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Abstract 
 

 This study develops a comparative analysis concerning Value at Risk measure for a portfolio 

consisting of three stocks traded at Bucharest Stock Exchange. The analysis set out from 1-day, 1% 

VaR and has been extended in two directions: the volatility models and the distributions which are 

used when computing VaR. Thus, the historical volatility, the EWMA volatility model, GARCH-

type models for the volatility of the stocks and of the portfolio and a dynamic conditional 

correlation (DCC) model were considered while VaR was computed using, apart from the standard 

normal distribution, different approaches for taking into account the non-normality of the returns 

(such as the Cornish-Fisher approximation, the modeling of the empirical distribution of the 

standardized returns and the Extreme Value Theory approach). 

 The results indicate that using conditional volatility models and distributional tools that 

account for the non-normality of the returns leads to a better VaR-based risk management. For the 

considered portfolio VaR computed on the basis of a GARCH (1,1) model for the volatility of the 

portfolio returns where the standardized returns are modeled using the generalized hyperbolic 

distribution seems to be the best compromise between precision, capital coverage levels and the 

required amount of calculations. Moreover, the Expected Shortfall risk measure offers very good 

precision results in all approaches, but at the cost of rather high capital coverage levels. 
 

1. Introduction 
 

 Value at Risk (VaR) is a simple risk measure which tries to represent through a single 

number the total risk of a portfolio consisting of financial assets. It was introduced by J. P. Morgan 

in 1994 and now it is largely used not only by financial institutions, but also by companies and 

investment funds. Moreover, The Basle Committee on Banking Supervision of the Bank for 

International Settlements uses it in order to determine the capital requirements for banks1. 

 VaR is the estimated loss of a fixed portfolio over a fixed period of time and it answers the 

following question: "What loss level is such that it only will be exceeded p% of the time in the next 

T trading days?". This may be written as follows: 

                                                 
1 See Codirlasu (2007) 
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( ) pVaRR p
TT =−<,1Pr  

 

where R1,T is the total return over the next T trading days, p is the probability level and the minus 

sign in front of VaR term shows that VaR itself is a positive number corresponding to a loss. The 

interpretation is thus that the VaR gives a number such that is a p% chance of loosing more than it. 

 It is not unreasonable to say that VaR has become the benchmark for risk measuring. This is 

due to the fact that it captures an important aspect of risk: how bad things can get with a certain 

probability p. Furthermore, it is easily communicated and understood.  

 However, VaR has certain shortcomings2. Perhaps the most important one is the fact that 

extreme losses may be ignored. VaR tells only that p% of the time the portfolio return will be below 

the reported number, but it says nothing about the size of the losses in those p% worst cases. 

Moreover, VaR assumes that the portfolio is constant across the next T days which is unrealistic in 

many cases when T is larger than a day or a week. Finally, the parameters T and p are arbitrarily 

chosen3.  

 I consider that the VaR subject is very relevant and challenging for certain reasons such as: 

it raises a great interest from both financial researchers and practitioners, being a risk measure built 

on financial and statistical theory but with vast applications in real business life; although is a 

number easily communicated and understood it may include rather complex features from finance 

and statistics; although it represents the benchmark for risk calculation it is generally considered not 

to be a satisfactory risk measure due to certain shortcomings, some of them being mentioned in the 

paragraph above. 

 Therefore, in this study, I developed a comparative analysis between different approaches to 

VaR. This analysis does not refer to the process of choosing the two parameters of VaR which were 

considered to be p = 1% and T = 1 day. The most important reason for setting T to 1 day is that, as I 

have already mentioned, the assumption that the portfolio will remain constant across the next T 

days (T > 1) is not realistic. Instead, this study focuses on the volatility models and on the 

distributions which can be used in order to obtain the VaR number, the comparative analysis being 

developed on a simple portfolio consisting of three stocks traded at Bucharest Stock Exchange. 

 Section 2 gives a concise literature review regarding the subject of this study. Section 3 

presents a few theoretical aspects regarding the methodology used for computing VaR, section 4 

                                                 
2 See Christoffersen (2002)  
3 For example, The Basle Accord for Capital Adequacy sets T = 10 (2 weeks in terms of trading days) and p = 1% 
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offers a presentation of the primary data for the portfolio on which the analysis was developed 

while sections 5 to 9 show the results obtained for the five volatility approaches to VaR: historical 

volatility, EWMA model for the volatility of the stocks, GARCH model for the volatility of the 

portfolio, GARCH models for the volatility of the stocks, this approach being than considered 

together with a dynamic conditional correlation model. Finally, section 10 presents the conclusions 

of this study. 

 

2. A Brief Literature Review 
 

 The analysis developed in this study is mainly based on Christoffersen (2002). His book on 

financial risk management presents the great majority of the volatility and distributional approaches 

to VaR that I used here.  

 In what concerns the volatility models, Christoffersen discusses the following ones that are 

used in this study: the EWMA model introduced by JP Morgan's RiskMetrics system in 1996, along 

with its limitations; the basic GARCH model introduced in Engle (1982) and Bollerslev (1986) with 

some of its extensions that include the leverage effect, as it is the TARCH model which was 

developed independently by Zakoian (1990) and Glosten, Jagannathan and Runkle (1993); the 

Quasi Maximum Likelihood estimation of GARCH models based on Bollerslev and Wooldridge 

(1998); and the simple dynamic conditional correlation model used in this study based on Engle 

(2000) and Engle and Sheppard (2001).  

 Moreover, in Christoffersen is discussed the process of modeling the distribution of the 

standardized returns with regard to the following results of the previous studies: the empirical 

properties of asset returns as found in Cont (2001), especially the non-normality of the returns (even 

when they are standardized using conditional volatility models) and the leverage effect; modeling 

the conditional distribution of the returns using t-Student is considered in Bollerslev (1987); 

applications of Extreme Value Theory in financial risk management are discussed in McNeil 

(2000), while the choice of threshold under the EVT approach is discussed in McNeil and Frey 

(2000); in what concerns the Expected Shortfall measure Artzner, Delbaen, Eber and Heath (1999) 

showed that it has nicer theoretical properties than VaR, while Basak and Shapiro (2000) found that 

portfolio management based on ES leads to lower losses than that based on VaR. Most of the 

models and approaches that are presented here, and that are also used in my study,, were taken and 
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implemented from Christoffersen (2002). However, I included in the references of this study the 

papers of the originators of these models and approaches. 

 Also, of great interest are the results of Codirlasu (2007) who performed a comparable 

analysis developed on a portfolio consisting of four stocks traded at Bucharest Stock Exchange. His 

analysis takes into account four of the volatility approaches used in my study but computes VaR 

only under the assumption that the standardized returns follow a standard normal distribution. His 

results indicate that the EWMA model performed best followed by the GARCH models which also 

have the advantage of a reduced level of capital coverage. 

   These are only a few results from the fast growing literature on risk management, the 

literature review given here being focused especially on the aspects that are considered in my study. 

 

3. The Methodology 
 

 I set out from the analytical 1-day, 1% VaR formula 
 

( )SQVaR μσ +−= %1%1  
 

where μ denotes the mean of the daily returns of the portfolio, σ denotes the volatility of the daily 

returns of the portfolio, Q1% denotes the 1% quantile of the distribution considered for the daily 

standardized returns and S denotes the value of the portfolio at the moment when VaR is computed. 

The analysis developed in this study is focused on two directions: the usage of different volatility 

models when determining VaR and the modeling of the distribution of the daily standardized 

returns. So, the architecture of this study is constructed around these two terms from the VaR 

formula: Q1% and σ. 

 I will begin by presenting the five volatility approaches to VaR that were considered in my 

study: 

• Historical volatility. This is the simplest volatility approach when computing VaR and represents 

the first stage of the comparative analysis developed here (see section 5). In this case VaR was 

determined on the basis of 750 days rolling volatility of the data series of the portfolio returns. 
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• EWMA volatility model. In this stage it was considered one of the simplest conditional volatility 

models, namely the Exponentially Weighted Moving Average (EWMA) model proposed by JP 

Morgan's RiskMetrics system in 19964. The model is written as 
 

222
1 )1( ttt Rλλσσ −+=+   

where λ < 1, σ denotes the volatility and R the return. The key issue in determining tomorrow's 

volatility is represented by the value chosen for λ. Here, it was considered that it equals 0.94 which 

represents the value used by RiskMetrics for daily returns. Using the standard deviation of the first 

750 daily returns for each stock as starting value I computed the EWMA volatility series for all the 

three stocks. Then, on the basis of historical correlation coefficients the volatility series of the 

portfolio was determined. Therefore, VaR was computed using the EWMA volatility of the 

portfolio (see section 6). 

• GARCH volatility model for the portfolio returns. The analysis was extended by considering 

more elaborate models such as GARCH5 (Generalized AutoRegressive Conditional 

Heteroskedasticity) models. In this case a simple GARCH (1,1) model for the volatility of the 

portfolio returns was considered, the model being written as: 
 

222
1 ttt R βσαωσ ++=+   

 

where α + β < 1, the sum of these two terms denoting the persistence of the model. The parameters 

α, β and ω were estimated through MLE in Eviews and based on their estimated values I computed 

the volatility series of the portfolio returns using as starting value the standard deviation of the first 

750 daily returns. Thus, VaR was computed using the GARCH volatility of the portfolio (see 

section 7). 

• GARCH volatility model for the stock returns. During this stage GARCH type volatility 

models were considered for the returns of the three stocks, namely two GARCH (1,1) models and a 

TARCH6 (1,1)  model. The specification of a TARCH (1,1) model is as follows: 
 

2222
1 ttttt dRR βσλαωσ +++=+  

where dt is a binary variable which equals 1 if Rt < 0, and equals 0 if Rt > 0. TARCH is an 

asymmetric model because a negative return has a different impact on the volatility of the portfolio 

                                                 
4 See JP Morgan (1996) 
5 See Engle (1982), Bollerslev (1986), Engle and Patton (2001) 
6 Threshold ARCH. See Glosten, Jagannathan and Runkle (1993) 
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than the one of a positive return. The usage of asymmetric volatility models is based on the fact that 

it has been argued that a negative return increases volatility by more than a positive return of the 

same magnitude7. The parameters of the three conditional volatility models were estimated through 

MLE in Eviews. On the basis of the estimation results I computed the volatility series for the three 

stocks considering that the starting values for each stock are the standard deviations of the first 750 

daily returns. Then, using the historical correlation coefficients, the volatility series for the portfolio 

was computed leading to the determination of VaR (see section 8). 

• GARCH DCC. The same approach as in the previous stage was considered but now in the context 

of a dynamic conditional correlation (DCC) model8. The conditional correlations are modeled using 

GARCH (1,1) type specifications with correlation targeting, the model being written as: 
 

[ ] [ ]( ) [ ]( )tjtitijtjtitjtitjtitij zzEqzzEzzzzEq ,,,,,,,,,1, −+−+=+ βα  
 

1,1,

1,
1,

++

+
+ =

tjjtii

tij
tij qq

q
ρ  

 

where z denotes the standardized returns. The important thing about this model is that the 

persistence parameters α and β are common across i and j. They were estimated through MLE in 

Excel using the following log likelihood function: 
 

( )∑ −Γ+Γ−=
t

tttt zzL 1'ln
2
1  

 

where Γt is the correlation matrix and | Γt| denotes its determinant. On the basis of the estimation 

results, the dynamic correlations between the three stocks were computed. Then, using the GARCH 

volatility of the three stocks (already determined in the previous stage), I obtained the volatility 

series for the portfolio. Finally, VaR was calculated on the basis of the GARCH DCC volatility of 

the portfolio (see section 9). 

 This is a brief presentation of the first direction taken into account in my comparative 

analysis on VaR measure. Now, for each of the five volatility models described above several 

distributional approaches were considered when modeling the series of the standardized returns of 

the portfolio9, as follows: 

                                                 
7 For example, see Cont (2001). This fact is also known as the leverage effect 
8 See Engle (2000), Engle and Sheppard (2001) 
9 For each volatility approach the returns of the portfolio were standardized using the corresponding volatility model 
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• The standard normal distribution. This is probably the most comfortable situation, in which it is 

considered that the standardized returns of the portfolio are following a N (0,1). However, as the 

empirical evidence would suggest10, the distributions of daily returns tend to be rather skewed and 

to have fat tails (they have excess kurtosis), so using the 1% quantile of N (0,1) for computing VaR 

may result in underestimating the risk of the portfolio. In this study the non-normality of the returns 

is verified using the Jarque-Bera test in Eviews and it is also visualized using the QQ plot, the 

probability density function (PDF) graph and the log PDF graph, all against the standard normal 

distribution. In order to deal with the non-normality of the returns, several other approaches were 

taken into account. 

• The historical quantile. This is a very simple approach used for computing VaR. Instead of 

modeling the empirical distributions of the standardized returns it is considered that the series of 

past returns could offer enough information for predicting the future extreme losses. However, the 

results are very sensible to the length of the considered past period and to the pattern of returns in 

that specific period. In this analysis, it was used the 1% quantile of the last 750 daily standardized 

returns. 

• The t-Student, Normal Inverse Gaussian (NIG) and Generalized Hyperbolic (GH) 

distributions. Another way to deal with the non-normality of the data is to model the portfolio 

returns series using other distributions. One of the first possibilities is to use the t-Student 

distribution11 which is a relatively simple distribution and has two advantages: it has only one 

parameter to estimate, namely the degrees of freedom and it allows for fat tails (may have excess 

kurtosis) which makes it a better choice than the standard normal distribution. However, a 

shortcoming of this distribution is represented by the fact that it does not allow for asymmetry, 

having a skewness of 0. In this context I considered also the NIG and GH distributions which allow 

for both skewness and excess kurtosis. The main reason for choosing these specific distributions 

(although the number of parameters to be estimated is larger: 4, respectively 5 parameters) is that in 

a previous study developed by the author they performed well at modeling the distribution of the 

daily standardized returns12. The parameters for the considered distributions were estimated through 

MLE using the Rmetrics package of the soft R and the selection between the distributions was 

                                                 
10 For example, see Cont (2001) 
11 See Bollerslev (1987) 
12 In that study I modeled the daily returns of the Russell 3000 index for the period 2000-2007 
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made, in each case, by means of the informational criteria Akaike and Schwarz. Thus, VaR was 

computed using the 1% quantile of the estimated NIG and GH distributions. 

• The Cornish-Fisher (CF) approximation. Another simple way to take into account the non-

normality of the standardized returns of the portfolio is the CF approximation. It does allow for 

skewness and excess kurtosis by constructing an approximation to quantiles from estimates of 

skewness and kurtosis on the basis of the following formula13:  

( ) ( ) ( )ppppppp ZZSZZKZSZCF 52
36

3
24

1
6

3
2

32 −−−+−+=  

 

where S is the skewness and K the excess kurtosis of the standardized returns, p is the chosen 

probability level and Zp is the quantile of the standard normal distribution corresponding to p. Thus 

the 1% CF quantile in this study was computed on the basis of the skewness and excess kurtosis of 

the series of the daily standardized returns of the portfolio. 

• Extreme Value Theory14 (EVT). Because, generally, the biggest risk to a portfolio is the sudden 

incidence of a single large negative return it may be more appropriate to model the tail of the 

standardized returns distribution. The central result in EVT is that the extreme tail of a wide range 

of distributions can approximately be described by the Generalized Pareto distribution (GPD) which 

allows for the presence of fat tails (the parameter ξ of GPD characterizes the tail of the distribution: 

ξ < 0 means thin tails, ξ = 0 means the kurtosis is 3 as for the standard normal distribution while ξ > 

0 means fat tails, which is the case of interest in this study). Because almost all results in EVT 

assume that the returns are iid, the analysis was developed on the standardized returns which, in 

many cases, could be reasonably assumed to be iid. Using GPD, EVT models only the right tail of 

the distribution (i.e. the standardized returns in excess of a threshold) and because we are interested 

in extreme negative returns the EVT analysis is developed on the negative of the returns. However, 

the choice of the threshold is in some ways arbitrary and in this study it was considered to be the 95 

percentile of the data set15. Now, under the EVT approach another risk measure was considered, 

namely the Expected Shortfall (ES) or the TailVaR as it is sometimes called16. ES tries to answer to 

the principal shortcoming of VaR: VaR number is only concerned with the number of losses 

exceeding it, not with the magnitude of these losses. The most complete measure of large losses is 

                                                 
13 See Christoffersen (2002) 
14 See McNeil(2000) 
15 See McNeil and Frey (2000) 
16 For theoretical and practical properties of ES, see Artzner, Delbaen, Eber and Heath (1999), Basak and Shapiro 
(2000) 



 - 11 -

the entire shape of the tail of the distribution of losses beyond the VaR. Therefore, ES measure tries 

to keep the simplicity of the VaR while giving information about the shape of the tail. ES is defined 

as: 

[ ]p
tttt

p
t VaRRREES 1111 ++++ −<=  

 

So, where VaR tells the loss that only 1% of the potential losses will be worse, the ES tells the 

expected loss given that the portfolio actually incurred a loss from the 1% tail. For fat tailed 

distributions (ξ > 0) the ES will be larger than the VaR regardless of the probability p that is 

considered. The parameters of the GPD were estimated through MLE and they were determined 

along with the quantiles for VaR and ES using Rmetrics. It has to be mentioned that, although this 

analysis focuses on 1-day, 1% risk measures, under the EVT approach smaller quantiles than 1% 

were also considered, basically for two reasons: they allow us to see the significantly different risk 

profiles that may hide under close 1% quantiles (of the EVT distribution and of the normal 

distribution for example) and in order to see what happens if portfolio holders would choose a 

smaller probability level. 

 In conclusion, this study was developed on the two directions that are detailed in this 

section. The obtained results are presented in the sections 5-9 and the comparative analysis between 

the computed risk measures was done on the basis of the following criteria: their precision, their 

level of capital requirements and the amount of calculations required for computing them.   

 

4. The Data 
 

 I considered a simple portfolio which has a value of 1 RON and consists of three stocks 

traded at Bucharest Stock Exchange (BSE): Antibiotice Iasi (ATB), Azomures Tg. Mures (AZO) 

and Banca Transilvania (TLV). The stocks have equal weights in the portfolio and they were 

selected according to the following criteria:  

- They all belong to the first transaction category of BSE. Moreover, ATB and TLV are included in 

BET index, meaning they are among the most attractive and liquid stocks in the market; 

- The companies represent different industrial areas (ATB – pharmacy, AZO – fertilizers, TLV – 

banking, insurance and financial services) leading to a better risk diversification in the portfolio. 
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 Daily closing prices for the three stocks, covering the period 4 Jan 2001 – 9 May 2008, were 

obtained from www.ktd.ro (financial information site of KTD Invest SA). The evolution of the 

closing prices for the stocks is shown in Fig. 1.  

 Then, logarithmic daily returns were computed for the three stocks and the portfolio, each 

data series consisting of 1814 observations. The evolution of the daily returns for each stock and for 

the portfolio during the analyzed period is shown in Fig. 2, while the descriptive statistics of the 

returns are presented in Table 1. 

 

 

Fig. 1. The evolution of the closing prices for ATB, AZO and TLV 
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TLV Closing Price
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Fig. 2. The evolution of daily returns for ATB, AZO, TLV and the portfolio 
 

   
 

   
Table 1. Descriptive statistics of daily returns 
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Mean 0.001288686 0.000482618 0.000485777 0.00075236 
Median 0 0 0 0.000692199 
Maximum 0.139761942 0.247408173 0.095791065 0.092815783 
Minimum -0.162166755 -0.669430654 -0.561469357 -0.230806724 
St. Dev. 0.030788687 0.035601895 0.029359217 0.021086889 
Skewness -0.496916313 -3.625751852 -7.962136836 -1.551673862 
Kurtosis 12.46778119 77.47359745 128.567659 18.4562625 

 

 Skewness and kurtosis values of the series suggest that the stocks returns and also the 

portfolio returns aren't normally distributed (the empirical distributions are asymmetric to the left 

due to the negative skewness and they have a prominent peak due to the excess kurtosis). In order to 

verify the non-normality of the empirical distributions of the four returns series I used the Jarque-

Bera test performed by Eviews. The test results, along with the histograms of the data series, are 

shown in Fig. 3 and indicate that the returns of the stocks and of the portfolio aren't normally 

distributed. 
 

Fig. 3. Jarque-Bera test results and histograms for ATB, AZO, TLV and the portfolio 
 

0

100

200

300

400

500

600

700

-0.15 -0.10 -0.05 0.00 0.05 0.10

Series: ATBLN
Sample 1 1814
Observations 1814

Mean       0.001289
Median   0.000000
Maximum  0.139762
Minimum -0.162167
Std. Dev.   0.030789
Skewness  -0.496505
Kurtosis   12.43840

Jarque-Bera  6807.749
Probability  0.000000

0

100

200

300

400

500

600

700

800

900

-0.50 -0.25 0.00 0.25

Series: AZOLN
Sample 1 1814
Observations 1814

Mean       0.000483
Median   0.000000
Maximum  0.247408
Minimum -0.669431
Std. Dev.   0.035602
Skewness  -3.622753
Kurtosis   77.26518

Jarque-Bera  420833.9
Probability  0.000000

 

0

200

400

600

800

1000

1200

-0.500 -0.375 -0.250 -0.125 0.000

Series: TLVLN
Sample 1 1814
Observations 1814

Mean       0.000486
Median   0.000000
Maximum  0.095791
Minimum -0.561469
Std. Dev.   0.029359
Skewness  -7.955551
Kurtosis   128.2185

Jarque-Bera  1204257.
Probability  0.000000

0

100

200

300

400

500

-0.2 -0.1 0.0 0.1

Series: PORTLN
Sample 1 1814
Observations 1814

Mean       0.000752
Median   0.000692
Maximum  0.092816
Minimum -0.230807
Std. Dev.   0.021087
Skewness  -1.550390
Kurtosis   18.41039

Jarque-Bera  18676.25
Probability  0.000000

 
 The four data series were also tested for the presence of the unit root using the Augmented 

Dickey-Fuller (ADF) performed in Eviews. The results are shown in Table 2 and, taking into 
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account that ADF test critical value for the 1% level is -3.433757, they lead to the conclusion that 

none of the data series has the unit root. The full results of the ADF test along with the test 

equations are given in the Appendix 1. Then, the correlation matrix of the raw returns was 

computed in Eviews and is shown in Table 3. 
 

Table 2. ADF test results for daily returns of ATB, AZO, TLV and the portfolio 
 

Return series Value of t-statistic P value 
ATB -24.32559 0 % 
AZO -42.60324 0 % 
TLV -37.72185 0 % 

Portfolio -36.55895 0 % 
Table 3. The correlation matrix of the raw returns 
 

 ATB AZO TLV 
ATB 1 0.176804 0.150407
AZO 0.176804 1 0.126762
TLV 0.150407 0.126762 1 

 

The descriptive analysis of the primary data developed in this section leads to the following 

conclusions: 

- The graphs of the returns show the presence of volatility clustering. This fact suggests that it 

would be better to compute VaR using conditional variance models, such as EWMA and GARCH 

models; 

-  The non-normality of the empirical distributions of the raw returns suggests that computing VaR 

with the quantiles of the standard normal distribution will tend to underestimate risk; 

- The results of the ADF test allow us to consider that the mean and the variance of the data series 

are constant in time; 

-  The correlation coefficients, although positive, haven't high values so that the diversification 

effect is strong enough. Moreover, taking into account that former studies17 have documented a high 

average correlation inside emerging markets and the presence of a strong market factor, we may 

consider that the correlation coefficients in our case are very advantageous. 

 

5. VaR using the historical volatility 
                                                 
17 See, for example, Divecha, Drach and Stefek (1992) 
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 The portfolio returns were standardized using the historical mean and volatility of the 

sample. Because, generally, VaR is computed using the quantiles of the normal distribution I 

constructed three graphs (see Fig. 4) in order to visualize the non-normality of the standardized 

returns: the probability density function (PDF) of the empirical distribution, the QQ plot and the log 

PDF graph, all plotted against the standard normal distribution. Of course, from the previous section 

we already know that the portfolio returns aren't normally distributed and the situation doesn't 

change when they are standardized using their historical mean and volatility. So, the problem of 

non-normality is still to be dealt with. 

Fig. 4. PDF of the empirical distribution, QQ plot and log PDF against the standard normal 

distribution  
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 In order to bypass this issue I estimated the parameters for three other distributions: t-

Student (which allows for excess kurtosis), NIG and GH (which allow for skewness and excess 

kurtosis). The parameters were estimated through MLE using the Rmetrics package of the soft R. 

The results, along with the values for the informational criteria Akaike and Schwarz, are given in 

Table 4. 
  

Table 4. Estimation results for t-Student, NIG and GH 
 

t-Student Normal Inverse 
Gaussian Distribution

General Hyperbolic 
Distribution 

alpha 0.72873077 alpha 0.24382855 
beta -0.0394378 beta -0.03873113 

degrees of  
freedom 

8.724664 

delta 0.67966102 delta 0.96331143 
mu 0.03683542 mu 0.03825432  

 lambda -1.29956291 
MLE -2453.487 MLE -2306.181 MLE -2302.68 
AIC 2.7066 AIC 2.5471 AIC 2.5443 
SIC 2.7092 SIC 2.5592 SIC 2.5595 

 

Because the AIC and SIC values for NIG and GH are very close and the two criteria lead to 

different conclusions, both distributions were taken into account. Fig. 5 and Fig. 6 show the PDF of 
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the empirical distribution and log PDF against the estimated distributions NIG and GH (while the 

same graphs for the estimated t-Student distribution are given in Appendix 2).  
 

Fig. 5. PDF of the empirical distribution and log PDF against the estimated NIG distribution  
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Fig. 6. PDF of the empirical distribution and log PDF against the estimated GH distribution  
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Analyzing these graphs it is clearly that NIG and GH fit much better the empirical distribution than 

does the standard normal distribution. Therefore, it would be reasonable to compute VaR using the 

quantiles of the NIG and GH distributions instead the ones of the standard normal distribution. The 

1% quantiles for these distributions are given in Table 5. 
 

Table 5. 1% quantiles for the standard normal distribution and estimated NIG and GH 

distributions 
 

N Std. -2.326347 NIG -2.858291 GH -2.898633 
 

 Another way of dealing with the non-normality of the standardized returns is the Extreme 

Value Theory (EVT). Using the Generalized Pareto Distribution (GPD), EVT models only the right 

tail of the distribution (the standardized returns in excess of a threshold) and because we are 

interested in extreme negative returns the EVT analysis is developed on the negative of returns. The 

threshold was set to be the 95 percentile of the sample of the standardized returns. The parameters 

of GPD were estimated through MLE and then the quantiles for VaR and Expected Shortfall (ES) 

were computed using the Rmetrics package of the soft R. The results are given in Table 6, while 

Fig. 7 shows the tail of the distribution along with the estimated GPD.  
 

Table 6. Estimated parameters for GPD and the quantiles for VaR and ES according to EVT 
 

Parameter Estimates for GPD 
xi 0.2575924 beta 0.8137205 

Quantiles for VaR and ES for different probability levels according to EVT and N Std
Probability VaR EVT ES EVT N Std 

1% 3.041225 4.701774 2.326347 
0.5% 3.976777 5.961933 2.575831 
0.1% 6.916062 9.921058 3.090253 
0.05% 8.609074 12.20149 3.290560 
0.01% 13.92812 19.36609 3.719090 

 

Fig. 7. The tail of the distribution along with the estimated GDP 
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The reason I included smaller quantiles than 1% and the standard normal distribution quantiles is 

that the normal and EVT distribution may lead to close values for 1% VaRs but very different 0.1% 

VaRs - for example - due to the different tail shapes. In such situations the risk profiles are very 

different and this is our case too. So, ES could be a better risk measure for our portfolio because it 

takes into consideration the shape of the tail. 

 At last, I also considered the Cornish-Fisher approach. It constructs approximation to 

quantiles using the skewness and excess kurtosis of the standardized returns. The result obtained for 

our data set is presented in Table 7. 

Table 7. Cornish-Fisher approximation  
 

Skewness -1.551673862
Excess Kurtosis 15.4562625
1% Q N Std -2.326347
1% CF -6.17468952

 

 After modeling the distribution of the standardized returns and computing all the necessary 

quantiles, it was proceeded to the determination of VaR and ES. Using 750 days18 rolling mean and 

volatility I computed 1-day, 1% VaR for all the approaches considered above (except for the EVT 

approach where VaR and ES were computed for all of the specified quantiles) for the period 29 Jan 

                                                 
18 Approximately 3 years of data 
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2004 – 9 May 200819. Also, historical VaR was computed as the 1% quantile of the series of the 

past 750 daily returns of the portfolio. The results obtained for VaR along with the negative of the 

returns of the portfolio (because VaR is a positive number) are shown in Fig. 8 and 9.  
  

Fig. 8. 1-day, 1% VaR comparative graph 
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Fig. 9. 1-day VaR and ES for the EVT approach   
 

                                                 
19 The remaining period after subtracting 750 days 
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Comparative Graph for VaR and ES according to the EVT approach
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 Table 8 shows if the computed risk measures match their respective critical levels (the term 

"errors %" denotes the percentage of the cases in which the portfolio loss exceeded VaR or ES) and 
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if the average ES indicators were exceeded by the average losses bigger than the corresponding 

VaR (marked with red if ES was exceeded). 
 

Table 8. The precision of computed VaR and ES indicators 
 

VaR Type VaR N Std VaR NIG VaR GHD VaR CF Historical VaR 
Errors (%) 1.60% 1.03% 0.94% 0.19% 1.13% 
VaR Type VaR EVT 1% VaR EVT 0.5% VaR EVT 0.1% VaR EVT 0.05% VaR EVT 0.01%
Errors (%) 0.85% 0.56% 0.19% 0.09% 0.00% 
ES Type ES EVT 1% ES EVT 0.5% ES EVT 0.1% ES EVT 0.05% ES EVT 0.01% 
Errors (%) 0.38% 0.19% 0.00% 0.00% 0.00% 
Avg ES 0.096504267 0.122663027 0.204847737 0.252185694 0.400910516 
Avg Loss 
(> VaR) 0.105368373 0.122588525 0.174782102 0.187156452 0 

 

The results reported here account for the following conclusions: 

- VaR N Std, Historical VaR and VaR NIG don't match the critical level of 1% (although VaR NIG 

is very close) while VaR GHD and VaR CF pass the precision test (VaR CF obtaining a very good 

score, only 0.19% errors); 

- Under the EVT approach only two VaRs, at 1% and 0.01%, match their critical levels, while all 

ES indicators pass the precision test (although ES 1% has a problem: on average it has a smaller 

value than the average of the losses exceeding VaR 1%). 
 

Table 9. Capital requirements for VaRs 1% and ES 1% that passed the precision test 
 

 VaR GHD VaR CF VaR EVT ES EVT 
Average value 0.059074122 0.127079491 0.06203409 0.096504267
Maximum 0.051504545 0.111509139 0.054116275 0.084531064
Minimum 0.064807013 0.139454722 0.068056092 0.1058931 

 

 If we are to choose between the 1% risk measures that passed the precision test VaR GHD 

would be the most appropriate because it provides the lowest level of capital coverage (see Table 9). 

The capital requirement is about 5.91% (average level) of the portfolio value (which is 1 RON in 

our case), while VaR EVT requires about 6.2%. VaR CF, although provides the best protection 

(only 0.19% errors), has the highest level of capital requirements being more expensive even than 

ES 1%. 
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6. VaR using the EWMA volatility model 
 

 In order to enhance the analysis of the risk measures developed in this study I considered 

time-varying volatility models. In this section it is used one of the simplest volatility models, 

namely the Exponentially Weighted Moving Average (EWMA) as developed by JP Morgan's 

RiskMetrics system. The model is written as 
 

222
1 )1( ttt Rλλσσ −+=+   

 

where λ < 1, σ denotes the volatility and R the return. Using this model I computed the volatility 

series for the three stocks considering that λ = 0.94 (the value set by RiskMetrics) and that the 

starting values are the historical standard deviations of the data series. Then, using the historical 

correlation coefficients, I computed the volatility series for the portfolio. The volatility graphs for 

the three stocks and for the portfolio are shown in Fig. 10. 
 

Fig. 10. The EWMA Volatility of the three stocks and of the portfolio 
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EWMA Volatility for the portfolio
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The returns of the stocks and of the portfolio were standardized using the historical mean and the 

computed EWMA volatility. The descriptive statistics for the series of the standardized returns are 

given in Table 10. The values for skewness and kurtosis indicate that we still have to face non-

normality. The Jarque-Bera test applied to the standardized returns of the portfolio has a value of 

15225.66 (with an associated p value of 0%) meaning they aren't normally distributed, while the 

ADF test confirms that the unit root is not present (the two tests are given in Appendix 3). 
 

Table 10. Descriptive statistics of the returns standardized with EWMA volatility 
 

 ATB AZO TLV PORTFOLIO
 Mean 0.022853282 0.008773423 0.01151103 0.015033927
 Median -0.062906618 -0.016700982 -0.023587187 -0.004146442
 Maximum 6.66875623 10.1983607 7.288494731 7.380381514
 Minimum -5.677694158 -11.92240587 -47.57183779 -11.35463294
 Std. Dev. 1.077012211 1.14691887 1.658327606 1.160841498
 Skewness 0.570426272 0.223325423 -15.01802686 -1.105297369
 Kurtosis 7.912768016 20.12699426 396.8349199 17.0621412

 

In order to visualize the non-normality of the portfolio standardized returns Fig. 11 shows three 

graphs: the probability density function (PDF) of the empirical distribution, the QQ plot and the log 

PDF graph, all plotted against the standard normal distribution.  
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Fig. 11. PDF of the empirical distribution, QQ plot and log PDF against the standard normal 

distribution  
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 As in the previous section, the first way to deal with the non-normality of the data was to 

estimate the parameters for t-Student, NIG and GH distributions. The parameters were estimated 

through MLE using the Rmetrics package of the soft R. The results, along with the values for the 

informational criteria Akaike and Schwarz, are given in Table 11. 
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Table 11. Estimation results for t-Student, NIG and GH 
 

t-Student Normal Inverse 
Gaussian Distribution

General Hyperbolic 
Distribution 

alpha 0.71864289 alpha 0.01319607 
beta -0.01048403 beta -0.01318189 

degrees of  
freedom 

6.32333 

delta 0.89238534 delta 1.38629802 
mu 0.0280556 mu 0.03261598  

 lambda -1.72038174 
MLE -2656.422 MLE -2611.03 MLE -2603.462 
AIC 2.9299 AIC 2.8832 AIC 2.8759 
SIC 2.9329 SIC 2.8953 SIC 2.8911 

 

Because the AIC and SIC values for NIG and GH are very close both distributions were taken into 

account. Fig. 12 and Fig. 13 show the PDF of the empirical distribution and log PDF against the 

estimated distributions NIG and GH (while the same graphs for the estimated t-Student distribution 

are given in Appendix 3). Analyzing these graphs it is clearly that NIG and GH fit much better the 

empirical distribution than does the standard normal distribution. Therefore, it would be reasonable 

to compute VaR using the quantiles of the NIG and GH distributions instead the ones of the 

standard normal distribution. The 1% quantiles for these distributions are given in Table 12. 
 

Fig. 12. PDF of the empirical distribution and log PDF against the estimated NIG distribution  
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Fig. 13. PDF of the empirical distribution and log PDF against the estimated GH distribution  
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Table 12. 1% quantiles for the standard normal distribution and estimated NIG and GH 

distributions 
 

N Std. -2.326347 NIG -3.134162 GH -3.098957 
 

 As in the previous section, I used also the EVT approach in order to deal with the non-

normality of the standardized data. Again, the threshold was set to be the 95 percentile of the 

sample of the standardized returns while the parameters of GPD were estimated through MLE and 

then the quantiles for VaR and ES were computed using Rmetrics. The results are given in Table 

13, while Fig. 14 shows the tail of the distribution along with the estimated GPD.  
 

Table 13. Estimated parameters for GPD and the quantiles for VaR and ES according to EVT 
 

Parameter Estimates for GPD 
xi 0.4300091 beta 0.64173 

Quantiles for VaR and ES for different probability levels according to EVT and N Std
Probability VaR EVT ES EVT N Std 

1% 3.100416 5.352915 2.326347 
0.5% 4.137198 7.171859 2.575831 
0.1% 8.151101 14.213906 3.090253 
0.05% 10.941692 19.109759 3.290560 
0.01% 21.745478 38.064071 3.719090 
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Fig. 14. The tail of the distribution along with the estimated GDP 
 

2 5 10

2e
-0

4
5e

-0
4

2e
-0

3
5e

-0
3

2e
-0

2
5e

-0
2

Tail of Underlying Distribution

x [log scale]

1-
F(

x)
 [l
og

 s
ca

le
]

 

 

We observe the same situation as in the previous section: the quantiles of the normal and EVT 

distribution are very different for probabilities below 1% due to the different tail shapes. Therefore, 

the risk profiles are very different and ES could be a better risk measure for our portfolio because it 

takes into consideration the shape of the tail. 

 At last, the Cornish-Fisher approach was also considered. The approximation for the 1% 

quantile, computed using the skewness and excess kurtosis of the returns standardized with the 

EWMA volatility, is given in Table 14. 
  

Table 14. Cornish-Fisher approximation  
 

Skewness -1.105297369
Excess Kurtosis 14.0621412
1% Q N Std -2.326347
1% CF -5.966873733

 

 After modeling the distribution of the standardized returns and computing all the necessary 

quantiles, it was proceeded to the determination of VaR and ES. Using the EWMA volatility I 

computed 1-day, 1% VaR for all the approaches considered above (except for the EVT approach 

where VaR and ES were computed for all of the specified quantiles) for the period 29 Jan 2004 – 9 

May 2008. Also, historical VaR was computed using the 1% quantile of the series of the past 750 
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daily standardized returns of the portfolio. The results obtained for VaR along with the negative of 

the returns of the portfolio (because VaR is a positive number) are shown in Fig. 15 and 16. Table 

15 shows if the computed risk measures match their respective critical levels (the term "errors %" 

denotes the percentage of the cases in which the portfolio loss exceeded VaR or ES) and if the 

average ES indicators were exceeded by the average losses bigger than the corresponding VaR 

(marked with red if ES was exceeded). 
 

Table 15. The precision of computed VaR and ES indicators 
 

VaR Type VaR N Std VaR NIG VaR GHD VaR CF Historical VaR 
Errors (%) 2.26% 1.03% 1.13% 0.19% 1.41% 
VaR Type VaR EVT 1% VaR EVT 0.5% VaR EVT 0.1% VaR EVT 0.05% VaR EVT 0.01%
Errors (%) 1.13% 0.75% 0.09% 0.09% 0.00% 
ES Type ES EVT 1% ES EVT 0.5% ES EVT 0.1% ES EVT 0.05% ES EVT 0.01% 
Errors (%) 0.19% 0.09% 0.00% 0.00% 0.00% 
Avg ES 0.092887278 0.124823403 0.248464206 0.334423189 0.66721369 
Avg Loss 
(> VaR) 0.085960761 0.106005833 0.162407753 0.162407753 0 

   

Fig. 15. 1-day, 1% VaR EWMA comparative graph 
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Fig. 16. 1-day VaR EWMA for the EVT approach   
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The results reported here account for the following conclusions: 
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- VaR N Std, Historical VaR, VaR NIG and VaR GHD didn't  succeed in matching the critical level 

of 1% (although VaR NIG is very close), only VaR CF being able to pass the precision test  with the 

same score as in the previous section; 

- Under the EVT approach only two VaRs, at 0.1% and 0.01%, match their critical levels, but all ES 

indicators pass the precision test; 

- It seems that the EWMA volatility model tends to underestimate risk for the portfolio and the 

period analyzed in my study, the results for the 1% risk measures being worse than in the case of 

using historical volatility (see the previous section). 
 

Table 16. Capital requirements for VaR CF 1% and ES 1%  
 

 VaR CF 1% ES EVT 1% 
Average value 0.103666864 0.092887278 
Maximum 0.042467889 0.037951806 
Minimum 0.326926586 0.293116434 

 

 If we are to choose between VaR CF and ES (these being the only 1% risk measures that 

passed the precision test), ES 1% would be the most appropriate because it provides the lowest level 

of capital coverage (see Table 16). The capital requirement is about 9.29% (average level) of the 

portfolio value, while VaR CF requires about 10.37%. Moreover, the two risk measures offer the 

same accuracy, namely 0.19% errors. 

 

7. VaR using a GARCH volatility model for portfolio returns  
 

 The analysis developed in this study was further improved by considering GARCH volatility 

models which overrun some of the shortcomings of EWMA model. First, I considered the simplest 

case: a GARCH (1,1) volatility model for the portfolio returns which has the advantage that few 

calculations are needed even in the case of large portfolios. The model is written as 
 

222
1 ttt R βσαωσ ++=+   

 

(where α + β < 1, σ denotes the volatility, R the return) and the parameters α, β and ω were 

estimated through MLE in Eviews. With the estimated values of the parameters I computed the 

volatility series of the portfolio returns using as starting value the historical standard deviation. The 
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results of the estimation are given in Table 17 (for the full results see Appendix 4) while Fig. 17 

shows the graph of the GARCH volatility of the portfolio during the analyzed period.  
 

Table 17. GARCH (1,1) volatility model for the portfolio returns 
 

ω 0.00003674
α 0.23330744
β 0.73422658

 

Fig. 17. The GARCH Volatility of the portfolio 
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 The returns of the portfolio were standardized using the historical mean and the computed 

GARCH volatility. The descriptive statistics for the series of the standardized returns are given in 

Table 18. The values for skewness and kurtosis indicate that we still have to face non-normality. 

The Jarque-Bera test applied to the standardized returns of the portfolio has a value of 25590.53 

(with an associated p value of 0%) meaning they aren't normally distributed, while the ADF test 

confirms that the unit root is not present (the two tests are given in Appendix 4). 
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Table 18. Descriptive statistics of the portfolio returns standardized with GARCH volatility 
 

 PORTFOLIO
 Mean 0.002768796 
 Median -0.00332796 
 Maximum 5.807380535 
 Minimum -10.0040107 
 Std. Dev. 1.001248131 
 Skewness -1.513391092 
 Kurtosis 20.07196361 

 

In order to visualize the non-normality of the portfolio standardized returns Fig. 18 shows three 

graphs: the probability density function (PDF) of the empirical distribution, the QQ plot and the log 

PDF graph, all plotted against the standard normal distribution.  

 Similarly to the previous sections, the first way to deal with the non-normality of the data 

was to estimate the parameters for t-Student, NIG and GH distributions. The parameters were 

estimated through MLE using the Rmetrics package of the soft R. The results, along with the values 

for the informational criteria Akaike and Schwarz, are given in Table 19. 
 

Fig. 18. PDF of the empirical distribution, QQ plot and log PDF against the standard normal 

distribution  
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Table 19. Estimation results for t-Student, NIG and GH 
 

t-Student Normal Inverse 
Gaussian Distribution

General Hyperbolic 
Distribution 

alpha 0.94278975 alpha 0.05570423 
beta -0.05636764 beta -0.05570417 

degrees of  
freedom 

9.6544 

delta 0.84625444 delta 1.32257003 
mu 0.05345637 mu 0.054024  

 lambda -1.94888169 
MLE -2451.553 MLE -2350.707 MLE -2338.908 
AIC 2.704 AIC 2.5961 AIC 2.5842 
SIC 2.7071 SIC 2.6083 SIC 2.5994 

 

Because the AIC and SIC values for NIG and GH are very close both distributions were taken into 

account. Fig. 19 and Fig. 20 show the PDF of the empirical distribution and log PDF against the 

estimated distributions NIG and GH (while the same graphs for the estimated t-Student distribution 

are given in Appendix 4).  
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Fig. 19. PDF of the empirical distribution and log PDF against the estimated NIG distribution  
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Fig. 20. PDF of the empirical distribution and log PDF against the estimated GH distribution  
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Analyzing these graphs it is clearly that NIG and GH fit much better the empirical distribution than 

does the standard normal distribution. Therefore, it would be reasonable to compute VaR using the 

quantiles of the NIG and GH distributions instead the ones of the standard normal distribution. The 

1% quantiles for these distributions are given in Table 20. 
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Table 20. 1% quantiles for the standard normal distribution and estimated NIG and GH 

distributions 
 

N Std. -2.326347 NIG -2.699688 GH -2.658805 
 

 As in the previous sections, I used also the EVT approach in order to deal with the non-

normality of the standardized data. Again, the threshold was set to be the 95 percentile of the 

sample of the standardized returns while the parameters of GPD were estimated through MLE and 

then the quantiles for VaR and ES were computed using Rmetrics. The results are given in Table 

21, while Fig. 21 shows the tail of the distribution along with the estimated GPD.  
 

Table 21. Estimated parameters for GPD and the quantiles for VaR and ES according to EVT 
 

Parameter Estimates for GPD 
xi 0.4301966 beta 0.5696852 

Quantiles for VaR and ES for different probability levels according to EVT and N Std
Probability VaR EVT ES EVT N Std 

1% 2.691543 4.692425 2.326347 
0.5% 3.61227 6.308292 2.575831 
0.1% 7.177687 12.565568 3.090253 
0.05% 9.656977 16.9167 3.290560 
0.01% 19.257766 33.766002 3.719090 

 

Fig. 21. The tail of the distribution along with the estimated GDP 
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We observe the same situation as in the previous sections: the quantiles of the normal and EVT 

distribution are very different for probabilities below 1% due to the different tail shapes. Therefore, 

the risk profiles are significantly different and ES could be a better risk measure for our portfolio 

because it takes into consideration the shape of the tail. 

 At last, the Cornish-Fisher approach was also considered. The approximation for the 1% 

quantile, computed using the skewness and excess kurtosis of the returns standardized with the 

GARCH volatility, is given in Table 22. 
  

Table 22. Cornish-Fisher approximation  
 

Skewness -1.513391092
Excess Kurtosis 17.07196361
1% Q N Std -2.326347
1% CF -6.56842902

  

After modeling the distribution of the standardized returns and computing all the necessary 

quantiles, it was proceeded to the determination of VaR and ES. Using the GARCH volatility I 

computed 1-day, 1% VaR for all the approaches considered above (except for the EVT approach 

where VaR and ES were computed for all of the specified quantiles) for the period 29 Jan 2004 – 9 

May 2008. Also, historical VaR was computed using the 1% quantile of the series of the past 750 

daily standardized returns of the portfolio. The results obtained for VaR along with the negative of 

the returns of the portfolio (because VaR is a positive number) are shown in Fig. 22 and 23. Table 

23 shows if the computed risk measures match their respective critical levels (the term "errors %" 

denotes the percentage of the cases in which the portfolio loss exceeded VaR or ES) and if the 

average ES indicators were exceeded by the average losses bigger than the corresponding VaR 

(marked with red if ES was exceeded). 
 

Table 23. The precision of computed VaR and ES indicators 
 

VaR Type VaR N Std VaR NIG VaR GHD VaR CF Historical VaR 
Errors (%) 1.79% 0.94% 0.94% 0.19% 1.22% 
VaR Type VaR EVT 1% VaR EVT 0.5% VaR EVT 0.1% VaR EVT 0.05% VaR EVT 0.01%
Errors (%) 0.94% 0.47% 0.19% 0.09% 0.00% 
ES Type ES EVT 1% ES EVT 0.5% ES EVT 0.1% ES EVT 0.05% ES EVT 0.01% 
Errors (%) 0.28% 0.19% 0.00% 0.00% 0.00% 
Avg ES 0.094189578 0.127001983 0.25406459 0.342420319 0.684568603 
Avg Loss 
(> VaR) 0.095200041 0.122152479 0.174782102 0.187156452 0 
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Fig. 22. 1-day, 1% VaR GARCH comparative graphs 
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Fig. 23. 1-day VaR GARCH for the EVT approach   
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The results reported here account for the following conclusions: 

- VaR N Std and Historical VaR didn't succeed in matching the critical level of 1%, while VaR 

NIG, VaR GHD and VaR CF passed the precision test, VaR CF having the best score as in the 

previous sections; 

- Under the EVT approach three VaRs, at 1%, 0.5% and 0.01%, match their critical levels, while all 

ES indicators pass the precision test (although ES 1% has a problem: on average it has a smaller 

value than the average of the losses exceeding VaR EVT 1%); 

- It seems that using the GARCH volatility model for the portfolio returns improved the risk 

measures analyzed in this study, these being the best results so far. 
 

Table 24. Capital requirements for VaRs 1% and ES 1% that passed the precision test  
 

 VaR NIG 1% VaR GHD 1% VaR CF 1% VaR EVT 1% ES EVT 1%
Average value 0.053724308 0.052894123 0.132284423 0.053558913 0.094189578
Maximum 0.031672086 0.031168008 0.079372735 0.03157166 0.056242055
Minimum 0.246993774 0.243228204 0.603328119 0.246243571 0.430536852

 

 If we are to choose between the 1% risk measures that passed the precision test VaR GHD 

would be the most appropriate because it provides the lowest level of capital coverage (see Table 

24). The capital requirement is about 5.29% (average level) of the portfolio value while VaR EVT 

requires about 5.36% and VaR NIG about 5.37%. VaR CF, as it has been already seen in the 

previous sections, has the highest level of capital requirement being more expensive even than ES 

1%. 

 

8. VaR using GARCH volatility models for the stock returns 
 

 In this stage GARCH models were considered for the volatility of each stock returns. 

Therefore, I estimated GARCH (1,1) models for ATB and AZO, while for TLV a TARCH (1,1) 

was estimated. The specification of the models was established taking into account the results 

obtained at the autocorrelation tests of the residuals and of the squared residuals. Also, I verified 

that the sum of ARCH and GARCH coefficients is below 1. The parameters of the three models 

were estimated through MLE in Eviews. On the basis of estimation results I computed the volatility 

series for the three stocks considering that the starting values are the historical standard deviations 

of the data series. Then, using the historical correlation coefficients, I computed the volatility series 
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for the portfolio. The results of the estimation are given in Table 25 (for the full results see 

Appendix 5) while Fig. 24 shows the volatility graphs for the three stocks and for the portfolio. 
 

Table 25. Estimation results for the volatility of the stock returns  
 

 GARCH (1,1) ATB GARCH (1,1) AZO TARCH (1,1) TLV
ω 0.000021415 0.000067782 0.000043996 
α 0.124995782 0.097710524 1.869205806 
β 0.851955326 0.857306946 0.561647124 
λ - - -1.566882386 

 

 The returns of the stocks and of the portfolio were standardized using the historical mean 

and the computed GARCH volatility. The descriptive statistics for the series of the standardized 

returns are given in Table 26. The values for skewness and kurtosis indicate that we still have to 

face non-normality. The Jarque-Bera test applied to the standardized returns of the portfolio has a 

value of 14846.91 (with an associated p value of 0%) meaning they aren't normally distributed, 

while the ADF test confirms that the unit root is not present (the two tests are given in Appendix 5). 
 

Fig. 24. The GARCH Volatility of the three stocks and of the portfolio 
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GARCH volatility for the portfolio
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Table 26. Descriptive statistics of the returns standardized with GARCH volatility 
 

 ATB AZO TLV PORTFOLIO
 Mean 0.019232517 0.001177774 0.01391282 -0.000723316 
 Median -0.062499878 -0.015806861 -0.018987492 -0.003431596 
 Maximum 7.417686382 9.720063979 4.671654838 6.354261631 
 Minimum -6.730922299 -11.5023275 -15.75192717 -9.728993413 
 Std. Dev. 1.004357344 0.999613558 0.951366414 0.986031755 
 Skewness 0.451135773 -0.339593675 -5.088694033 -1.246870005 
 Kurtosis 8.954522622 22.91252826 72.92644788 16.83352693 

 

 In order to visualize the non-normality of the portfolio standardized returns Fig. 25 shows 

three graphs: the probability density function (PDF) of the empirical distribution, the QQ plot and 

the log PDF graph, all plotted against the standard normal distribution.  
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Fig. 25. PDF of the empirical distribution, QQ plot and log PDF against the standard normal 

distribution  
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 Similarly to the previous sections, the first way to deal with the non-normality of the data 

was to estimate the parameters for t-Student, NIG and GH distributions. The parameters were 

estimated through MLE using the Rmetrics package of the soft R. The results, along with the values 

for the informational criteria Akaike and Schwarz, are given in Table 27. 
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Table 27. Estimation results for t-Student, NIG and GH 
 

t-Student Normal Inverse 
Gaussian Distribution

General Hyperbolic 
Distribution 

alpha 0.98043236 alpha 0.06596887 
beta -0.06929081 beta -0.06596871 

degrees of  
freedom 

10.47379 

delta 0.87046629 delta 1.37267037 
mu 0.06095307 mu 0.05925987  

 lambda -2.03883398 
MLE -2449.394 MLE -2353.705 MLE -2344.757 
AIC 2.7016 AIC 2.5995 AIC 2.5907 
SIC 2.7047 SIC 2.6116 SIC 2.6059 

 

Because the AIC and SIC values for NIG and GH are very close both distributions were taken into 

account. Fig. 26 and Fig. 27 show the PDF of the empirical distribution and log PDF against the 

estimated distributions NIG and GH (while the same graphs for the estimated t-Student distribution 

are given in Appendix 5). Analyzing these graphs it is clearly that NIG and GH fit much better the 

empirical distribution than does the standard normal distribution. Therefore, it would be reasonable 

to compute VaR using the quantiles of the NIG and GH distributions instead the ones of the 

standard normal distribution. The 1% quantiles for these distributions are given in Table 28. 
 

Fig. 26. PDF of the empirical distribution and log PDF against the estimated NIG distribution  
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Fig. 27. PDF of the empirical distribution and log PDF against the estimated GH distribution  
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Table 28. 1% quantiles for the standard normal distribution and estimated NIG and GH 

distributions 
 

N Std. -2.326347 NIG -2.691367 GH -2.647208 
 

 As in the previous sections, I used also the EVT approach in order to deal with the non-

normality of the standardized data. Again, the threshold was set to be the 95 percentile of the 

sample of the standardized returns while the parameters of GPD were estimated through MLE and 

then the quantiles for VaR and ES were computed using Rmetrics. The results are given in Table 

29, while Fig. 28 shows the tail of the distribution along with the estimated GPD.  
 

Table 29. Estimated parameters for GPD and the quantiles for VaR and ES according to EVT 
 

Parameter Estimates for GPD 
xi 0.5019587 beta 0.4505349 

Quantiles for VaR and ES for different probability levels according to EVT and N Std
Probability VaR EVT ES EVT N Std 

1% 2.574199 4.606729 2.326347 
0.5% 3.413405 6.291742 2.575831 
0.1% 6.963622 13.420102 3.090253 
0.05% 9.62942 18.772667 3.290560 
0.01% 20.906942 41.416415 3.719090 
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Fig. 28. The tail of the distribution along with the estimated GDP 
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We observe the same situation as in the previous sections: the quantiles of the normal and EVT 

distribution are very different for probabilities below 1% due to the different tail shapes. Therefore, 

the risk profiles are also very different and ES could be a better risk measure for our portfolio 

because it takes into consideration the shape of the tail. 

 At last, the Cornish-Fisher approach was considered. The approximation for the 1% 

quantile, computed using the skewness and excess kurtosis of the returns standardized with the 

GARCH volatility, is given in Table 30. 
  

Table 30. Cornish-Fisher approximation  
 

Skewness -1.246870005
Excess Kurtosis 13.83352693
1% Q N Std -2.326347
1% CF -5.892205923

 

 After modeling the distribution of the standardized returns and computing all the necessary 

quantiles, it was proceeded to the determination of VaR and ES. Using the GARCH volatility I 

computed 1-day, 1% VaR for all the approaches considered above (except for the EVT approach 

where VaR and ES were computed for all of the specified quantiles) for the period 29 Jan 2004 – 9 

May 2008. Also, historical VaR was computed using the 1% quantile of the series of the past 750 
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daily standardized returns of the portfolio. The results obtained for VaR along with the negative of 

the returns of the portfolio (because VaR is a positive number) are shown in Fig. 29 and 30. Table 

31 shows if the computed risk measures match their respective critical levels (the term "errors %" 

denotes the percentage of the cases in which the portfolio loss exceeded VaR or ES) and if the 

average ES indicators were exceeded by the average losses bigger than the corresponding VaR 

(marked with red if ES was exceeded). 
   

Fig. 29. 1-day, 1% VaR GARCH comparative graphs 
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Fig. 30. 1-day VaR GARCH for the EVT approach   
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Table 31. The precision of computed VaR and ES indicators 
 

VaR Type VaR N Std VaR NIG VaR GHD VaR CF Historical VaR 
Errors (%) 1.41% 0.94% 1.03% 0.19% 1.22% 
VaR Type VaR EVT 1% VaR EVT 0.5% VaR EVT 0.1% VaR EVT 0.05% VaR EVT 0.01%
Errors (%) 1.03% 0.66% 0.19% 0.00% 0.00% 
ES Type ES EVT 1% ES EVT 0.5% ES EVT 0.1% ES EVT 0.05% ES EVT 0.01% 
Errors (%) 0.38% 0.19% 0.00% 0.00% 0.00% 
Avg ES 0.089993566 0.123311799 0.264262854 0.370100619 0.817841779 
Avg Loss 
(> VaR) 0.085643689 0.108055871 0.174782102 0 0 

 

The results reported here account for the following conclusions: 

- VaR N Std, Historical VaR, and VaR GHD didn't  succeed in matching the critical level of 1% 

(although VaR GHD is very close), only VaR NIG and VaR CF being able to pass the precision test 

(VaR CF having the highest score as in the previous sections); 

- Under the EVT approach only two VaRs, at 0.05% and 0.01%, match their critical levels, but all 

ES indicators pass the precision test; 

- Computing VaR on the basis of GARCH volatility models for each stock appears to perform 

worse than using a GARCH volatility model for the portfolio, the risk measures determined here 

being less accurate than the ones from the previous section. 
 

Table 32. Capital requirements for VaRs 1% and ES 1% that passed the precision test 
 

 VaR NIG 1% VaR CF 1% ES EVT 1% 
Average value 0.052120577 0.11541166 0.089993566 
Maximum 0.028795451 0.064583312 0.050210683 
Minimum 0.28753768 0.631484524 0.493353321 

 

 If we are to choose between the 1% risk measures that passed the precision test VaR NIG 

1% would be the most appropriate because it provides the lowest level of capital coverage (see 

Table 32). The capital requirement is about 5.21% (average level) of the portfolio value, while ES 

1% requires about 9%. VaR CF 1% is, as obtained in all the previous sections, the most expensive 

risk measure requiring about 11.54% of the portfolio value in this case. 
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9. VaR using GARCH volatility models for the stock returns and a DCC model 
 

 In the final stage of this study the GARCH approach from the previous section is further 

enhanced by considering a dynamic conditional correlation (DCC) model. Thus, the conditional 

correlations are modeled using GARCH (1,1) type specifications with correlation targeting, the 

model being written as: 
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The important thing about this model is that the parameters α and β are common across i and j (so 

they are common for the three stocks). They were estimated through MLE in Excel and, on the basis 

of the estimation results, the dynamic correlations between ATB, AZO and TLV were computed. 

Then, using the GARCH volatility of the three stocks (already determined in the previous section), I 

obtained the volatility series for the portfolio. The results of the estimation are given in Table 33 

while Fig. 31 and Fig. 32 show the graphs of the dynamic correlations and of the portfolio volatility. 
 

Fig. 31. The dynamic conditional correlations 
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DCC ATB - TLV
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DCC AZO - TLV
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Table 33. Estimation results for the DCC model 
 

α 0.009581808
β 0.938457995
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Fig. 32. The GARCH DCC Volatility of the portfolio 
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 The returns of the portfolio were standardized using the historical mean and the computed 

GARCH DCC volatility. The descriptive statistics for the series of the standardized returns are 

given in Table 34. The values for skewness and kurtosis indicate that we still have to face non-

normality. The Jarque-Bera test applied to the standardized returns of the portfolio has a value of 

16561.46 (with an associated p value of 0%) meaning they aren't normally distributed, while the 

ADF test confirms that the unit root is not present (the two tests are given in Appendix 6). 
 

Table 34. Descriptive statistics of the returns standardized with GARCH DCC volatility 
 

 PORTFOLIO
 Mean -0.000637837 
 Median -0.003443953 
 Maximum 6.353614668 
 Minimum -9.979407553 
 Std. Dev. 0.980753023 
 Skewness -1.293801451 
 Kurtosis 17.61856705 
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 In order to visualize the non-normality of the portfolio standardized returns Fig. 33 shows 

three graphs: the probability density function (PDF) of the empirical distribution, the QQ plot and 

the log PDF graph, all plotted against the standard normal distribution.  
 

Fig. 33. PDF of the empirical distribution, QQ plot and log PDF against the standard normal 

distribution  
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 Similarly to the previous sections, the first way to deal with the non-normality of the data 

was to estimate the parameters for t-Student, NIG and GH distributions. The parameters were 

estimated through MLE using the Rmetrics package of the soft R. The results, along with the values 

for the informational criteria Akaike and Schwarz, are given in Table 35. 
 

Table 35. Estimation results for t-Student, NIG and GH 

 

t-Student Normal Inverse 
Gaussian Distribution

General Hyperbolic 
Distribution 

alpha 0.98485968 alpha 0.06326102 
beta -0.06831799 beta -0.06326024 

degrees of  
freedom 

10.61822 

delta 0.86204843 delta 1.351071 
mu 0.05930329 mu 0.05644313  

 lambda -2.01591331 
MLE -2439.812 MLE -2339.684 MLE -2330.34 
AIC 2.6912 AIC 2.5840 AIC 2.5748 
SIC 2.6941 SIC 2.5961 SIC 2.590 

 

Because the AIC and SIC values for NIG and GH are very close both distributions were taken into 

account. Fig. 34 and Fig. 35 show the PDF of the empirical distribution and log PDF against the 

estimated distributions NIG and GH (while the same graphs for the estimated t-Student distribution 

are given in Appendix 6).  
 

Fig. 34. PDF of the empirical distribution and log PDF against the estimated NIG distribution  
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Fig. 35. PDF of the empirical distribution and log PDF against the estimated GH distribution  
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 Analyzing these graphs it is clearly that NIG and GH fit much better the empirical 

distribution than does the standard normal distribution. Therefore, it would be reasonable to 

compute VaR using the quantiles of the NIG and GH distributions instead the ones of the standard 

normal distribution. The 1% quantiles for these distributions are given in Table 36. 
 

Table 36. 1% quantiles for the standard normal distribution and estimated NIG and GH 

distributions 
 

N Std. -2.326347 NIG -2.6712 GH -2.632146 
 

 As in the previous sections, the EVT approach was also used in order to deal with the non-

normality of the standardized data. Again, the threshold was set to be the 95 percentile of the 

sample of the standardized returns while the parameters of GPD were estimated through MLE and 

then the quantiles for VaR and ES were computed using Rmetrics. The results are given in Table 

37, while Fig. 36 shows the tail of the distribution along with the estimated GPD.  

 The same situation as in the previous sections is to be observed: the quantiles of the normal 

and EVT distribution are very different for probabilities below 1% due to the different tail shapes. 

Therefore, the risk profiles are also very different, and ES could be a better risk measure for our 

portfolio because it takes into account the shape of the tail. 
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Table 37. Estimated parameters for GPD and the quantiles for VaR and ES according to EVT 
 

Parameter Estimates for GPD 
xi 0.475801 beta 0.4708492 

Quantiles for VaR and ES for different probability levels according to EVT and N Std
Probability VaR EVT ES EVT N Std 

1% 2.570969 4.505781 2.326347 
0.5% 3.403771 6.094495 2.575831 
0.1% 6.814795 12.601612 3.090253 
0.05% 9.305619 17.353288 3.290560 
0.01% 19.507631 36.815387 3.719090 

 

Fig. 36. The tail of the distribution along with the estimated GDP 
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 At last, the Cornish-Fisher approach was considered. The approximation for the 1% 

quantile, computed using the skewness and excess kurtosis of the returns standardized with the 

GARCH DCC volatility, is given in Table 38. 
  

Table 38. Cornish-Fisher approximation  
 

Skewness -1.293801451
Excess Kurtosis 14.61856705
1% Q N Std -2.326347
1% CF -6.065374241
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 After modeling the distribution of the standardized returns and computing all the necessary 

quantiles, it was proceeded to the determination of VaR and ES. Using the GARCH DCC volatility 

I computed 1-day, 1% VaR for all the approaches considered above (except for the EVT approach 

where VaR and ES were computed for all of the specified quantiles) for the period 29 Jan 2004 – 9 

May 2008. Also, historical VaR was computed using the 1% quantile of the series of the past 750 

standardized returns of the portfolio. The results obtained for VaR along with the negative of the 

returns of the portfolio (because VaR is a positive number) are shown in Fig. 37 and 38. Table 39 

shows if the computed risk measures match their respective critical levels (the term "errors %" 

denotes the percentage of the cases in which the portfolio loss exceeded VaR or ES) and if the 

average ES indicators were exceeded by the average losses bigger than the corresponding VaR 

(marked with red if ES was exceeded). 
   

Fig. 37. 1-day, 1% VaR GARCH DCC comparative graphs 
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1-day,1% VaR comparative graph
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Fig. 38. 1-day VaR GARCH DCC for the EVT approach   
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VaR GARCH EVT 1% and ES EVT 1%
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Table 39. The precision of computed VaR and ES indicators 
 

VaR Type VaR N Std VaR NIG VaR GHD VaR CF Historical VaR 
Errors (%) 1.41% 0.94% 0.94% 0.19% 1.32% 
VaR Type VaR EVT 1% VaR EVT 0.5% VaR EVT 0.1% VaR EVT 0.05% VaR EVT 0.01%
Errors (%) 1.03% 0.66% 0.19% 0.00% 0.00% 
ES Type ES EVT 1% ES EVT 0.5% ES EVT 0.1% ES EVT 0.05% ES EVT 0.01% 
Errors (%) 0.38% 0.19% 0.00% 0.00% 0.00% 
Avg ES 0.08759016 0.118860623 0.24693941 0.340466067 0.723536177 
Avg Loss 
(> VaR) 0.085643689 0.108055871 0.174782102 0 0 

 

The results reported here account for the following conclusions: 

- VaR N Std and Historical VaR didn't  succeed in matching the critical level of 1%, but VaR NIG, 

VaR GHD and VaR CF were able to pass the precision test (VaR CF having the highest score, as in 

the previous sections); 

- Under the EVT approach only two VaRs, at 0.05% and 0.01%, match their critical levels, but all 

ES indicators pass the precision test. This result is similar to the one obtained in the previous 

section where the DCC model was not considered; 

- Overall, the results were improved by including GARCH DCC in our analysis (VaR GHD being 

now able to pass the precision test). 
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Table 40. Capital requirements for VaRs 1% and ES 1% that passed the precision test 
 

 VaR NIG 1% VaR GHD 1% VaR CF 1% ES EVT 1%
Average value 0.051480327 0.050711632 0.118287443 0.08759016 
Maximum 0.028935082 0.028496749 0.067030449 0.049525963
Minimum 0.282240644 0.278089849 0.642985243 0.477226269

 

 If we are to choose between the 1% risk measures that passed the precision test VaR GHD 

1% would be the most appropriate because it provides the lowest level of capital coverage (see 

Table 40). The capital requirement is about 5.07% (average level) of the portfolio value, while VaR 

NIG 1% requires about 5.15% and ES 1% about 8.76%. VaR CF 1% is, as obtained in all the 

previous sections, the most expensive risk measure requiring about 11.83% of the portfolio value in 

this case. VaR GARCH DCC led to the lowest levels of capital requirements so, perhaps, this is the 

most important effect of using the DCC model. 

 

10. Conclusions 
 

 In this study I developed a comparative analysis regarding Value at Risk by the means of a 

simple portfolio consisting of three stocks traded at Bucharest Stock Exchange. In all cases 1-day, 

1% VaR was computed (except for the EVT approach where smaller quantiles were also 

considered), so the analysis does not refer to the number of days or to the probability level that are 

taken into account when determining VaR. Instead I focused on the following two directions: the 

volatility models and the distributions that form the premises for this risk measure. Thus, VaR was 

calculated using the historical volatility, the EWMA volatility model for the three stocks, a GARCH 

model for the volatility of the portfolio, GARCH models for the volatility of the three stocks and 

this stage was further improved by introducing a DCC model. In each case, the following 

distributional approaches were considered: the standard normal distribution, the historical 

distribution, the Cornish-Fisher approximation, distribution modeling using t-Student, NIG and 

GHD and the EVT approach which models the tail of the distribution using GPD. The results 

obtained in each stage of the analysis were presented  in sections 4-8. 

 One of the first conclusions that can be drawn out from this study is that enhanced (and at 

some extent difficult) approaches to VaR are now more pervious to the practitioners. Even when a 

dedicated software is not available Eviews, Excel and Rmetrics could do the job, the latter having 
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also the advantage that is a free software. For example, not quite usual distributions are available 

with only one command in Rmetrics and this study is an example itself of the idea mentioned 

above. But, even if more complicated VaR approaches are available and the practitioners are able to 

tailor these approaches to their specific needs, are the results worth the effort? Are the obtained risk 

measures worth the greater amount of calculations required to achieve them? Of course, a lot of 

subjective elements are taken into account when answering such questions. However, for the 

portfolio considered in this study I will try to see if the enhanced approaches that were used led to 

better results. 

 Table 41 presents the aggregate results for the five volatility approaches to VaR considered 

in this study. By aggregate results it is meant the number of 1 % VaR and ES measures that passed 

the precision test in each case. 
 

Table 41. Aggregate results for the volatility approaches 
 

VaR historical 
volatility VaR EWMA VaR GARCH

(portfolio) 
VaR GARCH 

(stocks) 
VaR GARCH

DCC 
4 2 5 3 4 

 

 So, if we are to rank them, VaR using a GARCH model for the volatility of the portfolio 

performed best followed by VaR GARCH DCC (which, if compared to VaR based on historical 

volatility, has the advantage that its average 1% ES is not exceeded by the average of the losses 

bigger then the corresponding VaR). VaR GARCH DCC has also the advantage that it has the 

lowest average capital requirements while VaR GARCH (portfolio) requires a much smaller amount 

of calculations. On the other hand, as it was presumed in section 6, the EWMA volatility model fits 

poorly our portfolio leading to the worst results from all the volatility approaches. 

 Table 42 presents the aggregate results for the distributional approaches to VaR considered 

in this study. By aggregate results it is meant the number of 1 % VaR and ES measures that passed 

the precision test for each approach. 
 

Table 42. Aggregate results for the distributional approaches 
 

VaR N Std Historical VaR VaR NIG VaR GHD VaR CF VaR EVT ES EVT
0 0 3 3 5 2 5 
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 The results are concordant with the non-normality of the standardized returns, VaR based on 

the standard normal distribution obtaining (together with historical VaR) the lowest score possible. 

Therefore, the distributional approaches intended to address non-normality are reasonable, VaR N 

Std leading to the underestimation of the risk. On the other side, although both VaR CF and ES 

EVT obtained the highest score possible, it should be taken into account that these measures have 

also the highest average levels of capital requirement. So, even if they didn't perform so well, it 

seems that VaR NIG and VaR GHD could be more attractive because their average levels of capital 

requirements are much smaller than the ones for VaR CF and ES EVT. 

 Although the main concern of this study is represented by the 1% risk measures, in the EVT 

approach I also considered quantiles smaller than 1%. Two reasons stand for that: the smaller 

quantiles allow us to see the significantly different risk profiles that may hide under very close 1% 

quantiles (and this is the case for our portfolio) and in order to see what happens if portfolio holders 

would choose a smaller probability level. The aggregate results for smaller quantiles under the EVT 

approach are given in Table 43. 
 

Table 43. Aggregate results for quantiles smaller than 1% under the EVT approach 
 

0.5% 0.1% 0.05% 0.01% 
VaR ES VaR ES VaR ES VaR ES 

1 5 1 5 2 5 5 5 
 

 The obtained results show that even at lower probability levels VaR EVT didn't perform 

very well. Moreover, the smaller the quantile the highest the capital requirement, leading to 

expensive portfolio management. The results for ES, although very good in terms of precision, 

should be taken with the reserve that ES itself is higher than the corresponding VaR, leading also to 

high capital requirements.  

 Finally, let us consider the five 1% risk measures (one for each volatility approach) that 

were selected in this study using the criteria of the precision tests and the level of capital 

requirements. Table 44 puts together these measures along with their error percentage and their 

average levels. 
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Table 44. Aggregate results for the 1% risk measures that performed best (one per volatility 

approach) 
 

Volatility 
approach 

Historical 
volatility EWMA GARCH 

(portfolio) 
GARCH 
(stocks) 

GARCH 
DCC 

Selected risk 
measure VaR GHD ES 

EVT VaR GHD VaR NIG VaR GHD 

Error % 0.94% 0.19% 0.94% 0.94% 0.94% 
Average value 0.0591 0.0929 0.0529 0.0521 0.0507 

 

 Once again it is possible to select what it could be the "best" risk measure for our portfolio 

during the considered period. And, taking into account that all of them are below the critical level of 

1% VaR GHD under GARCH DCC approach would "win", considering that it has the lowest level 

of capital requirements. However, the answer may be not that simple considering the fact that 

GARCH DCC requires a great amount of calculations and it is difficult to implement in large 

portfolios (indeed, this is one of the reasons for which the portfolio considered in this study consists 

of only three stocks). Is it the calculations effort worth the decrease in capital requirement from 

0.0529, or from 0.0521 to 0.0507? Certainly, is difficult to give an answer because the selection 

depends also on the experience of the practitioners, on the value of the portfolio and on the 

hardware and software available to the one measuring the risk. 

 Still, I consider that a few general conclusions (with a certain degree of subjectivity) may be 

formulated taking into account the results obtained in this study: 

- Using more improved volatility models tends to offer better results, especially in terms of capital 

requirements. In my opinion, VaR based on a GARCH model for the volatility of the portfolio 

realizes perhaps the most appropriate compromise between the capital requirements and the 

required amount of calculations; 

- It is recommended to consider other distributions than the standard normal distribution when 

computing VaR. However, the CF approximation tends to get overestimated 1% quantiles leading to 

high capital requirements (the highest in this study), while modeling with GHD and NIG leads to 

nice results. In my opinion, for the specific portfolio considered in this study, VaR GHD using a 

GARCH model for portfolio volatility is perhaps the most appropriate choice in terms of precision, 

capital requirements and the necessary amount of calculations;  

- It seems that VaR computed under the EVT approach does not perform very well. It generally 

leads to lower capital requirements and so the precision results are affected. On the contrary, ES 
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performs very well in terms of precision and the risk profile of the tail indicates that it could be a 

better risk measure. But, along with the precision comes a higher level of capital requirements, not 

as high as VaR CF, but substantially different from the other computed VaRs. 

 Of course, it could be argued that the results of this study apply strictly to the considered 

portfolio and, at some extent, it may be true. However, I do believe that the comparative analysis 

done in this study could be of a more general use, especially to practitioners. 
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APPENDIX 1 

Full ADF test results for the daily returns of ATB, AZO, TLV and the portfolio  

 
Null Hypothesis: ATBLN has a unit root 
Exogenous: Constant 
Lag Length: 1 (Automatic based on SIC, MAXLAG=24) 

   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -24.32559  0.0000 
Test critical values: 1% level  -3.433757  

 5% level  -2.862932  
 10% level  -2.567558  

*MacKinnon (1996) one-sided p-values. 
 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(ATBLN) 
Method: Least Squares 
Date: 05/15/08   Time: 21:12 
Sample(adjusted): 3 1814 
Included observations: 1812 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
ATBLN(-1) -0.701029 0.028819 -24.32559 0.0000 

D(ATBLN(-1)) -0.088011 0.023304 -3.776587 0.0002 
C 0.000804 0.000698 1.152047 0.2495 

R-squared 0.391148     Mean dependent var -7.29E-05 
Adjusted R-squared 0.390475     S.D. dependent var 0.038022 
S.E. of regression 0.029684     Akaike info criterion -4.194742 
Sum squared resid 1.594016     Schwarz criterion -4.185632 
Log likelihood 3803.436     F-statistic 581.0820 
Durbin-Watson stat 2.007280     Prob(F-statistic) 0.000000 

 
 

Null Hypothesis: AZOLN has a unit root 
Exogenous: Constant 
Lag Length: 0 (Automatic based on SIC, MAXLAG=24) 

   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -42.60324  0.0000 
Test critical values: 1% level  -3.433755  

 5% level  -2.862931  
 10% level  -2.567557  

*MacKinnon (1996) one-sided p-values. 
 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(AZOLN) 
Method: Least Squares 
Date: 05/15/08   Time: 21:15 
Sample(adjusted): 2 1814 
Included observations: 1813 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
AZOLN(-1) -1.000826 0.023492 -42.60324 0.0000 

C 0.000463 0.000836 0.553517 0.5800 
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R-squared 0.500557     Mean dependent var -2.03E-05 
Adjusted R-squared 0.500281     S.D. dependent var 0.050376 
S.E. of regression 0.035611     Akaike info criterion -3.831205 
Sum squared resid 2.296646     Schwarz criterion -3.825135 
Log likelihood 3474.987     F-statistic 1815.036 
Durbin-Watson stat 1.999550     Prob(F-statistic) 0.000000 

 
 

Null Hypothesis: TLVLN has a unit root 
Exogenous: Constant 
Lag Length: 0 (Automatic based on SIC, MAXLAG=24) 

   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -37.72185  0.0000 
Test critical values: 1% level  -3.433755  

 5% level  -2.862931  
 10% level  -2.567557  

*MacKinnon (1996) one-sided p-values. 
 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(TLVLN) 
Method: Least Squares 
Date: 05/15/08   Time: 21:21 
Sample(adjusted): 2 1814 
Included observations: 1813 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
TLVLN(-1) -0.879796 0.023323 -37.72185 0.0000 

C 0.000408 0.000685 0.595132 0.5518 
R-squared 0.440002     Mean dependent var -3.04E-05 
Adjusted R-squared 0.439692     S.D. dependent var 0.038945 
S.E. of regression 0.029152     Akaike info criterion -4.231490 
Sum squared resid 1.539050     Schwarz criterion -4.225419 
Log likelihood 3837.845     F-statistic 1422.938 
Durbin-Watson stat 2.000186     Prob(F-statistic) 0.000000 

 
 

Null Hypothesis: PORTLN has a unit root 
Exogenous: Constant 
Lag Length: 0 (Automatic based on SIC, MAXLAG=24) 

   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -36.55895  0.0000 
Test critical values: 1% level  -3.433755  

 5% level  -2.862931  
 10% level  -2.567557  

*MacKinnon (1996) one-sided p-values. 
 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(PORTLN) 
Method: Least Squares 
Date: 06/15/08   Time: 11:33 
Sample(adjusted): 2 1814 
Included observations: 1813 after adjusting endpoints 
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Variable Coefficient Std. Error t-Statistic Prob. 
PORTLN(-1) -0.848025 0.023196 -36.55895 0.0000 

C 0.000612 0.000489 1.250262 0.2114 
R-squared 0.424633     Mean dependent var -3.08E-05 
Adjusted R-squared 0.424315     S.D. dependent var 0.027448 
S.E. of regression 0.020826     Akaike info criterion -4.904159 
Sum squared resid 0.785445     Schwarz criterion -4.898089 
Log likelihood 4447.620     F-statistic 1336.557 
Durbin-Watson stat 2.013358     Prob(F-statistic) 0.000000 
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APPENDIX 2 

PDF of the empirical distributions and log PDF graph of the standardized returns20 of the 

portfolio against the estimated t-Student distribution  
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20 The returns have been standardized using their historical mean and volatility 
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APPENDIX 3 

The histogram and the Jarque-Bera test applied to the standardized returns of the portfolio21 
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Mean       0.015034
Median  -0.004146
Maximum  7.380382
Minimum -11.35463
Std. Dev.   1.160841
Skewness  -1.104383
Kurtosis   17.02011

Jarque-Bera  15225.66
Probability  0.000000

 
 

The ADF test applied to the standardized returns of the portfolio 
 

Null Hypothesis: PORTLN_EWMA has a unit root 
Exogenous: Constant 
Lag Length: 0 (Automatic based on SIC, MAXLAG=24) 

   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -37.99145  0.0000 
Test critical values: 1% level  -3.433755  

 5% level  -2.862931  
 10% level  -2.567557  

*MacKinnon (1996) one-sided p-values. 
     
     

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(PORTLN_EWMA) 
Method: Least Squares 
Date: 06/15/08   Time: 16:30 
Sample(adjusted): 2 1814 
Included observations: 1813 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
PORTLN_EWMA(-1) -0.886131 0.023324 -37.99145 0.0000 

C 0.012099 0.027077 0.446832 0.6551 
R-squared 0.443514     Mean dependent var -0.001481 
Adjusted R-squared 0.443207     S.D. dependent var 1.544942 
S.E. of regression 1.152813     Akaike info criterion 3.123391 
Sum squared resid 2406.781     Schwarz criterion 3.129461 
Log likelihood -2829.354     F-statistic 1443.351 
Durbin-Watson stat 2.010906     Prob(F-statistic) 0.000000 

                                                 
21 The information displayed in this appendix concerns the portfolio returns standardized using the EWMA volatility 
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PDF of the empirical distributions and log PDF graph of the standardized returns of the 

portfolio against the estimated t-Student distribution  

 

Histogram of portln_norm
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APPENDIX 4 

GARCH (1,1) estimated equation for the volatility of the portfolio returns 
 

Dependent Variable: PORTLN 
Method: ML - ARCH (Marquardt) 
Date: 06/21/08   Time: 13:52 
Sample: 1 1814 
Included observations: 1814 
Convergence achieved after 27 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 
C 0.001145 0.000383 2.986488 0.0028 
        Variance Equation 

C 3.67E-05 2.45E-06 14.99823 0.0000 
ARCH(1) 0.233307 0.015075 15.47647 0.0000 

GARCH(1) 0.734227 0.008139 90.21299 0.0000 
R-squared -0.000346     Mean dependent var 0.000752 
Adjusted R-squared -0.002005     S.D. dependent var 0.021087 
S.E. of regression 0.021108     Akaike info criterion -5.002785 
Sum squared resid 0.806442     Schwarz criterion -4.990650 
Log likelihood 4541.526     Durbin-Watson stat 1.692772 

 
 
The histogram and the Jarque-Bera test applied to the standardized returns of the portfolio22 
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The ADF test applied to the standardized returns of the portfolio 
 

Null Hypothesis: PORTLN_GARCH has a unit root 
Exogenous: Constant 
Lag Length: 0 (Automatic based on SIC, MAXLAG=24) 

                                                 
22 The information displayed in this appendix concerns the portfolio returns standardized using the GARCH volatility 
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   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -38.01752  0.0000 
Test critical values: 1% level  -3.433755  

 5% level  -2.862931  
 10% level  -2.567557  

*MacKinnon (1996) one-sided p-values. 
 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(PORTLN_GARCH) 
Method: Least Squares 
Date: 06/21/08   Time: 14:35 
Sample(adjusted): 2 1814 
Included observations: 1813 after adjusting endpoints 

Variable Coefficient Std. Error t-Statistic Prob. 
PORTLN_GARCH(-1) -0.886451 0.023317 -38.01752 0.0000 

C 0.001233 0.023345 0.052803 0.9579 
R-squared 0.443853     Mean dependent var -0.001415 
Adjusted R-squared 0.443546     S.D. dependent var 1.332533 
S.E. of regression 0.994014     Akaike info criterion 2.826972 
Sum squared resid 1789.385     Schwarz criterion 2.833043 
Log likelihood -2560.650     F-statistic 1445.332 
Durbin-Watson stat 2.007919     Prob(F-statistic) 0.000000 

 
 

PDF of the empirical distributions and log PDF graph of the standardized returns of the 

portfolio against the estimated t-Student distribution  
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APPENDIX 5 

Estimated GARCH equations for the volatility of the three stocks 
 

Dependent Variable: ATBLN 
Method: ML - ARCH (Marquardt) 
Date: 06/22/08   Time: 12:34 
Sample: 1 1814 
Included observations: 1814 
Convergence achieved after 14 iterations 
Variance backcast: ON 
 Coefficient Std. Error z-Statistic Prob.   
C 0.001452 0.000486 2.986079 0.0028 
        Variance Equation 
C 2.14E-05 2.46E-06 8.706563 0.0000 
ARCH(1) 0.124996 0.008175 15.28975 0.0000 
GARCH(1) 0.851955 0.007247 117.5653 0.0000 
R-squared -0.000028     Mean dependent var 0.001289 
Adjusted R-squared -0.001686     S.D. dependent var 0.030789 
S.E. of regression 0.030815     Akaike info criterion -4.619317 
Sum squared resid 1.718670     Schwarz criterion -4.607182 
Log likelihood 4193.720     Durbin-Watson stat 1.525151 

 
Dependent Variable: AZOLN 
Method: ML - ARCH (Marquardt) 
Date: 06/22/08   Time: 12:53 
Sample: 1 1814 
Included observations: 1814 
Convergence achieved after 53 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 
C 0.000356 0.000769 0.463350 0.6431 
        Variance Equation 

C 6.78E-05 6.11E-06 11.09809 0.0000 
ARCH(1) 0.097711 0.004702 20.78116 0.0000 

GARCH(1) 0.857307 0.007828 109.5134 0.0000 
R-squared -0.000013     Mean dependent var 0.000483 
Adjusted R-squared -0.001670     S.D. dependent var 0.035602 
S.E. of regression 0.035632     Akaike info criterion -4.009225 
Sum squared resid 2.297997     Schwarz criterion -3.997090 
Log likelihood 3640.367     Durbin-Watson stat 2.001052 

 
Dependent Variable: TLVLN 
Method: ML - ARCH (Marquardt) 
Date: 06/22/08   Time: 14:31 
Sample: 1 1814 
Included observations: 1814 
Convergence achieved after 120 iterations 
Variance backcast: ON 

 Coefficient Std. Error z-Statistic Prob. 
C 0.002483 0.000380 6.531685 0.0000 
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        Variance Equation 

C 4.40E-05 2.20E-06 20.01196 0.0000 
ARCH(1) 1.869206 0.071401 26.17891 0.0000 

(RESID<0)*ARCH(1) -1.566882 0.071943 -21.77950 0.0000 
GARCH(1) 0.561647 0.005775 97.25708 0.0000 

R-squared -0.004632     Mean dependent var 0.000486 
Adjusted R-squared -0.006854     S.D. dependent var 0.029359 
S.E. of regression 0.029460     Akaike info criterion -4.591038 
Sum squared resid 1.569979     Schwarz criterion -4.575869 
Log likelihood 4169.071     Durbin-Watson stat 1.750541 

 
 
The histogram and the Jarque-Bera test applied to the standardized returns of the portfolio23 
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The ADF test applied to the standardized returns of the portfolio 
 

Null Hypothesis: PORTLN_GARCH has a unit root 
Exogenous: Constant 
Lag Length: 0 (Automatic based on SIC, MAXLAG=24) 

   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -38.42488  0.0000 
Test critical values: 1% level  -3.433755  

 5% level  -2.862931  
 10% level  -2.567557  

*MacKinnon (1996) one-sided p-values. 
 

Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(PORTLN_GARCH) 
Method: Least Squares 
Date: 06/23/08   Time: 21:27 
Sample(adjusted): 2 1814 
Included observations: 1813 after adjusting endpoints 

                                                 
23 The information displayed in this appendix concerns the portfolio returns standardized using the GARCH volatility  



 - 77 -

 
Variable Coefficient Std. Error t-Statistic Prob. 

PORTLN_GARCH(-1) -0.896964 0.023343 -38.42488 0.0000 
C -0.001875 0.023016 -0.081458 0.9351 

R-squared 0.449121     Mean dependent var -0.001463 
Adjusted R-squared 0.448817     S.D. dependent var 1.320006 
S.E. of regression 0.979995     Akaike info criterion 2.798564 
Sum squared resid 1739.267     Schwarz criterion 2.804634 
Log likelihood -2534.898     F-statistic 1476.472 
Durbin-Watson stat 2.006469     Prob(F-statistic) 0.000000 

 
 

PDF of the empirical distributions and log PDF graph of the standardized returns of the 

portfolio against the estimated t-Student distribution  
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APPENDIX 6 

The histogram and the Jarque-Bera test applied to the standardized returns of the portfolio24 
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The ADF test applied to the standardized returns of the portfolio 
 

Null Hypothesis: PORTLN_GARCHDCC has a unit root 
Exogenous: Constant 
Lag Length: 0 (Automatic based on SIC, MAXLAG=24) 
   t-Statistic   Prob.* 
Augmented Dickey-Fuller test statistic -38.40774  0.0000 
Test critical values: 1% level  -3.433755  
 5% level  -2.862931  
 10% level  -2.567557  
*MacKinnon (1996) one-sided p-values. 
 
Augmented Dickey-Fuller Test Equation 
Dependent Variable: D(PORTLN_GARCHDCC) 
Method: Least Squares 
Date: 06/30/08   Time: 22:52 
Sample(adjusted): 2 1814 
Included observations: 1813 after adjusting endpoints 
Variable Coefficient Std. Error t-Statistic Prob.   
PORTLN_GARCHDC
C(-1) 

-0.896525 0.023342 -38.40774 0.0000 

C -0.001789 0.022892 -0.078130 0.9377 
R-squared 0.448900     Mean dependent var -0.001448 
Adjusted R-squared 0.448596     S.D. dependent var 1.312623 
S.E. of regression 0.974709     Akaike info criterion 2.787748 
Sum squared resid 1720.555     Schwarz criterion 2.793818 
Log likelihood -2525.093     F-statistic 1475.155 
Durbin-Watson stat 2.006671     Prob(F-statistic) 0.000000 

                                                 
24 The information displayed in this appendix concerns the portfolio returns standardized using the GARCH DCC 
volatility 



 - 79 -

 
PDF of the empirical distributions and log PDF graph of the standardized returns of the 

portfolio against the estimated t-Student distribution  
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