-variance approach has nothing to ensure that the

tracking error of a portfolio relative to a benchmark is stationary. Therefore, traditional

portfolios can drift virtually anywhere, unless they are frequently rebalanced, which will

imply considerable transaction costs with negative influence on the overall portfolio

performance.

At the root of the problem stays the fact that mean-variance approach can be used only

with respect to stationary variables. By differencing the financial price variables, which

generally prove to be integrated of order one, we are faced with the inconvenience of

losing a great deal of information contained in that prices, and consequently of detecting

any stochastic trends that prices might follow. Cointegration enables us to avoid this

drawback because it measures how the prices, and not the returns, are moving together in

the long run, having in contradiction to the classical correlation concept the advantage of

using the entire set of information from the price levels. Moreover, cointegrating vectors

can explain the long run behavior of cointegrated series, while correlation doesn’t have

this feature, being unstable as any short run measure. However, cointegration based

methods are not excluding in any way correlation based methods as short term

instruments.

Pioneered by Engle and Granger (1987), cointegration has become a powerful technique

used for detecting common stochastic trends from multivariate time series, thus enabling

us to model the system’s dynamics both on the long and short run.   If there exists a linear

combination of non-stationary variables which is found to be stationary, we say that these

variables are cointegrated. The linear combination is called cointegrating vector, and

indicates the long run equilibrium of the multivariate system. The presence of

cointegration cannot tell us where the system will be on the long run, but it can tell us
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that wherever one variable will be, the others will be right along with it. In other words,

we can say that the above linear combination describes a mean-reverting process.

The literature on cointegrated time series has been expanding at an exponential rate.

Starting with the fundamental work of Engle and Granger (1987) have been created new

tests for cointegration amongst which we mention the ones of Engle and Yoo (1987) and

Johansen (1988). Likewise, many studies focused on distributional properties of the

various estimation and inference methods, namely: Phillips and Oularis (1990), Johansen

(1991) and MacKinnon (1991).

In financial markets area, cointegration analysis has been used in certain directions. In

order to test the efficiency of futures markets, we can employ cointegration to verify

whether exists a cointegrating vector, formed by spot and futures prices, that has the

property of mean-reversion. To this end we mention the papers of MacDonald and Taylor

(1988), Brenner and Kroner (1995), Ackert and Racine (1998), and Alexander (1999b).

Cointegration has also been used to test the efficiency of forex markets. Since on an

efficient forex market the cross rate is non-stationary, it results that two exchange rates

(in logs) cannot be cointegrated. However has been empirically found that three or more

exchange rates can be cointegrated: Alexander and Johnson (1992) and Alexander

(1995).

Regarding equity markets, cointegration is used to assess the degree of co-movement

between the countries’  markets or relative to an index. If equity markets from two or

more countries are cointegrated, then they share at least one common stochastic trend,

which makes them move together in time. One consequence of  this fact, is that the

advantages of international diversification  will disappear on the long run, so that the

longer term investors will not benefit from out-of-country portfolios. This idea was

studied in their papers by Taylor and Tonks (1989) and Kasa (1992). However Garrett

and Spyrou (1996) have argued against this idea, showing that the benefits of

international diversification are very little (or even at all) eroded if the returns are

reacting very slowly (or are not reacting at all) due to the common stochastic trend.
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With respect to fixed-income instruments’  markets, empirical studies show that from the

n maturities of the yield curve, every one of the n-1 spreads represents a cointegrating

vector, if the spreads are mean-reverting. We mention the papers of Alexander and

Johnson (1994) and of DeGennaro, Kunkel and Lee (1994).

Another field of cointegration applicabillity is option pricing. Duan and Pliska (1996)

have created a pricing model based on cointegrated brownian motions. The model

contains an ECM which ensure the correction of deviations away from the equilibrium as

well as the stationarity of the spread between the two asset prices.

Returning to the use of cointegration in portfolio management, an area tackled by the

present dissertation, we mention, as a headstone, the paper of Lucas (1997). In this paper,

it is studied the asset allocation problem in the presence of cointegrated time series, as

well as the link between the number of cointegrating relations and the optimal asset

allocation. According to Lucas, cointegration affects both strategic and tactical allocation,

the cointegrating combinations having a reduced long run variability and therefore a

reduced long run risk. Lucas investigates the effects of mis-specification  of cointegration

rank: underestimating this rank leads to the loss of investment opportunities, while

overestimating this rank doesn’t have any substantial adverse effect on short run financial

policy.

Pindyck and Rothenberd (1992) argue that a basket of equities should be cointegrated

with the whole equity index provided that the index weights are stable in time. From the

same point of view, a basket of equity indices from different countries should be

cointegrated with a regional or international index. This idea was further explored by

Alexander (1999),  DiBartolomeo (1999), Alexander and Weddington (2001) and

Alexander and Dimitriu (2002). DiBartolomeo uses cointegration between MSCI EAFE

and component country indices to portfolio construction, which enables him to avoid the

assumptions of normality and stationarity of returns, assumptions required by the mean-

variance approach.  In order to obtain the cointegrating vector, he makes use of Monte
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Carlo simulations, thus constructing a great number of random portfolios (depending of

certain restrictions) out of which are selected the ones that are cointegrating. Alexander

uses cointegration to set up index-tracking strategies as well as market neutral hedging

strategies. In the first case, Alexander shows that it is possible, to obtain a portfolio with

a  higher return and a smaller risk relative to a benchmark. In the second case, Alexander

shows that cointegration may lead to a positive excess return, irrespective of market

direction, and with a low volatility.

Our paper continues the line of research of cointegration as a method for portfolio

construction. Using a simple algorithm of finding the optimal composition of

cointegrating portfolios, we implement and test two types of portfolios.

First type, the clone portfolio,  tries to track an equity index plus a spread, using only a

part of original index components, and also to obtain higher performances in terms of

returns and volatility.

Second type, the arbitrage portfolio, aims to generate riskless arbitrage returns, in any

state of the nature. To this end, we construct two cointegrating portfolios: o long

portfolio, which clone a benchmark plus a spread, and a short portfolio, which clone a

benchmark minus a spread. The arbitrage portfolio will be given by the difference of the

above portfolios, and will earn approximately the sum of the absolute values of the two

spreads .  Using five years of daily data of Morgan Stanley Capital International (MSCI)

stock indices for the countries participating at “Euro” currency, as well as the same

amount of data for the regional EURO MSCI Index, we are able to implement the above

mentioned strategies. Another novelty brought by this paper is that it investigates the

behavior of the main strategies (portfolios) under two different assumptions or sub-

strategies : unmanaged portfolios vs. monthly rebalanced portfolios. After constructing

the main strategies we performed a number of tests to assess the overall performances of

the models during the testing period. The results were encouraging even if the portfolios

were left unmanaged.
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The remainder of the paper is organized as follows: section 2 presents theoretically how

to implement the two portfolio strategies and how a portfolio manager can assess the

overall performances of the models; section 3 describes the data and presents the

estimation and back-testing results; finally, in section 4 we draw the conclusions.
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2. Portfolio Construction Strategies Using Cointegration

Traditional mean-variance portfolios are seeking the weights of component securities so

as to minimize the total variance of portfolio for a given level of return. Constructing

portfolios according to this classical approach, investors will soon realize that there is

nothing to ensure the mean-reversion of the error relative to a given benchmark.

Moreover, in their attempt to bring the portfolio back in line with the benchmark,  they

will incur virtually unlimited transaction costs, which can reduce, sometimes

considerably, portfolio return. Using cointegration, we can now build portfolios with a

stationary tracking error, resulting strategies having fewer transaction costs, greater

return, and a smaller risk than in the case of Markowitz traditional method.

2.1. Cloning strategies

2.1.1.General presentation

These strategies aim to construct a portfolio, that clones a given benchmark, in terms of

return and volatility, and preferably with the use of a small number of assets. The

correlation of this clone portfolio with the market will be very high. Therefore this

passive strategy will suit a more risk averse investor segment. To enhance the

performance of the strategy, one could choose to clone an artificial benchmark, that is a

benchmark plus a positive spread per annum, thus producing a greater excess return. To

implement this type of portfolio, we will use not the correlation matrix, but the

cointegration, in this way benefiting of the entire set of information from the asset prices.

If the portfolio and the benchmark are cointegrated then the tracking error will describe a

white noise process, with zero mean, and small variance.

The cointegration method that will be used is that introduced by Engle and Granger

(1987). The reason of choosing EG, instead of the more powerful technique of Johansen

and Juselius, is that we know a priori that we have a single cointegrating relation, that is

we know for sure that we cannot have more than one set of weights in our clone portfolio.
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Additional arguments for EG are referring to its simplicity and to its main criterion of

minimizing the variance, which for portfolio risk management is far more important than

Johansen’s criterion of maximizing the stationarity.

Once we ensured that the candidate asset price series are non-stationary, we will estimate

a cointegrating regression, having as dependent variable the price series of the

benchmark, and as independent variables the candidate clone portfolio components.

Estimation will be made using a prespecified  window of data, called calibration period.

More formally, we will estimate by OLS the following equation:

 ∑
=

+⋅+=
n

i
ttAiitbenchmark PcP

1
,, )log()log( εβ (1)

where: Pbenchmark is the time series of (daily) benchmark price; PAi is the time series of

asset “ i”; βi are the estimated coefficients from the above regression, coefficients that

after normalization will play the role of portfolio weights; and ε is residual series, which

is nothing but the tracking error.

It must be emphasized, that applying OLS to non-stationary variables is allowed only in

the special case of cointegration. If residual series ε is non-stationary the coefficients will

inconsistent and any inference based on them  is incorrect. If ε is stationary, then the

portfolio and the benchmark are cointegrated, and coefficients are super-consistent,

converging very rapidly to the real values.

  2.1.2. A simple algorithm of optimization

To fully benefit of the common stochastic trend followed by the asset prices that will

compose the clone portfolio, it is paramount to select from the candidate assets, the

basket that is the most cointegrated with the benchmark.

Definition 1. We will call cointegrating portfolio the linear combination

∑
=

⋅=
m

i
Aii PPC

1

)log(β , m <= n, with the property that log(Pbenchmark) is cointegrated with

PC, n being the number of available assets.
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Definition 2. We  say that cointegrating portfolio ∑
=

⋅=
1

1
1 )log(

m

i
Aii PPC β  is more

cointegrated (in Engle Granger sense) than portfolio ∑
=

⋅=
2

1
2 )log(

m

i
Aii PPC β , if noting

2,1,)log( =−= jPCP jbenchmarkjε  then t-stat (ε1) < t-stat (ε2), where t-stat is taken from the

unit root test applied to residual εj.

Definition 3 (optimality) . Let  








−
==Π

!)!(
!|

kkn
njPC j  be the set of all cointegrating

portfolios that can be formed with the n assets, using the same calibration period. Let









−
=−==Ε

!)!(
!...2,1,)log(|

kkn
njPCP jbenchmarkjj εε  be the set of residual series

corresponding to the above portfolios. We say that PCk is optimal cointegrating portfolio

if and only if t-stat(εk) < t-stat(εh) for kh ≠∀ .

From the above definitions, results it is not sufficient to verify the stationarity of residual

series. We will also need to ensure there we cannot find a portfolio more cointegrated.

The criterion we will use, is minimizing t-stat from the unit root test of residual.

Unlike the approach used by Alexander (1999 and 2001), and by DiBartolomeo (1999),

in the first case using heat maps, and in the second using Monte Carlo simulations, in the

present paper we propose a relatively simple method for finding the most cointegrated

portfolio. The method consists of a few steps or rounds, by which we test all portfolio

possibilities. These steps are:

Step 1. Estimate the cointegrating regression using the whole set of assets, and perform

the unit-root test on residual, ADF0.

Step 2. Eliminate successively variable “ i” from the regression, for every i=1… n. Extract

for every case the residuals and perform the UR tests. From the n resulting values ADF01,

ADF02,… ADF0N we choose the smaller one (the more negative). Suppose this value is
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ADF0j, 1<=j<=N, then the variable j is completely eliminated from the optimization of

portfolio. By doing so we obtain the most cointegrated portfolio at this round.

Step 3. We now have n-1 variables. We will proceed again with pulling out of the

regression variables for every i=1… n-1. The n-1 residuals will have the UR t-stat values

ADFj1, ADFj2,… ADFjN-1. We pick from these values the more negative one. If this value

is ADFjk, 1<=k<=N-1, then variable k will be eliminated from portfolio.

… .

We continue to eliminate variables from portfolio 1) up to a minimum number m, set

according to the preference of the investor; or 2) until we reach the optimal portfolio. For

this case the optimal portfolio is the one corresponding to the combination that leads to

the minimum UR t-stat taking into account all steps possible. Regarding this matter we

can make an observation: suppose that at step “p-1”  we find a combination with the

smallest ADF (or PP) UR test by that time, and at following step “p” the minimum UR t-

stat is greater than the one from the previous step, we can conclude that the portfolio at

step “p-1” is optimal. Once the t-stat become increasing, it means that we can no longer

find more cointegrated portfolios, because we tend to move away from the common

stochastic trend that glued the series together in the long run.

2.1.3. Back-testing the model

Every cloning strategy can be defined by several elements, called parameters. Thus,

cloning portfolios will be characterized  by: a spread above the target benchmark; the

data window used in cointegration, called calibration period; number n of assets; other

preferences.

Once we have found the optimal composition of the cloning portfolio, we will move to

the back-testing sequence. This back-testing is made over a period following the

calibration period, called testing period. There is a variety of tests that can be done to

assess the overall performance of the model.



10

1. Rolling window EG cointegration tests. Are made at a specified frequency (monthly,

daily) rolling a window, of the same size with calibration period, over the testing period.

It shows the extent to which the tracking error remains stationary with time passage.

2. Differential return between the cloning strategy and the benchmark. If we decide a

periodical rebalance of portfolio, then we will have the same allocations only until the

next rebalancing. Portfolio value will therefore be given by: ∑
=

++ ⋅=
N

i

Ai
jt

i
t

clona
jt PwP

1

.

3. Information ratio, given by the ratio between average annual return and the annualized

volatility.

4. Turnover index and transaction costs. By TO we understand the sum of absolute values

of weights modification. To obtain the index, we divide the above value by 2 (200%),

which corresponds to the situation where we switch from one set of assets to another.

Transaction costs are computed as a percentage applied to the dollar value of the

turnover: ∑
=

∆−−⋅=
N

i
tAittiti

naretranzactio
t PwwaC

1
,,,(%) .

5. Volatility of strategies’  returns and of the tracking error. We can compute both the

historical and conditional EWMA volatilities.

6. Correlation between the benchmark and the cloning portfolio, and between the error

and the benchmark. We can compute both the historical and conditional EWMA

correlation coefficients.

7. Distributional properties of the tracking error (e.g. Skewness, and Kurtosis).
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2.2. Arbitrage Strategies

2.2.1. General Presentation

This type of strategies aims to construct a self-financing portfolio, which will generate

positive returns irrespective of market direction, with a low volatility and in conditions of

zero correlation with the market.  To ensure the self-financing of the strategy, we

construct two cointegrating portfolios: o long  portfolio, which clone a benchmark plus a

spread, and a short portfolio, which clone a benchmark minus a spread. The arbitrage

portfolio will be given by the difference of the above portfolios, and will earn

approximately the sum of the absolute values of the two  spreads .

After setting up the two artificial benchmarks (by adding / subtracting a spread uniformly

distributed on the whole benchmark series), we will clone the two portfolios, estimating

initially the following cointegrating regressions:

 ∑
=

+⋅+=
n

i
ttAiitplusbenchmark PcP

1
,1,_ )log()log( εβ (2)

∑
=

+⋅+=
n

i
ttAiitusbenchmark uPcP

1
,2,min_ )log()log( γ (3)

If simultaneously the residuals ε and u are stationary, then each of the two portfolios will

be cointegrated with its benchmark. The arbitrage portfolio can now be determined by

the difference of the first two. The weights of the component assets are given by:

w_arbitragei,t = w_plusi, t-w_minusi, t.

To explain the low correlation of the arbitrage portfolio with the benchmark, we will

analyze separately the two returns of the component portfolios:

tplustplusbenchmark
plusbenchmark

plus
plusplustplus RR ,,_

_
, ε

σ
σ

ρα ++= (4)

tustusbenchmark
usbenchmark

us
usustus RR ,min,min_

min_

min
minmin,min ε

σ
σ

ρα ++= (5)
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 where ρplus/minus is the correlation coefficient of the long / short portfolio with the market;

σplus/minus is the volatility of the long / short portfolio.

The arbitrage return is given by:

)6(

)(

)()(

,min,
min_

min
minmin

_min_

min
min

_
,min

,min,

min,
min_

min
min,
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plus
plusplus
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plustbenchmarkusplus
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usbenchmark
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usplustbenchmark

plusbenchmark
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plususplus

tustplustarbitrage

s

sR

sRsR

RRR

εε
σ

σ
ρ

σ
σ

ρ
σ

σ
ρ

σ
σ

ραα

εε

σ
σ

ρ
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σ
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where splus and sminus are the spreads added/subtracted from the benchmark. If the two

cointegrating portfolios succeed in cloning their benchmark, then ρplus and ρminus, as well

as relative volatilities
plusbenchmark

plus

_σ
σ

 and 
usbenchmark

us

min_

min

σ
σ will converge to one. This will

make the second term from the right-hand side of relation (6) to converge to zero. But

this is nothing but the beta β of the arbitrage portfolio. We have now demonstrated the

market neutrality of these strategies.

2.2.2. Back-testing the model

As in the case of cloning strategies, we will employ o number of back-tests during the

testing period. These tests are:

1. Rolling window EG cointegration tests for both component portfolios. Are made at a

specified frequency (monthly, daily) rolling a window, of the same size with calibration

period, over the testing period. It shows the extent to which the tracking errors remain

stationary with time passage.
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2. Arbitrage portfolio return

3. Turnover index and transaction costs. Since the arbitrage portfolio is given by the

difference of the long and the short portfolios, the strategies’  transaction costs will be

smaller than the sum of transaction costs of the two portfolios managed separately (see

relation 7).

 ∑
=

∆−∆− −−−⋅=
N

i
tAittittititi

naretranzactio
t PuswwplususwwplusaC

1
,,,,, )min()min((%) (7)

4. Volatility of strategies’  returns and of the component portfolios. We can compute both

the historical and conditional EWMA volatilities.

5. Correlation between the benchmark return  and the arbitrage portfolio return. We can

compute both the historical and conditional EWMA correlation coefficients.

6. Distributional properties of the two  tracking errors (e.g. Skewness, and Kurtosis).
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3. Cointegration-Based Portfolios Using MSCI Equity Indices

3.1. Data

In order to construct and test the cloning and arbitrage strategies described in section 2,

we employ five years of daily data, from 30.04.1997 to 02.05.2002, for the equity indices

of the countries participating at “Euro” currency as well as for the equity index for the

entire zone. The data is available online from Morgan Stanley Capital International

(MSCI), a source very often quoted in financial literature. The MSCI indices are

computed in USD and  weighted with the market capitalization. The five years of data are

divided in two sub-periods: calibration period (first 4 years) and testing period (last year).

Series, transformed first in logarithms, are presented in table 1.

Table 1. Description of data
Series name Description

1 LAUSTRIA MSCI Austria Equity Index

2 LBELGIUM MSCI Belgium Equity index

3 LFINLAND MSCI Finland Equity index

4 LFRANCE MSCI France Equity index

5 LGERMANY MSCI Germany Equity index

6 LGREECE MSCI Greece Equity index

7 LIRELAND MSCI Ireland Equity index

8 LITALY MSCI Italy Equity index

9 LNETHERLANDS MSCI Netherlands Equity index

10 LPORTUGAL MSCI Portugal Equity index

11 LSPANIA MSCI Spain Equity index

12 LEURO MSCI EURO Equity index

13 LEUROPLUS MSCI EURO Equity index plus a spread of 2% p.a. uniformly  distributed

14 LEUROMINUS MSCI EURO Equity index minus a  spread of 2% p.a. uniformly distributed
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3.2. Unit-Root Tests

We will use both the Augmented Dickey-Fuller Test and Phillips-Perron Test. For the

ADF tests we have selected the number of lags that eliminates autocorrelation of

residuals according to the maximum lag criterion, that is we select the maximum lag for

which the probability is less than 5% confidence level. When we couldn’t apply this

criterion we have applied Akaike Information Criterion (AIC). The entire set of results,

for a number of 8 to 0 lags, is presented in Appendix 1. The summary of the ADF and PP

tests is presented in Table 2.

Table 2. Summary of ADF and PP unit-root tests

LEVEL H0: I(1) 1st DIFFERENCE  H0:I(2)SERIES NAME
ADF PP ADF PP

LAUSTRIA -1.3486 -1.3106 -14.193 -30.204

LBELGIUM -1.5335 -1.5288 -22.442 -27.482

LFINLAND -1.5032 -1.5032 -23.882 -31.784
LFRANCE -1.7885 -1.8555 -13.466 -30.489
LGERMANY -2.4285 -2.4833 -24.485 -31.096

LGREECE -1.6926 0.3044 -27.935 -27.82

LIRELAND -1.9361 -1.9505 -11.654 -29.874
LITALY -2.7667 -2.7434 -19.905 -31.657

LNETHERLANDS -3.2274 0.5743 -14.919 -30.6205

LPORTUGAL -2.1695 -2.1538 -28.238 -28.2155

LSPANIA -2.6999 -2.6750 -23.13 -29.3702
LEURO -2.1495 -2.3121 -13.698 -29.5797

LEUROPLUS -2.1292 -2.2662 -13.698 -29.5797

LEUROMINUS -2.1488 -2.3793 -13.698 -29.5797

MacKinnon critical values for rejection of hypothesis of a unit root:
1% significance level  -3.4394
5% significance level  -2.8647

We can observe that for all series we can reject the null hypothesis of unit-root only after

taking the first difference. We will therefore conclude that all series are non-stationary,

being integrated of order one. In the case of LNETHERLANDS, if we use ADF we can

reject hypothesis of unit-root in level at 5%, but if we apply PP we find that the series is

I(1) too.
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3.3. Implementing The Cloning Strategy

We will try to construct and test a portfolio that clones MSCI EURO equity index plus a

spread of 2% p.a., uniformly distributed (all returns were augmented with 0.00008 per

trading day, assuming 250 such days per year). We will employ Engle-Granger

cointegration method, and then the optimization algorithm presented in section 2.1.2.

We start by estimating the following cointegrating regression:

∑
=

+⋅+=
11

1
, )log(

i
ttAiit PcLEUROPLUS εβ  (8)

where log(PAi ) ∈  {LAUSTRIA, LBELGIUM, LFINLAND, LFRANCE, LGERMANY,

LGREECE, LIRELAND, LITALY, LNETHERLANDS, LPORTUGAL, LSPAIN} are

independent candidate variables, and LEUROPLUS is considered dependent variable.

We extract de residual series, named RESID00, and test its stationarity. Since UR t-stat is

–4.937256 we can conclude that the residual is stationary. Although we have found

cointegration, we are not stopping here. We will try, using the algorithm, to find the most

cointegrated portfolio.

We will estimate EG cointegrating regressions, eliminating successively one series at a

time, and extracting residuals. We will eliminate completely, at every step, one single

series according to the minimum ADF t-stat criterion. The results are presented in Tables

from 3 to 7 from the Appendix 2. We can observe that in order to obtain a portfolio more

and more cointegrated (an error more and more stationary) we need to eliminate first

Finland index, second Netherlands index, third Spain index, and fourth Belgium index.

From table 7, we observe that a further attempt to optimize the portfolio composition will

end up in obtaining a suboptimal portfolio, because eliminating the Austrian equity index

from portfolio will lead to an error less stationary (ADF t-stat of –7.0568) comparing to

the previous round (ADF t-stat of –7.2266). We will conclude that previous round gives

us the most cointegrated portfolio.
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Since we have just found the optimal composition of cloning portfolio, we will determine

the weights of the component assets, by estimating equation:

tttt

ttttt

LPORTUGALLITALYLIRELAND
LGREECELGERMANYLFRANCELAUSTRIAcLEUROPLUS

εβββ
ββββ

++++
+++++=
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The output of the econometric software Eviews 3 are presented in table 8.

Table 8. Coefficients of EG cointegration regression for de cloning portfolio
Dependent Variable: LEUROPLUS
Method: Least Squares
Sample: 4/30/1997 5/02/2001
Included observations: 1046
Variable Coefficient Std. Error t-Statistic Prob.

LAUSTRIA -0.04919 0.003945 -12.4691 0.0000
LFRANCE 0.586314 0.00798 73.47163 0.0000
LGERMANY 0.317436 0.006915 45.90446 0.0000
LGREECE -0.02272 0.001998 -11.3686 0.0000
LIRELAND 0.051311 0.005324 9.637921 0.0000
LITALY 0.211019 0.006652 31.72453 0.0000
LPORTUGAL -0.08221 0.005488 -14.9816 0.0000
C -0.25137 0.033517 -7.49981 0.0000

We verify the cointegration of the cloning portfolio with the benchmark, by applying

phase two of Engle-Granger method. We extract the residual series, named EROARE1,

and test its stationarity using ADF, taking from 8 to 0 lags.  The results are shown in

Table 9.

Table 9. Phase two of EG cointegration test

SERIES: EROARE1

ADF test- level (with constant) MacKinnon critical values*: 1%: -5.2651 5%: -4.7211
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -7.2266 -6.9066 -6.8898 -6.7195 -6.3057 -6.294 -6.1159 -6.1312 -6.072
prob_lgmax 4.95E-13 0.39655 0.51545 0.64591 0.15633 0.59208 0.66239 0.18689 0.84608
AIC -8.7071 -8.705 -8.7026 -8.7005 -8.6995 -8.697 -8.6943 -8.6938 -8.6919
SBC -8.6976 -8.6907 -8.6836 -8.6767 -8.671 -8.6637 -8.6562 -8.6509 -8.6442

* another set of critical values will be used for EG ADF tests; they are calculated from

the response surfaces of MacKinnon (1991)
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Looking at table 9, we observe the number of lags is the same no matter what criterion

we use. Both the maximum lag probability and AIC indicates lag zero. The value of ADF

t-stat is in this case –7.2266, which shows a powerful cointegrating relation among

variables.

After normalizing the coefficients so that they sum to unity, we have found the cloning

portfolio weights ( see table 22 from Appendix 3).

3.4. Back-testing the cloning strategy

We will proceed with assessing the overall performances of the model, using the tests

describes in section 2.1.3.

3.4.1. Rolling window EG cointegration tests

We will examine the behavior of the cloning portfolio during the testing period. We have

analyzed separately the sub-strategies of leaving the portfolio unmanaged for a whole

year, and the sub-strategy of rebalancing its weights every month. We have implemented

the rolling window tests, using different codes written in Eviews programming language.

The window size was 4 years, and the frequency was monthly and daily. The results are

depicted in Figures 1 and 2 from Appendix 4. Based on these figures it can be inferred

that even left unmanaged the portfolio stays most of the time cointegrated at 1%

significance level. Towards the end of the testing period the portfolio looses from its

stationarity, which means a possible increase of the risk, especially when the ADF test

breaks the  5% critical value.

If we rebalance monthly the portfolio (see Figures 3 and 4 Appendix 4), we are able to

obtain an error  with an increasing stationarity, which translates in smaller and more

mean-reverting errors, with positive influences on the portfolio returns.
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3.4.2. Differential return between the cloning strategy and the benchmark

 Table 10. Return of cloning portfolio vs. benchmark return
RMSCI EURO RPClone RPClone Rebal RMSCI EURO

 cumulated

RPClone
cumulated

RPClone Rebal
cumulated

May        2001 -7.6830% -6.8367% -6.7542% -7.6830% -6.8367% -6.7542%
Jun         2001 -4.0890% -2.6386% -2.8392% -11.7720% -9.4753% -9.5935%
Jul          2001 0.1812% 0.0639% 0.0944% -11.5907% -9.4114% -9.4991%
Aug        2001 -5.1310% -4.5884% -4.9981% -16.7217% -13.9998% -14.4972%
Sep        2001 -13.2248% -15.7097% -14.4758% -29.9465% -29.7094% -28.9729%
Oct         2001 4.1796% 4.8391% 4.8078% -25.7670% -24.8703% -24.1652%
Nov        2001 4.7549% 4.7061% 4.2784% -21.0121% -20.1642% -19.8867%
Dec        2001 2.9018% 3.3577% 3.1018% -18.1102% -16.8065% -16.7850%
Jan         2002 -6.2934% -6.2711% -5.9570% -24.4036% -23.0777% -22.7420%
Feb         2002 -0.6254% -0.1915% -0.0479% -25.0290% -23.2692% -22.7899%
Mar         2002 5.4747% 6.3870% 5.8837% -19.5542% -16.8822% -16.9062%
Apr         2002 -2.2441% -3.1133% -2.2029% -21.7983% -19.9955% -19.1091%

In Table 10 are presented the returns of the cloning portfolio, for both the unmanaged and

rebalanced substrategies, comparing to benchmark return.

Even there were difficult times in European equity markets, during testing period, both

cloning strategies have managed to generate a higher return then the market. We observe

that the excess returns were very close to the 2%  p.a. spread that was proposed. In the
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Figure 5. Cumulated returns during testing period of
the two substrategies
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case of rebalanced sub-strategy, due to the increased level of tracking error stationarity

we obtain even a greater excess return (+2.58%) than the 2% planned.

Figure 5 describes the cumulated returns of cloning portfolio, under the two sub-

strategies. We can observe how, at any time, the rebalanced strategy generates higher

returns. However, one must interpret with caution this result, because by now we didn’t

take into account the transaction costs, which may change dramatically the situation.

3.4.3. Information Ratio

We can assess the risk-adjusted returns by calculating IR, the ratio of average annual

return and volatility. The results shown in Table 11, indicate a better risk-adjusted

performance of unmanaged cloning portfolio, even if has a smaller return (a greater loss)

and a greater market risk.

Table 11. Iratio for the benchmark and cloning portfolio
RCloneP RCloneP Rebal RMSCI EURO

µ -19.988% -19.383% -22.092%
σ 23.959% 22.696% 22.999%

IRatio -0.83424 -0.85403 -0.96055

3.4.4. Turnover index and transaction costs

We have computed turnover index for the rebalanced strategy. Table 12 from Appendix

5, shows a small turnover, ranging from 0.28% to 4.13% every month, due to the

stationarity of tracking error.

Regarding the transaction costs, we have studied their impact on the rebalanced strategy’s

returns, taking into account three different percentages 0.1%, 0.2% and 0.5%. The returns

of the rebalanced cloning portfolios were computed in Table 14 from Appendix 5, based

on the monthly normalized allocations taken from  rolling cointegrating regressions, and

shown in Table 22a from Appendix 3.  The conclusion was that the cloning portfolio has
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the greatest return (minimum loss) even after accounting for the transaction costs.

Moreover, even if we are faced with a brokerage fee of 50 bp, the cloning portfolio still

generates a smaller loss than the benchmark (-20.5285% comparing to –21.7983%).

3.4.5. Volatility of strategies’  returns and of the tracking error

We have computed the unconditional (historical) and conditional EWMA volatilities,

using a look-back period of 30 days, and a smoothing coefficient λ=0.94 (see figure 6).

We observe a great deal of similarity between cloning portfolio returns volatility and the

volatility of market returns. Even if the cloning portfolio is composed of about a half of

the assets in the MSCI EURO index, the shape of volatilities is almost identical. We can

see how the terrorist attack of  September 11th is “ felt” identically by the benchmark and

the clone portfolio. Regarding the two sub-strategies, it can be observed that the

rebalanced portfolio has the smallest volatility, while the unmanaged one has the greatest

volatility.

Figure 6. a) Historical  30 day volatility         b) conditional  EWMA volatilities with λ=0.94
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We have computed too, the volatility of the tracking error (excess return).

From figure 7, we can observe a greater variability of excess returns, during the testing

period, when we choose to let the portfolio unmanaged. The better performance of the

rebalanced portfolio, is due to the more powerful stationarity, as explained in section

3.4.1.

3.4.6. Correlation between the benchmark and the cloning portfolio, and between

the error and the benchmark.

The results are depicted in Figures 8 and 9. We can draw the conclusion that the cloning

strategy generates portfolios very strong correlated with the benchmark, at any moment

correlation coefficients being situated above the level of 0.94.  Moreover, the residuals of

this type of strategy ranged between –0.2 and +0.4, oscillating around the zero value.
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Figure 7. Historical and EWMA volatilities of the excess return for the two sub-strategies



23

3.4.7. Distributional properties of the tracking error

To shed even more light on the overall performance of the cloning strategy we have

analyzed the higher order moments (table 15 from Appendix 6). For the both

substrategies (unmanaged and rebalanced) the skewness was negative, indicating a
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tendency of cloning portfolio to over-perform the market. Kurtosis is for both

substrategies under 3, the platykurtic distribution indicating a smaller frequency of

tracking error extreme movements than in the case of normal distribution.

3.5. Implementing The Arbitrage Strategy

As was discussed  in section 2.2.1., in order to implement the arbitrage strategy, we need

to construct two portfolios. The so-called long portfolio was already created and tested in

previous sections, so we will focus on the short portfolio. The artificial benchmark used

in this case, was MSCI EURO index minus 2% p.a. We start again by estimating a

cointegrating regression, from which we are eliminating one variable at a time. We apply

the same simple algorithm until we find the optimal cointegrating portfolio (with the

minimum UR t-stat of the error). The summary of the optimization algorithm are

presented in Table 16 from Appendix 2. We observe again that any further optimization

leads to suboptimal portfolios (-6.25 comparing to –6.43 from the previous round).

Having found the optimal components of the short portfolio, we are now able to

determine the actual weights. So we will estimate the following cointegrating regression:

εββ

ββββ
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The results were, as shown in Table 17, the following:

Table 17. EG cointegrating regression coefficients for short portfolio
Dependent Variable:LEUROMINUS
Sample: 4/30/1997 5/02/2001
Included observations: 1046

Variable Coefficient Std. Error t-Statistic Prob.
LBELGIUM 0.048556 0.005851 8.299036 0.0000
LFINLAND 0.193238 0.001956 98.81191 0.0000
LGREECE 0.020864 0.003528 5.913643 0.0000
LIRELAND -0.076175 0.007751 -9.828342 0.0000

LNETHERLANDS 0.404709 0.012000 33.72456 0.0000
LPORTUGAL 0.354806 0.006464 54.88697 0.0000

C 0.741652 0.068012 10.90479 0.0000
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Once again, we verify the stationarity of the residual series, using lags from 8 to 0. (see

Table 18). The correct value of the ADF t-stat, which must be compared with the critical

value, is –6.4368, indicating a strong cointegration at 1% significance level.

Table 18. Second phase of EG method for short portfolio

SERIES: EROARE2

ADF test- level (with constant) MacKinnon critical values*: 1%: -5.2651 5%: -4.7211
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -6.4368 -6.3819 -6.0351 -5.9576 -5.7165 -5.9316 -5.9387 -6.0686 -6.1248
prob_lgmax 0 0.7722 0.7537 0.851 0.3689 0.1049 0.5906 0.2099 0.7148
AIC -7.5673 -7.5646 -7.5675 -7.5647 -7.5626 -7.5626 -7.5601 -7.5587 -7.5584
SBC -7.5578 -7.5503 -7.5485 -7.5409 -7.5341 -7.5293 -7.522 -7.5159 -7.5107

The weights of the short portfolio are now obtained by normalizing the coefficients (see

Table 22 from Appendix 3). Since we have determined both component portfolios, we

can determine the weights of arbitrage portfolio by doing a simple subtraction. To save

space, we are not reproducing here the initial weights, but we are reminding that the sum

of weights must be zero.

3.6. Back-testing the arbitrage strategy

3.6.1. Rolling window EG cointegration tests

We have used the same approach as in section 3.4.1. Since the unmanaged short portfolio

remained cointegrated, only at an unsatisfactory 10% level of confidence, we have

focused on the rebalanced strategy.  The resulting rolling window tests are depicted in

Figure 10 from Appendix 4. The direct effect of rebalancing consisted once again of a

more stationary tracking error, so that in 10 months out of 12 the portfolio remained

cointegrated at 1% significance level (Figure 10 middle panel).
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3.6.2. Arbitrage portfolio return

We will analyze arbitrage portfolio returns starting with the performances of the two long

and short component portfolios, considering the unmanaged and the rebalanced sub-

strategies. From Table 19 and more visually from the Figure 11, we observe how the

losses of the long portfolio were more than compensated by the returns of the short

portfolio.

Table 19. Cumulated returns of the arbitrage strategy

RLONG RSHORT RARBITRAGE RLONG_

REBALANCED

RSHORT_

REBALANCED

RARBITRAGE

_REBALANCED

May        2001 -6.8367% 9.0058% 2.1691% -6.7542% 7.1222% 0.3680%
Jun         2001 -9.4753% 17.0103% 7.5349% -9.5935% 10.2975% 0.7040%
Jul          2001 -9.4114% 16.0273% 6.6159% -9.4991% 10.5551% 1.0560%
Aug        2001 -13.9998% 22.4745% 8.4747% -14.4972% 15.9052% 1.4080%
Sep        2001 -29.7094% 28.4680% -1.2414% -28.9729% 30.7009% 1.7280%
Oct         2001 -24.8703% 22.8646% -2.0057% -24.1652% 26.2612% 2.0960%
Nov        2001 -20.1642% 19.7057% -0.4585% -19.8867% 22.3347% 2.4480%
Dec        2001 -16.8065% 17.4388% 0.6323% -16.7850% 19.5690% 2.7840%
Jan         2002 -23.0777% 22.3647% -0.7130% -22.7420% 25.8940% 3.1520%
Feb         2002 -23.2692% 23.5181% 0.2489% -22.7899% 26.2619% 3.4720%
Mar         2002 -16.8822% 18.8532% 1.9710% -16.9062% 20.7142% 3.8080%
Apr         2002 -19.9955% 22.9627% 2.9671% -19.1091% 23.2691% 4.1600%
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Figure 11. Cumulated returns of the arbitrage strategy with monthly
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Considering monthly rebalancing, the arbitrage returns were 4.16% comparing with

2.96% in the case of unmanaged portfolios. Again this differential can be explained by

the greater stationarity (quantified by a smaller ADF t-stat) of the rebalanced tracking

errors.

3.6.3. Turnover index and transaction costs.

We have computed turnover index not only for the arbitrage portfolio, but also for the

two component portfolios. The results are reported in Table 12 from the Appendix 5. We

can observe how for the entire arbitrage strategy TO index has situated between a

minimum value  of 0.65% and a maximum value of 6.47% per month. It must be

emphasized that always the arbitrage turnover was smaller than the sum of the

components’  turnover.

Regarding the important issue of transaction costs, we have calculated both these values

(Table 20 from Appendix 5) and their effects on the returns generated by the rebalanced

arbitrage strategy (Table 21 Appendix 5). Again we have used three brokerage fees:

10bp, 20 bp, and 50 bp. The arbitrage strategy remains efficient after accounting for the

brokerage fees. Moreover, if we deduct, as a stress-test, an exaggerated (relative to

liquidity of these markets) fee of 50 bp the strategy is still able to produce a positive

return. At the other extreme, if the portfolio manager had been able to negotiate a

brokerage fee of 10 bp, the rebalanced arbitrage returns would have been greater than in

the unmanaged case. As an observation, if the component portfolios had been managed

separately, the arbitrage portfolio would have lost the benefits of transaction costs

savings, and consequently the returns would have been smaller.
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3.6.4. Volatility of arbitrage portfolio returns

We have computed the historical and conditional EWMA volatility of arbitrage

portfolio, considering not only the monthly rebalancing of the weights, but also the

unmanaged case.  The results are depicted in Figure 12.

We observe how, during the testing period, volatility of the rebalanced (RBL) arbitrage

strategy was noticeable smaller comparing to the unmanaged strategy, irrespective of the

way of computation. Quantitatively, the mean volatility of the rebalanced arbitrage

portfolio returns was 9% p.a., while in the unmanaged case the mean volatility was 12%.

More important is that the both substrategies have had a market risk, as measured by

volatility, two times smaller than market risk of MSCI EURO index.
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3.6.5. Correlation between the benchmark return  and the arbitrage portfolio return

We have computed historical and EWMA correlation coefficients between arbitrage

portfolio returns and EURO MSCI returns. From Figure 13, we observe that by

rebalancing the component portfolios, we obtain a much lower correlation than in the

case we leave the portfolios unmanaged. If we calculate the mean correlation coefficients

over the testing period, we obtain for the unmanaged case a value of 0.30, while for the

rebalanced case we report a correlation of 0.055 which is very close to market neutrality   

3.6.6. Distributional properties of the two  tracking errors

Since the tracking error of the long portfolio has been analyzed in section 3.4.7, in the

following we will focus on the short portfolio error. The values of the descriptive

statistics have been reported in Table 15 from Appendix 6. Being a short portfolio, a

positive skewness indicates portfolio tendency over-perform the benchmark. This

tendency is the more pronounced the more stationary is the error. Again we observe a
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platykurtic distribution of errors, indicating a smaller frequency of extreme movement

than in the case of a normal distribution.

4. Conclusions

This paper has proposed to analyze the extent to which the cointegration technique may

be employed in portfolio construction. To this end we have implemented and tested two

types of strategies:  cloning strategies and  arbitrage strategies.

 Using a simple algorithm we succeeded  to find a portfolio that systematically over-

performed the benchmark in terms of returns, had  a smaller volatility, and moreover was

composed of a smaller number of assets than the original benchmark. Once found, the

cloning strategy remained cointegrated with the benchmark during the entire testing

period, even if the portfolio was left unmanaged. When we tried to rebalance the weights

with a monthly frequency, the results were even more appealing, obtaining a  portfolio

not only more cointegrated than in the first case, but also with a greater excess return and

a reduced risk. The performances of  the model persisted even after accounting for

brokerage fees.

The second strategy aimed to produce a positive return in all states of the nature. We

therefore constructed back-to-back two cloning strategies: a long one and a short one.

These two portfolios remained the most cointegrated with their benchmarks when we

rebalanced the weights every month. The enhanced stationarity of the tracking errors,

gained this way, made it possible for the arbitrage portfolio to generate positive risk-free

returns  after deducting the corresponding transaction costs. Regarding the management

of cloning and arbitrage strategies, our analysis leaded to the conclusion that the

advantage of cointegration is obvious irrespective of our decision to leave unmanaged or

to rebalance the portfolios. However, from a risk management point of view we

recommend the rebalancing, because the unmanaged strategy will sooner or later result in

an increased level of volatility.
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APPENDIX 1 – ADF Unit-Root Tests using from 8 to 0 lags

Series:LAUSTRIA

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -1.2055 -1.3041 -1.2504 -1.3486 -1.4182 -1.3242 -1.3111 -1.3314 -1.3419
prob_lgmax 0.228 0.0258 0.2683 0.0304 0.1401 0.0586 0.799 0.7014 0.8081
AIC -5.9508 -5.953 -5.9513 -5.953 -5.9525 -5.9534 -5.9509 -5.9495 -5.9468
SBC -5.9413 -5.9388 -5.9323 -5.9292 -5.924 -5.9201 -5.9128 -5.9066 -5.8991

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -30.182 -22.832 -17.442 -14.677 -14.193 -13.116 -12.053 -11.226 -10.754
prob_lgmax 0 0.2434 0.0353 0.1589 0.05 0.7513 0.7486 0.8574 0.5909
AIC -5.9533 -5.9517 -5.9531 -5.9525 -5.9537 -5.9512 -5.9497 -5.947 -5.9443
SBC -5.9438 -5.9375 -5.9341 -5.9287 -5.9251 -5.9179 -5.9116 -5.904 -5.8966

Series:LBELGIUM

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -1.4425 -1.6174 -1.5335 -1.5087 -1.4818 -1.4667 -1.444 -1.4069 -1.3587
prob_lgmax 0.1492 0 0.0371 0.5151 0.9226 0.7755 0.9428 0.2364 0.4997
AIC -5.8855 -5.907 -5.9083 -5.9058 -5.9031 -5.9003 -5.8977 -5.8962 -5.894
SBC -5.8761 -5.8928 -5.8893 -5.8821 -5.8746 -5.867 -5.8596 -5.8533 -5.8463

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -27.688 -22.442 -18.813 -16.313 -14.694 -13.354 -12.8 -12.157 -11.571
prob_lgmax 0 0.0313 0.4766 0.8771 0.7316 0.9877 0.2151 0.4691 0.5536
AIC -5.9064 -5.908 -5.9056 -5.9029 -5.9002 -5.8976 -5.8962 -5.8941 -5.8916
SBC -5.8969 -5.8937 -5.8866 -5.8792 -5.8716 -5.8643 -5.8581 -5.8512 -5.8438

Series:LFINLAND

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -1.5032 -1.4921 -1.485 -1.4836 -1.4507 -1.4767 -1.4772 -1.4641 -1.4814
prob_lgmax 0.1328 0.6025 0.08 0.6199 0.7993 0.6327 0.1792 0.9754 0.933
AIC -4.2725 -4.2699 -4.27 -4.2673 -4.2648 -4.2624 -4.2613 -4.2584 -4.2557
SBC -4.263 -4.2557 -4.251 -4.2436 -4.2363 -4.2292 -4.2232 -4.2156 -4.208

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -31.766 -23.882 -19.462 -16.499 -14.861 -14.041 -12.832 -11.863 -10.793
prob_lgmax 0 0.0798 0.6219 0.7957 0.6364 0.1813 0.969 0.927 0.3562
AIC -4.2697 -4.2698 -4.2671 -4.2647 -4.2623 -4.2611 -4.2583 -4.2555 -4.2535
SBC -4.2602 -4.2555 -4.2481 -4.241 -4.2337 -4.2278 -4.2202 -4.2126 -4.2058
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Series:LFRANCE

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -1.8593 -1.8538 -1.8331 -1.8197 -1.8302 -1.829 -1.8033 -1.7885 -1.7203
prob_lgmax 0.063 0.0722 0.0478 0.3254 0.9251 0.2827 0.8795 0.0381 0.7602
AIC -5.7565 -5.7568 -5.7577 -5.7557 -5.7529 -5.7511 -5.7484 -5.7497 -5.7481
SBC -5.747 -5.7426 -5.7387 -5.732 -5.7244 -5.7178 -5.7103 -5.7068 -5.7004

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -30.536 -23.574 -19.61 -16.688 -15.303 -13.742 -13.466 -12.548 -11.975
prob_lgmax 0 0.0461 0.3207 0.9308 0.2805 0.8818 0.0381 0.7624 0.4502
AIC -5.7554 -5.7564 -5.7544 -5.7516 -5.7498 -5.7472 -5.7485 -5.7472 -5.7454
SBC -5.7459 -5.7421 -5.7354 -5.7278 -5.7213 -5.7138 -5.7104 -5.7042 -5.6977

Series:LGERMANY

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -2.4929 -2.5012 -2.4285 -2.3624 -2.3235 -2.3514 -2.2719 -2.1725 -2.1614
prob_lgmax 0.0127 0.2074 0.0047 0.495 0.5594 0.5331 0.0906 0.0651 0.8529
AIC -5.5079 -5.5067 -5.5115 -5.5102 -5.5081 -5.5056 -5.5056 -5.5065 -5.5036
SBC -5.4985 -5.4924 -5.4926 -5.4865 -5.4796 -5.4723 -5.4675 -5.4636 -5.4559

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -31.116 -24.485 -19.134 -16.2 -14.207 -13.727 -13.409 -12.456 -11.891
prob_lgmax 0 0.0037 0.5356 0.6039 0.5794 0.0787 0.0574 0.8156 0.4524
AIC -5.5026 -5.5078 -5.5068 -5.5048 -5.5022 -5.5026 -5.5038 -5.501 -5.4988
SBC -5.4931 -5.4936 -5.4878 -5.481 -5.4737 -5.4692 -5.4657 -5.4581 -5.4511

Series:LGREECE

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -1.5793 -1.6926 -1.6625 -1.6263 -1.5722 -1.5465 -1.5165 -1.4329 -1.3966
prob_lgmax 0.1143 0 0.4592 0.9316 0.1982 0.9139 0.6629 0.2088 0.4824
AIC -4.7871 -4.8054 -4.8031 -4.8006 -4.7994 -4.7969 -4.7943 -4.7942 -4.792
SBC -4.7776 -4.7912 -4.7841 -4.7769 -4.7709 -4.7636 -4.7562 -4.7514 -4.7443

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -27.935 -21.628 -18.029 -16.39 -14.578 -13.475 -12.969 -12.311 -11.92
prob_lgmax 0 0.4294 0.8942 0.183 0.9471 0.6333 0.1956 0.4616 0.2522
AIC -4.8046 -4.8023 -4.8 -4.799 -4.7965 -4.794 -4.7942 -4.792 -4.7906
SBC -4.7951 -4.7881 -4.781 -4.7752 -4.768 -4.7607 -4.7561 -4.7491 -4.7429
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Series:LIRELAND

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -1.9183 -1.9361 -1.8509 -1.8553 -1.8211 -1.7927 -1.7869 -1.7403 -1.7642
prob_lgmax 0.0551 0.0111 0.0613 0.9346 0.5689 0.4844 0.5265 0.9117 0.6419
AIC -5.8218 -5.8272 -5.8277 -5.8248 -5.8232 -5.8208 -5.8185 -5.8161 -5.8135
SBC -5.8124 -5.813 -5.8087 -5.8011 -5.7947 -5.7875 -5.7804 -5.7733 -5.7658

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -29.946 -23.302 -18.859 -16.047 -14.69 -13.627 -12.626 -11.588 -11.654
prob_lgmax 0 0.0512 0.9941 0.6199 0.4388 0.4798 0.8573 0.6923 0.0348
AIC -5.8255 -5.8263 -5.8234 -5.8219 -5.8196 -5.8174 -5.8151 -5.8124 -5.8145
SBC -5.816 -5.8121 -5.8044 -5.7982 -5.7911 -5.784 -5.777 -5.7695 -5.7668

Series:LITALY

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -2.7385 -2.7156 -2.7342 -2.7667 -2.7043 -2.7538 -2.7366 -2.7186 -2.7286
prob_lgmax 0.0062 0.5316 0.6756 0.0324 0.5434 0.1516 0.1191 0.1044 0.6123
AIC -5.5729 -5.5704 -5.5678 -5.5694 -5.5672 -5.5666 -5.566 -5.5658 -5.5632
SBC -5.5634 -5.5561 -5.5488 -5.5457 -5.5386 -5.5333 -5.528 -5.5229 -5.5155

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -31.655 -22.869 -19.905 -16.595 -15.392 -13.203 -12.827 -11.701 -10.52
prob_lgmax 0 0.6803 0.0336 0.5292 0.1585 0.1133 0.1095 0.5929 0.1649
AIC -5.5652 -5.5625 -5.564 -5.562 -5.5612 -5.5607 -5.5605 -5.5579 -5.557
SBC -5.5557 -5.5483 -5.545 -5.5383 -5.5327 -5.5274 -5.5224 -5.515 -5.5093

Series:LNETHERLANDS

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -3.6034 -3.5835 -3.5226 -3.4183 -3.3336 -3.3408 -3.2274 -3.104 -3.0749
prob_lgmax 0.0003 0.0545 0.0021 0.4688 0.6491 0.5571 0.0589 0.3427 0.737
AIC -5.8052 -5.8067 -5.8141 -5.8119 -5.8094 -5.8071 -5.8078 -5.8063 -5.8036
SBC -5.7958 -5.7925 -5.7951 -5.7882 -5.7809 -5.7738 -5.7697 -5.7635 -5.7559

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -30.605 -24.513 -20.042 -17.335 -15.579 -14.919 -13.996 -12.738 -11.752
prob_lgmax 0 0.0012 0.387 0.5585 0.4757 0.0456 0.2978 0.8022 0.809
AIC -5.7964 -5.8041 -5.8026 -5.8007 -5.7983 -5.7996 -5.799 -5.7964 -5.7937
SBC -5.7869 -5.7899 -5.7836 -5.7769 -5.7698 -5.7663 -5.7608 -5.7534 -5.7459
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Series:LPORTUGAL

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -2.0346 -2.1695 -1.9042 -1.8596 -1.8887 -1.854 -1.8669 -1.8294 -1.8726
prob_lgmax 0.0419 0 0.3949 0.8009 0.6457 0.4005 0.5485 0.6199 0.4307
AIC -5.7993 -5.8146 -5.824 -5.8218 -5.8192 -5.817 -5.8144 -5.8125 -5.8103
SBC -5.7898 -5.8004 -5.805 -5.798 -5.7907 -5.7837 -5.7763 -5.7696 -5.7626

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -28.283 -22.044 -18.154 -15.603 -14.428 -12.953 -11.909 -10.895 -10.531
prob_lgmax 0 0.3517 0.8613 0.7017 0.3579 0.6009 0.6744 0.4748 0.4664
AIC -5.812 -5.8224 -5.8204 -5.8176 -5.8156 -5.813 -5.8112 -5.8088 -5.8064
SBC -5.8025 -5.8082 -5.8014 -5.7939 -5.787 -5.7797 -5.7731 -5.7659 -5.7587

Series:LSPAIN

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -2.671 -2.6999 -2.6905 -2.5772 -2.601 -2.5648 -2.5221 -2.4418 -2.373
prob_lgmax 0.0076 0.0031 0.0527 0.5833 0.6757 0.4153 0.5765 0.3342 0.2849
AIC -5.5178 -5.5233 -5.5242 -5.5229 -5.5204 -5.5182 -5.5157 -5.5144 -5.5134
SBC -5.5083 -5.509 -5.5052 -5.4992 -5.4919 -5.4849 -5.4777 -5.4715 -5.4657

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -29.487 -23.13 -19.143 -16.668 -15.187 -13.983 -13.236 -11.878 -10.906
prob_lgmax 0 0.0467 0.5565 0.6493 0.3971 0.5581 0.3233 0.2942 0.4618
AIC -5.5182 -5.5192 -5.5184 -5.5158 -5.5138 -5.5115 -5.5105 -5.5099 -5.5079
SBC -5.5087 -5.5049 -5.4995 -5.4921 -5.4853 -5.4782 -5.4724 -5.467 -5.4602

Series:LEURO

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -2.3129 -2.2896 -2.2907 -2.239 -2.2072 -2.2197 -2.1861 -2.1495 -2.1079
prob_lgmax 0.02073 0.00651 0.00215 0.53742 0.60394 0.32053 0.63691 0.01996 0.38319
AIC -5.7857 -5.7901 -5.7964 -5.7942 -5.7917 -5.7899 -5.7873 -5.79 -5.788
SBC -5.7763 -5.7759 -5.7774 -5.7705 -5.7632 -5.7566 -5.7493 -5.7471 -5.7404

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -29.686 -24.013 -19.627 -16.491 -15.116 -13.878 -13.698 -12.266 -11.618
prob_lgmax 0 0.00205 0.53505 0.60577 0.31967 0.63828 0.02036 0.37694 0.6689
AIC -5.787 -5.7933 -5.7913 -5.789 -5.787 -5.7846 -5.7874 -5.7856 -5.7832
SBC -5.7775 -5.779 -5.7723 -5.7652 -5.7585 -5.7513 -5.7493 -5.7427 -5.7355
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Series:LEUROPLUS

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -2.2647 -2.2256 -2.2448 -2.1973 -2.1625 -2.181 -2.1507 -2.1292 -2.0825
prob_lgmax 0.02353 0.00678 0.00205 0.52874 0.61314 0.31393 0.62738 0.01926 0.39004
AIC -5.7855 -5.7899 -5.7962 -5.7941 -5.7915 -5.7897 -5.7872 -5.7899 -5.7879
SBC -5.776 -5.7756 -5.7772 -5.7703 -5.763 -5.7564 -5.7491 -5.747 -5.7403

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -29.686 -24.013 -19.627 -16.491 -15.116 -13.878 -13.698 -12.266 -11.618
prob_lgmax 0 0.00205 0.53505 0.60577 0.31967 0.63828 0.02036 0.37694 0.6689
AIC -5.787 -5.7933 -5.7913 -5.789 -5.787 -5.7846 -5.7874 -5.7856 -5.7832
SBC -5.7775 -5.779 -5.7723 -5.7652 -5.7585 -5.7513 -5.7493 -5.7427 -5.7355

Series:LEUROMINUS

ADF test- level (with constant) MacKinnon critical values: 1%: -3.4394 5%: -2.8647
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -2.3839 -2.4056 -2.3562 -2.2947 -2.272 -2.2676 -2.2261 -2.1488 -2.1222
prob_lgmax 0.01713 0.00577 0.00246 0.56297 0.57762 0.34019 0.66479 0.02209 0.36395
AIC -5.7861 -5.7907 -5.7967 -5.7945 -5.792 -5.7901 -5.7875 -5.79 -5.7881
SBC -5.7766 -5.7764 -5.7777 -5.7707 -5.7635 -5.7568 -5.7494 -5.7471 -5.7404

ADF first difference (with constant)
Lag 0 Lag 1 Lag 2 Lag 3 Lag 4 Lag 5 Lag 6 Lag 7 Lag 8

t-stat -29.686 -24.013 -19.627 -16.491 -15.116 -13.878 -13.698 -12.266 -11.618
prob_lgmax 0 0.00205 0.53505 0.60577 0.31967 0.63828 0.02036 0.37694 0.6689
AIC -5.787 -5.7933 -5.7913 -5.789 -5.787 -5.7846 -5.7874 -5.7856 -5.7832
SBC -5.7775 -5.779 -5.7723 -5.7652 -5.7585 -5.7513 -5.7493 -5.7427 -5.7355
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APPENDIX 2  Optimization algorithm

Table 3. Engle-Granger cointegration tests (round 1)

SERIES NAME ADF H0: I(1) vs I(0)
RESIDAU -4.7471
RESIDBE -4.7094
RESIDFI -6.6327
RESIDFR -6.1154
RESIDGE -4.7469
RESIDGR -5.2723
RESIDIR -4.6777
RESIDIT -4.9688
RESIDNE -5.4707
RESIDPO -3.9057
RESIDSP -6.3582

Table 4. Engle-Granger cointegration tests

(round 2, after eliminating Finland index)

SERIES NAME ADF H0: I(1) vs I(0)
RESID01AU -7.1659
RESID01BE -6.4796
RESID01FR -6.5213
RESID01GE -5.0125
RESID01GR -6.318
RESID01IR -6.4678
RESID01IT -5.8177
RESID01NE -7.3124
RESID01PO -5.4401
RESID01SP -6.8202

Table 5. Engle-Granger cointegration tests

(round 3, after eliminating Finland and Netherlands)

SERIES NAME ADF H0: I(1) vs I(0)
RESID02AU -7.0592
RESID02BE -7.1881
RESID02FR -6.3224
RESID02GE -5.2677
RESID02GR -6.9923
RESID02IR -7.0693
RESID02IT -6.0594
RESID02PO -6.2361
RESID02SP -7.3568
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APPENDIX 2 (continued)
Table 6. Engle-Granger cointegration tests

(round 4, eliminated: Finland, Netherlands and Spain)

SERIES NAME ADF H0: I(1) vs I(0)
RESID03AU -7.1127
RESID03BE -7.2266
RESID03FR -5.5149
RESID03GE -5.8952
RESID03GR -7.0518
RESID03IR -6.8181
RESID03IT -6.893
RESID03PO -6.9268

Table 7. Engle-Granger cointegration tests
(suboptimal round)

SERIES NAME ADF H0: I(1) vs I(0)
RESID04AU -7.0568
RESID04FR -5.525
RESID04GE -4.8763
RESID04GR -6.4989
RESID04IR -6.7358
RESID04IT -6.8774
RESID04PO -6.0192

Table 16. Short portfolio optimization summary

Residual Series ADF t-stat
round 1 r_ge -5.8476
round 2 r_01fr -6.2491
round 3 r_02au -6.2563
round 4 r_03it -6.2609
round 5 r_04sp -6.4368
round 6 r_05ne -6.2523
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APPENDIX 3. Asset allocations

  Tabel 22a. Asset allocation of the long portfolio monthly rebalanced

Month austria france germany greece ireland italy portugal
May        2001 -4.86% 57.94% 31.37% -2.24% 5.07% 20.85% -8.12%
Jun         2001 -4.52% 60.53% 29.86% -2.41% 5.78% 18.46% -7.70%
Jul          2001 -4.63% 60.91% 29.41% -2.18% 5.32% 18.04% -6.87%
Aug        2001 -4.68% 61.06% 28.78% -1.87% 4.68% 18.11% -6.08%
Sep        2001 -4.83% 60.75% 28.76% -1.74% 4.39% 18.48% -5.80%
Oct         2001 -5.03% 62.89% 27.25% -1.69% 4.57% 16.82% -4.82%
Nov        2001 -5.30% 63.71% 26.67% -1.71% 4.75% 16.25% -4.37%
Dec        2001 -6.04% 64.97% 25.96% -1.77% 5.16% 15.26% -3.55%
Jan         2002 -6.29% 65.64% 25.82% -1.88% 5.59% 14.45% -3.32%
Feb         2002 -6.27% 65.62% 26.06% -1.87% 5.48% 14.44% -3.46%
Mar         2002 -5.72% 64.34% 27.97% -1.55% 3.63% 15.80% -4.46%
Apr         2002 -5.53% 63.88% 28.70% -1.54% 3.15% 16.18% -4.84%

  May        2002 -5.45% 63.57% 29.28% -1.48% 2.90% 16.59% -5.41%

  Tabel 22b. Asset allocation of the short portfolio monthly rebalanced

Month belgium finland greece ireland netherlands portugal
May        2001 5.13% 20.43% 2.21% -8.05% 42.78% 37.51%
Jun         2001 4.92% 20.34% 1.14% -5.77% 43.72% 35.65%
Jul          2001 5.30% 21.06% -0.59% -1.85% 43.49% 32.59%
Aug        2001 6.13% 21.74% -1.90% 0.57% 42.75% 30.70%
Sep        2001 6.83% 21.80% -2.43% 1.18% 43.66% 28.96%
Oct         2001 6.77% 21.08% -2.55% 1.55% 45.71% 27.45%
Nov        2001 5.75% 20.08% -1.91% 1.05% 48.51% 26.52%
Dec        2001 4.86% 19.11% -1.37% 0.35% 51.33% 25.72%
Jan         2002 4.84% 18.75% -1.23% 0.00% 52.29% 25.34%
Feb         2002 4.88% 18.55% -1.21% 0.07% 52.69% 25.02%
Mar         2002 3.70% 18.36% -1.41% 2.01% 52.59% 24.75%
Apr         2002 1.50% 18.03% -1.32% 3.46% 52.71% 25.62%

  May        2002 -1.78% 17.40% -0.95% 4.49% 53.64% 27.19%
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APPENDIX 3 (continued)
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Figure A. The weights of the long cloning portfolio during testing period
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Figure B. The weights of the short cloning portfolio during testing period
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APPENDIX 4
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Figure 1. Monthly EG rolling cointegration tests for the
unmanaged portfolio
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Figure 2. Daily EG rolling cointegration tests for the
unmanaged portfolio
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Figure 3. Monthly EG rolling cointegration tests for the
rebalanced portfolio
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Figure 4. Daily EG rolling cointegration tests for the
rebalanced portfolio
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APPENDIX 5.

Table 14.
The effects of transaction costs on the returns generated by the rebalanced cloning strategy

a=0.1% a=0.2% a=0.5%
Net

rebalanced
cloning
return

 Cumulated net
rebalanced

cloning return

Net
rebalanced

cloning
return

 Cumulated net
rebalanced

cloning return

Net
rebalanced

cloning
return

 Cumulated net
rebalanced

cloning return

-6.8065% -6.8065% -6.8587% -6.8587% -7.0155% -7.0155%
-2.8562% -9.6627% -2.8733% -9.7320% -2.9243% -9.9397%
0.0792% -9.5836% 0.0639% -9.6680% 0.0183% -9.9215%

-5.0072% -14.5907% -5.0163% -14.6843% -5.0436% -14.9650%
-14.5178% -29.1085% -14.5598% -29.2441% -14.6858% -29.6508%

4.7897% -24.3188% 4.7716% -24.4725% 4.7173% -24.9335%
4.2476% -20.0713% 4.2167% -20.2558% 4.1241% -20.8094%
3.0859% -16.9854% 3.0699% -17.1859% 3.0222% -17.7872%

-5.9603% -22.9457% -5.9637% -23.1495% -5.9736% -23.7608%
-0.0983% -23.0441% -0.1488% -23.2983% -0.3000% -24.0608%
5.8675% -17.1766% 5.8513% -17.4470% 5.8026% -18.2582%

-2.2164% -19.3930% -2.2299% -19.6769% -2.2703% -20.5285%

Table 21.
The effects of transaction costs on the returns generated by the rebalanced arbitrage strategy

a=0.1% a=0.2% a=0.5%
Net

rebalanced
arbitrage

return

 Cumulated net
rebalanced

arbitrage return

Net
rebalanced
arbitrage

return

 Cumulated net
rebalanced

arbitrage return

Net
rebalanced
arbitrage

return

 Cumulated net
rebalanced

arbitrage return

0.2885% 0.2885% 0.2090% 0.2090% -0.0296% -0.0296%
0.2630% 0.5515% 0.1900% 0.3990% -0.0290% -0.0586%
0.2906% 0.8420% 0.2291% 0.6281% 0.0448% -0.0138%
0.3159% 1.1580% 0.2798% 0.9079% 0.1716% 0.1578%
0.2486% 1.4066% 0.1773% 1.0852% -0.0369% 0.1209%
0.3040% 1.7106% 0.2401% 1.3252% 0.0482% 0.1691%
0.2759% 1.9866% 0.1999% 1.5251% -0.0283% 0.1409%
0.3055% 2.2921% 0.2750% 1.8001% 0.1834% 0.3243%
0.3595% 2.6516% 0.3511% 2.1512% 0.3257% 0.6500%
0.2474% 2.8990% 0.1747% 2.3259% -0.0432% 0.6068%
0.2886% 3.1875% 0.2411% 2.5670% 0.0989% 0.7056%
0.2900% 3.4775% 0.2279% 2.7950% 0.0419% 0.7475%
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APPENDIX 5 (continued)

Table 12. Turnover index for the arbitrage strategy and its components

Month TO(%) Long TO(%) Short TO(%) Arbitrage
May-01 4.06 3.22 6.40
Jun-01 1.45 5.02 6.47
Jul-01 1.31 3.93 5.25

Aug-01 0.78 2.27 3.05
Sep-01 3.36 2.42 5.60
Oct-01 1.45 3.44 4.89

Nov-01 2.50 3.37 5.87
Dec-01 1.31 1.10 2.42
Jan-02 0.28 0.52 0.65
Feb-02 4.13 1.95 5.81
Mar-02 1.31 2.53 3.83
Apr-02 1.13 3.91 4.98

Table 20. Transaction costs incurred by  the rebalanced arbitrage strategy
Turnover Transaction costs

a = 0.1% a = 0.2% a = 0.5%
0.730018 0.00073 0.001460035 0.00365009
0.614461 0.000614 0.001228921 0.0030723
0.360800 0.000361 0.000721601 0.001804
0.713716 0.000714 0.001427431 0.00356858
0.639610 0.00064 0.001279219 0.00319805
0.760510 0.000761 0.001521021 0.00380255
0.305218 0.000305 0.000610435 0.00152609
0.084584 8.46E-05 0.000169168 0.00042292
0.726422 0.000726 0.001452844 0.00363211
0.474294 0.000474 0.000948588 0.00237147
0.620287 0.00062 0.001240574 0.00310143
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APPENDIX 6.  Distributional properties of cloning errors

Table 15.
    Distributional properties of cloning errors

Error Long P Long rbl P Short P Short rbl P
 Mean  0.010147  0.001207  0.006660  0.002074
 Median  0.011981  0.002274 -0.006811 -0.005947
 Maximum  0.032453  0.014586  0.080644  0.049457
 Minimum -0.020394 -0.020299 -0.051729 -0.026488
 Std. Dev.  0.011858  0.007568  0.034781  0.021043
 Skewness -0.358671 -0.449998  0.601555  0.721445
 Kurtosis  2.232754  2.301240  1.976044  2.103339


