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ABSTRACT

We investigate the presence of long memory in emg@iGEE stock markets using the
nonparametric, semiparametric and parametric appesaWe consider the methodology of
Bai and Peron to test for structural breaks in fbgirn series and we perform tests of
fractionally integrated process on subsamples gteroto identify potential evidence of
spurious long memory. We test for long memory ithbconditional mean and conditional
variance by combining a fractionally integrated resgion function and a fractionally
integrated skedastic function.We estimate ARFIMAREZAH and ARFIMA-FIGARCH
models under two proposed distributions. The thenveld Student-t distribution is found to
better describe the data comparing to Gaussianbdigon.

We conclude that the Romanian, Hungarian and CZepublic capital markets show
evidence of dual long memory in returns and votgtilwhile the Bulgarian and Poland
markets show strong features of long memory intilitig but no long memory in return

series.
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|. INTRODUCTION

The long memory property has been widely studiedegonomic series and its
implications for economic theory have been exteglgivliscusssed .The most considerable
economical implications is the contradiction of theak-form of market efficiency - Fama
(1970) by allowing investors and portfolio managgysmake prediction and to construct
speculative strategies. The price of an assetrdéeted in an efficient market should follow a
martingale process in which each price change &fected by its predecessor and has no
memory. Consequently, pricing derivative securitrdggh martingale methods may not be
appropriate if the underlying continuous stochagtacesses exhibit long memory. Therefore,
exploring long memory property is appealing for idative market participants, risk
managers and asset allocation decisions makersenhterest is to reasonably forecast stock
market movements.These are only few reasons exmdaihe high researchers’ interest, and
the impressive number of papers written on thigesiib

This paper re-examines evidence of long-memory he tonditional mean and
volatility of six stock indices, representing fivamerging capital markets in Central and
Eastern Europe: Romania, Bulgaria, Hungary, Potam@tiCzech.

Many of these papers focus on the developed fiahntarkets, while less attention has been
accorded to emerging securities markets. Emergiagkets are generally characterized by
low dimensions and liquidity and in the same timeabhigher volatility than developed
financial markets. These different features maytrdoumte to a different dynamics underlying
returns and volatility, making attractive a furthevestigation in these markets.

In the latest period, there is a great interesliscerning the reasons and underlying causes for
the widespread a selection of relevant

literature on the issues at hand. empirical finddhdpng memory. A number of authors have
attempted to develop methodologies to distinguestfivben true long memory and other types
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of processes displaying statistical long memorig slubject being intensively investigated in

recently performed studies.

This paper is organized as follows: Section Il prés a selection of relevant literature related
to this papers’ subject. Section Il introduces toacepts and models used in the empirical
analysis, while Section 1V describes the datajiiementation of the models and discuss of
the obtained results. Section V includes the caichs.

Il. LITERATURE REVIEW

A remarkable research has been performed conceroimg memory property and its
implications in various science fields from physicématology and hydrology to applications
on stock markets, exchange rates and macroeconadigators. This section presents the
studies supposed to be most relevant for the subjedyzed in this paper.

Long memory modeling has been studied in econoosetind finance since Mandelbrot
(1969) introduced long memory specifications foic@rprocesses. Fractionally integrated
models started to become usually used in the 1@8@n Geweke and Porter-Hudak (1983)
developed the log periodogram regression estinfatdhe order of integration parameten

the arfima model of Granger and Joyeux (1980) aoskihg (1981).

Lo (1991) found little evidence of long-term memanyhistorical U.S. stock market returns
while Cheung and Lai (1995) investigate the preseidong memory in stock returns for 18
indices using a modified R/S statistic and the GE${. R/S statistic shows mostly negative
results, while GPH test confirm long memory in &toeturns for only five indices.

Ding, Granger and Engle (1993) found that thersuisstantially more correlation between
absolute returns than returns themselves and amidt both ARCH type models based on
squared returns and those based on absolute e&nrproduce the property of long memory
in volatility. In the same idea of spurious longmwy, Ding and Granger (1996) pointed out
that many other generating mechanisms can produwcesgses with the same features as long
memory, and show that at least time-varying parameiodels could be considered in this

class. Lobato and Savin (1998) found no evidendera memory in daily stock returns, but
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strong evidence of long memory in squared returhgewWillinger, Taqgqu and Teverovsky
(1999) found empirical evidence of long-range delesce in stock price returns, but the
evidence was not absolutely conclusive. GrangertHynhg (1999) shows for S&P 500 that
absolute stock returns tend to show the long menpuoperty due to the presence of
structural breaks in the series rather than thantda true I(d) process, concluding that linear
process with breaks can imitate autocorrelatioaswall as other properties of fractionally
integrated processes.Using the spectral regressiethod, Barkoulas, Baum and Travlos
(2000) found significant and robust evidence ofifpas long-term persistence in the Greek
stock market. Henry (2002) investigated long radgpendence in nine international stock
index returns and found evidence of long memoryour of them, the German, Japanese,
South Korean and Taiwanese markets, but not fontaekets of the UK, USA, Hong Kong,
Singapore and Australia.

Chen (2000) calculated the classical rescaled ratagestic of Hurst for seven Asia-Pacific
countries' stock indices and concluded that alliticiex returns have long memory. Diebold
and Inoue (2000), however, conclude upon the stoammgection between long memory and
regime switching, showing that that stochastic megswitching can be easily confused with
long memory.

Sadique and Silvapulle (2001) examined the presehlmmg memory in weekly stock returns
of seven countries: Japan, Korea, New Zealand, yd&aSingapore, the USA and Australia.
They found evidence for long-term dependence im éowntries: Korea, Malaysia, Singapore
and New Zealand.

Cajueiro and Tabak (2005) state that the preseht@ng-range dependence in asset returns
seems to be a stylized fact. They studied the iddat stocks in the Brazilian stock market
and found evidence that firm-specific variables eaplain, at least partially, the long-range
dependence phenomena. From the same point of ®Wewpn and Qu (2006) analytically
show how a stationary short memory process witlelleshifts can generate spurious long
memory.

Granger and Hyung (2004) research came to suppertdnclusions of Diebold and Inoue
and show that occasional breaks generate slowhayieg autocorrelations and other
properties of 1(d) processes, and that is not easgistinguish between the two type of

6
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processes. They demonstrated that at least a ptré dong memory may be caused by the
presence of neglected breaks in the series ancesutigt their finding permit improvements
of volatility prediction by combining I(d) model droccasional-break model.

The idea of dual long memory process was firsoohiiced by Teyssiere (1997) which show
through Monte Carlo simulations that ignoring langmory in the conditional mean of a dual
long memory process leads to significant biasdbenestimation of the conditional volatility
process. Consequently, in order to asses the mdmsof the FIGARCH model the possibility
of a fractional root in the conditional mean isrimtuced. They conclude that the ARFIMA-
FIGARCH model capture more or less the dynamicdailfy exchange rates, due to the fact
that the fractional parameter in the mean equatias found to be quite low, confirming the
presence of long memory only in the conditionalattity. Other authors which investigated
long memory using the technique proposed by Teregdi897) are Beine and Sebastien
(1999) which also estimate FIGARCH model for madgldaily exchange rates and conclude
that allowing for a fractional root in the condiiel mean appear to be pertinent but does not
lead to other parameter estimates compared withdlaility sides.

Yoon and Kang(2007) investigate dual long memoryhim returns and volatility of Korean
stock market starting from a slight different apgrio from that proposed by Teyssiere(1997),
given that they first estimate ARFIMA model for tbenditional mean, and depending on the
obtained results they further analyze dual long wrgmapplying the joint ARFIMA-
FIGARCH model. They found evidence of long memarypoth moments and conclude that
the dual long memory model provide a better exglandor long memory dynamics in both
the conditional mean and variance.

Similar result were obtained Kasman and Torun (20@8ch investigate the presence of dual
long memory in eight CEE emerging stock markets fanehd that strong evidence of long
memory in both conditional mean and variance arat the ARFIMA-FIGARCH model
outperforms ARFIMA-GARCH and ARFIMA-HYGARCH modeis terms of out-of-sample
forecast.

Finally, more recent articles of high interest #inese of Baillie and Morana (2007) and
Baillie and Morana (2009) respectively, althoupbse approaches are not followed on the

present paper. Baillie and Morana (2007) proposevamodel for long memory in volatility ,

7
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designed to account for both long memory features structural change in the conditional
variance process. The model, named A-FIGARCH (AsaptFractionally Integrated
GARCH) considers a time-varying intercept whicloa# for breaks, cycles and changes in
drift. Baillie and Morana (2009) propose a simiiaodel to A-FIGARCH for the conditional
mean, named Adaptive ARFIMA for which they concluithét appears to be capable of
successfully dealing with various forms of breakd discontinuities in the conditional mean
of a time series. The model was proposed for inyang inflation dynamics but can also be
applied to other economic time series data. Thep g@giropose a generalization of these
models, the so called.fAdaptive)-ARFIMA-FIGARCH , which allow for long nreory and
structural breaks in the conditional mean as welios long memory and structural breaks in

the conditional variance.

[ll. DETECTING LONG MEMORY IN TIME SERIES

There are various definitions of long memory prgess Especially, long memory could be

expressed either in the time domain or in the feeqy domain. In the time domain, a

stationary discrete time series is said to be lmegnory if its autocorrelation function decays

to zero like a power function.

This meaning involves that the dependence betweeressive observations decays slowly as
the number of lags tends to infinity. On the othand, in the frequency domain, a stationary
discrete time series is supposed to be long merhirg spectral density is unbounded at low

frequencies.

ACF and fractional integration

A standard approach to examining long memory withire series is through an examination
of the sample autocorrelation function. In parteulf the sample autocorrelations take a long
time to decline to zero, then the process is sai@xhibit long memory. That is, if the

autocorrelations decay very slowly as the lag lemgtreases then current values of the series
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are related to own distant values. Absolute retam$ squared returns show most obvious

these patterns.

Fig.1 Autocorrelation function for absolute returns

ACF BET-FI absolute returns

ACF BET absolute returns
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Testing stationarity

It is well known that deciding whether data arecfi@ally integrated or not based on the
ADF tests may be inadequate, due to the fact thsitype of unit root tests has low power to
distinguish between the 1(1) null hypothesis aral () alternative. (Diebold and Rudebusch
(1991) and Hassler and Wolters(1994).

Originally designed to test an 1(0) null hypothegessus an I(1) alternative, the KPSS test
proposed by Lee and Schmidt (1996) proved to perfoell as a test for the null stationarity

against the alternative of fractional integration.

Therefore, by testing the both ADF and KPSS testg can distinguish between the three
type of series: unit root, stationary and fractibnimtegrated.

As noted in Baillie, Chung and Tieslau (1996) tlbenbined use of ADF, PP and KPSS test
leads to the following possible results:

* rejection by the ADF and PP and failure to rejegttlire KPSS is considered a strong
evidence of a stationary 1(0) process;

» failure to reject by the ADF and PP and rejectigrthie KPSS statistic indicates a unit
root I(1) process;

» failure to reject by all ADF, PP and KPSS is prdpala consequence of data being
insufficiently informative for the long-run characistics of the process;

* rejection by all ADF, PP and KPSS indicates thattocess is described by neither 1(0)
nor I(1) processes and therefore it is probabldebedescribed by the fractional
integrated alternative.

In this paper we perform only ADF and KPSS teststlhe interpretations remain the same.
The combined evidence based on the ADF and KP33ewmdts indicates that for the index
returns series neither an I(1) nor an I(0) proéess good representation of the data process,
which suggests that a fractionally differenced psscmay be an appropriate representation
for these series.

10
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Determining the degree of fractional integration

There are currently a significant number of estiomatnethods for and tests of long memory
models. Probably one of the reasons for this lagdiection of tools for estimation and testing
is the fact that good estimation techniques rerehisive, and many of the tests used for long
memory have been shown through finite sample exyaaris to perform quite poorly.
Therefore, we consider some of the most widely usstilmators and tests: R/S statistic,
wavelet based estimator, GPH estimator -as nonpdranand semiparametric approaches-
and ARFIMA/FIGARCH model as parametric approach.

* Nonparametric approach: The Rescaled Range Statisti

The original statistical measurement of long memaorroduced by Hurst(1951), and
subsequently used by Mandelbrot(1975) is the Risst (rescaled range statistic).
The classical rescaled range statistic is defirsed a

R/ S(n) =Si{|v|axzk‘l(xj —X_n)—MinZk:(Xj —x_n)] 1<ksn (1)

n i=1 j=1

Where g the sample standard deviation:

Sy :{%Z(Xj _X_n)ZT

The first term represents the maximum of the pbstims of the first k deviations of ¥om
the sample mean. Given that the sum of all n deviatof the Xs from their mean is zero,
this term is always nonnegative. In the same wag second term is always nonpositive and
hence the difference between the two terms, knasmharange , is always nonnegative.
Madelbrot and Wallis (1969) use the R/S statistidétect long memory patterns using the
following rationale: for a random process theresgsling relationship between the rescaled
range and the number of observations n of the form:

R/S(r) nH (2)

11
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where H is the Hurst exponent. For a white noise@ss H = 0.5, while for a persistent, long
memory process H > 0.5 The difference d = (H-O&)resents the degree of fractional
integration in the process.

Mandelbrot and Wallis suggest estimating the Huoasfficient by plotting the logarithm of
R/S(n) against log(n). For large n, the slope @hsal plot should provide an estimate of H.

A major limitation of the rescaled range is its s@vity to short-range dependence. Any
departure from the predicted behavior of the R&isttc under the null hypothesis need not
be the result of long-range dependence, but maylgirne an indication of short-term

memory. Lo (1991) show that this result from tmeiting distribution of the rescaled range:

1

where V is the range of a Brownian bridge on thi interval.
To differentiate between long-range and short-tdependence, Lo proposes a modification
of the R/S statistic to ensure that its statistlwghavior is invariant over a general class of
short memory processes, but deviates for long mgmarcesses. His version of the R/S test
statistic differs only in the denominator. RathHart using the sample standard deviation, Lo’s
formula applies the standard deviation of the pagium, which includes not only the sums of
squares of deviations for;Ybut also the weighted autocovariances (up ta)ag
A2 B 1 n — q A B J
gn(@) ==D (X, = X)) +2D w (@ y; w(g)=1-—— q<n (4)

N5 =t q+1
where they; are the usual autocovariance estimators.
If g = 0, Lo’s statistic reduces to Hurst's R/Stistiec. This statistic is highly sensitive to the
order of truncation q but there is no a statistaréteria for choosing q in the framework of
this statistic. If q is too small, the statisticedonot account for the autocorrelation of the
process, while if q is too large, it accounts fay &orm of autocorrelation and the power of
this test tends to its size.
Therefore, while in principle this adjustment t@ tR/S statistic ensures its robustness in the
presence of short-term dependency, selecting amoppate lag order g still remains a
problem. Moreover, Teverovsky, Tagqu and Willinge®99) proved that Lo’s modification

of R/S statistic is too strict. They show that Loiethod has a strong preference for accepting

12
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the null hypothesis of no long-range dependencesspective of whether long-range
dependence is present in the data or not. Theyasolude that an acceptance of the null
hypothesis of no long-range dependence based omdkédied R/S statistic should never be
viewed as conclusive but should always be acconepgaad supported by further analysis of
the data.

* Semiparametric approach
a. Geweke-Porter-Hudak estimator

Geweke and Porter-Hudak (1983) suggested a semmgdric procedure to obtain an
estimate of the fractional differencing parametdyagded on the slope of the spectral density
function around the angular frequency x = 0. Mgrec#fically, let I(x ) be the periodogram of

y at frequency x defined by:
_ 1 T ité — |2
IGEP=)WAR )

Then the spectral regression is defined by:

{1 (&)} =5, +8, m{m{%j} +1, 6)

Where ¢, =@(A =0,...,T -1) denotes the Fourier frequencies of the samples Thé

number of observations, and n = g(T) << T is thenber of Fourier frequencies included in
the spectral regression.

2
Assuming thatlim g(T) =oo,lim{g(T)/T} =0,lim In(I')A(T) =0 the negative of the slope

coefficient in the spectral regression provideseatimate of d. Geweke and Porter-Hudak
(1983) prove consistency and asymptotic normabtyd < 0, while Robinson (1990) proves
consistency for dii(0, 0.5).

The spectral regression estimator is ndt Tonsistent as it converges at a slower rate. The

theoretical variance of the error term in the sécegression is known to blg

13
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A choice must be made with respect to the numbdowifrequency periodogram ordinates
used in the spectral regression. Improper inclusiomedium or high-frequency periodogram
ordinates will contaminate the estimate of d; & shme time too small a regression sample
will lead to imprecise estimates.

We report fractional differencing parameter fd*T T%°° 1%°° and P*° to investigate the

sensitivity of our results to the choice of the parsize of the spectral regression.

b. Wavelet based estimator

Wavelet based estimator estimation of fractionaitggration parameter allows for analysis in
both the time and frequency domain and is basetisunete wavelet transform.

For a chosen bandwidth, the discrete wavelet toamsflecomposes the data series in a sum
of elementary contributions called wavelets whiale avell localized both in time and
frequency domain.

The Discrete Wavelet Transform is computed, theasgpiof the coefficients transform are
averaged, and subsequently a linear regressioheclogarithm of the average, versus the log
of the scale parameter of the transform is perfdrnidéne result is directly proportional to H

providing an estimate for the Hurst exponent.
» Parametric approach: ARFIMA model

All the estimation techniques presented above, iackided in the two-step estimation
procedure (this distinction was first made by St\{991).

These procedures only estimate the differencingarpater and in the second step the
estimated differencing parameter is used to transfine observed series into a series that
presumably follows an ARMA(p,q) model. The limitati of these models is that they use
information only at low frequencies and therefdreyt do not take account of the short-term
properties of the series when estimating the foaeli differencing parameter. This has
important implications since the estimate of theglderm parameter could be contaminated

by the presence of short-term components.

14
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Therefore, a more appropriate technique is the MXprocess introduced by Granger and
Joyeux (1980) and Hosking (1981). This is a onp-#&stimation procedure: the process
accounts for long-term dynamic through the fraaibn integration parameted, while

traditional AR and MA components capture the shemta dynamics of the time series. The

parameters are simultaneously estimated using mamihkelihood estimation.

The ARFIMA(p,d,q) model is represented by:
d(L)A-L)(y, - &) =O(L)u, whereu, ~ii.d.(0,07 ) (7
where L is the lag operator, d is the fractionffiedencing parameter, all the roots®fL)
ando(L) lie outside the unit circle, andia white noise.
Granger and Joyeaux(1981) show that

e T(k—d)L*
- kzr( —d)r(k+1) ®

wherel( ) is the gamma function.

If -0.5<d<0.5 the process is and invertible andsiach processes, the effect of shocks to t on
yt decays at the slow rate to zero; if d=0, then pghacess is stationary, so-called short
memory, and the effect of shocks to t erigcays geometrically; for d=1 the process follows
a unit root process; for 0<d<0.5 the process etdipositive dependence between distant
observations implying long memory and for -0.5<d#te process exhibits negative
dependence between distant observations, so caltegersistence.

The use of the fractional difference operator aiosbtaining a continuum of possibilities
between the polar cases of unit roots processesfantegrated processes of order 0.

It is well known that, for standard ARMA processts autocorrelation function decreases
exponentially. Opposing to this processes Hoskit®8() shows that the autocorrelation
function for fractionally integrated process detsipwly”, with a hyperbolical rate:

2d-1

p()0r*tasr - o 9)

The autocorrelation of such fractionally integrapedcesses remain significant at long lags.

15
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Modeling long memory in volatility: Fractionally in tegrated GARCH (FIGARCH)

Since the beginning of the GARCH model (Bollersléd986; Engle, 1982), several
researchers observed that the parameters of theGBIAROdel sum very close to one,
indicating a high degree of volatility persistenice a shock. Following this remark, the
IGARCH model has been developed (Engle & BollerslE&86), in which the parameters of
the GARCH model are constrained to equal one, shah shocks have impact on future
volatility indefinitely.

This idea, that volatility shocks were persistent bot infinite, led Baillie, Bollerslev and

Mikkelsen (1996) to apply the idea of fractionailhtegration introduced by Granger(1980)
and Hosking(1981) for the mean, to a GARCH framdwor

The FIGARCH(p,d,q) model is given by :

AL)1-L)" €2 = w+[1- B(L),, wherev, = £2 - o7 (10)
It is assumed that all the roots @fL) and[1- S(L)] lie outside the unit circle.
If d=0, the FIGARCH(p,d,q) nests the classical GARE,q) process, and if d=1 the process

becomes an integrated GARCH process.

The equation (10) can be rearranged as:
- B(L)lo? = w+iL- B(L) - AL)L-1)1el (12)

and subsequently the conditional variancedfis given by:

2 _ A P (d'—) )2 |2
o i e )
Equation (13) can be written ag = m +A(L)e? (14)

16
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where A(L)=A,L +A,L2 +.... Since the impact of a shock on the conditionalavee of

FIGARCH(p,d,q) decreases at a hyperbolic rate wher < 1as stated in Baillie(1996),
result that the long-term dynamics of the volatiig taken into account by the fractional
integration parametet, while the short-term dynamics is modeled throughtthditional
GARCH parameters.

Model Distributions

Skewness and kurtosis are expected to be impormardg number of financial market
applications including the pricing of financial ass Since the ARCH class of processes
captures time varying conditional variances, théso acapture time varying conditional
kurtosis. However, the Gaussian density is unableapture the fat tails present in the
unconditional distributions of financial market uais. The GARCH class of processes has
therefore been combined with a number of distrimgiwith tails fatter than the normal, for
example, the Student’s t (Bollerslev, 1987).

The parameters of volatility models can be estich&teusing non-linear optimization
procedures to maximize the logarithm of the Gaustsk&lihood function. Under the
assumption that the random variabteN(0,1) ,the log-likelihood of Gaussian or normal

distribution (Lyorm) Can be expressed as:
1 c 2 2
I—Norm = _EZ[ln(ZH)-'- ln(at ) +Zz ]

t=1

where T is number of observations. However, itidely observed that the distribution of
residuals tends to appear asymmetry and leptoksirfbs capture excess kurtosis and
skewness, the skewed Student-t distribution isidensd. If z~ SkST(0,1,k;) the log-

likelihood of the skewed Student-t distributiogdris as follows:

Lag :T{In r(";l] ~In r("] —%In[n(v—Z)] + In(

2 ]""”(S)}-;i{ln(af)+(1+v)|n{1+(szt'm)2k—znﬂ

2
k+1/k = V-2
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Where It = 1if zt-m/s or It = -1 if zt <-m/s, and k is an asymmggiarameter. The

constants m = m(k) and s =4/s?(k,v) are the mean and standard deviation of the skewed
Student-t distribution as follows:

m(k,v) =

Fr(v-1/2)v-2 [k_lj
i (vi2) k

s?(k,v) :(kz +k—12—1j—m2

The value of In(k) can represent the degree of asstry of residual distribution. For
example, if In(k)>0 or In(k)<O, the density is rigfieft) skewed. When k=1, the skewed
Student-t distribution equals the general Studelnsttibution.

The parameter measures the degree of freedom. The lower theevafly, the greater the
number of extreme values (i.e., the fatter are dmgribution tails than the normal
distribution). Whenv approaches infinity, excess kurtosis becomes ama the normal
distribution results.

If the standardized residuals are not normal, assgithat the conditional mean and variance
are correctly specified, GARCH estimates are coaisisbut asymptotically inefficient, with
the degree of inefficiency increasing with the aéegof departure from normality. The skewed
Student’s t distribution should therefore reduce #xcess kurtosis and skewness in the
standardized residuals and provide efficiency gaMereover, if the distribution exhibits
excess kurtosis, the QML estimates are consisténnhy be biased in finite samples.
Therefore, in order to capture skewness and kitdbe skewed Student’'s t distribution
should be considered. (this distribution has baepgsed by Fernandez and Steel (1998) and
subsequently extended by Lambert and Laurent (2001)
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V. EMPIRICAL DATA AND RESULTS

1. The Data

Our estimates are based on daily closing stockepri@he data source is the provider of
financial news, data and analytics, Bloomberg. S&m@ple starts at different dates for the six
indices and it ends at April 30, 2009, leading touanber of observations between 2119 and
2882.

The data were transformed into continuously comgedrreturnsr;, = Iog[%} where p

it-1
represents the value of index i at time t. In theecof a day following a nontrading day, the
return is calculated using the closing price ingdiokthe latest trading day and that day.
The estimations and tests were performed in R @er3i9.0.
For estimating ARFIMA-FIGARCH modethe Ox Console version 5.1tbgether with the
G@rch Console 4.2 were used. Both consoles ar@p@xt Econometric Software developed

by Jurgen A. Doornik.

2. Preliminary analysis

After performing a preliminary analysis, the dagpear extremely non-normal. Excepting
BET-FI index, all of the return distributions aregatively skewed.

The data also display a high degree of excess dart&uch skewness and kurtosis are
common features in asset return distributions, @ repeatedly found to be leptokurtic.
The null hypothesis of normality of the Bera-Jartgs is rejected for all indices. The results
of the ADF unit root test indicate that all of theturns series are stationary.

The KPSS test for the null hypothesis of | (O)asducted in two ways: based on a regression
on a constant, and on a constant and time tresdecéively, and we conclude that the series
cannot be characterized as 1(0) processes. Thacerding to Baillie, Chung and Tieslau
(1996) an indication that the process is describgdheither 1(0) nor I(1) processes and

therefore it is probable better described by thetfonal integrated alternative.
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3. Fractional parameter estimates

All the nonparametric and semiparametric techniguexe applied to return series, as well as
to absolute and squared return series which arsidemr@d the most popular proxies for

volatility in financial markets.The results are ogjed in Table 1.

Table 1: Nonparametric and semiparametric estimates

BET RIS H WaveletH d(GPH) BET-FI RIS H WaveletH d(GPH)
Returns 0.6263291 0.4960724 0.1505057 Returns 0.76252B3631837 0.1842962
Squared returns  0.7694657  0.5149534 0.3544141 Squetteds  0.655354  0.5797175 0.4405869
Absolute returns  0.8325581  0.614134 0.3796489 Absoditens 0.6909146 0.6645153 0.4339933
SOFIX RIS H WaveletH d(GPH) BUX RIS H WaveletH d(GPH)
Returns 0.4805514 0.4407017 0.3027533 Returns 0.5993208374884 -0.033794
Squared returns  0.6632112 0.5394242 0.3865293 Squetteds  0.7575655 0.7539982 0.3612529
Absolute returns  0.7128511 0.7029066 0.4445772 Absodttens 0.8440155 0.7708724 0.4659885
WIG RIS H WaveletH d(GPH) PX RIS H WaveletH d(GPH)
Returns 0.6368706 0.5623532 0.0201389 Returns 0.5964553248p1 0.1023029
Squared returns  0.7688137  0.754955  0.303066 Squaredset 0.6827839  0.738836  0.3164356
Absolute returns  0.8064734  0.7746495 0.3800708 Absodtitens 0.7325632 0.7920493  0.4963583

For return series, the rescaled range statisticates a value of the Hurst exponent above
0.5, except for SOFIX, for which the test indicatessalue of 0.48. At a first sight, the
absolute return series appear to be more persigtantsquared return series, since the Hurst
exponent values estimated through R/S method grefisantly higher for absolute than for
squared returns. This fact is confirmed by the oésest conducted: wavelet based estimator
and GPHestimator. This property is known aaylor property, (Taylor, 1986) namely that
the time series dependencies of financial volgtibis measured by the autocorrelation
function of absolute returns are stronger for aldeatock returns than for the squares.
Following Cheung(1993), for choosing the right orde#f ARFIMA models, different
specifications of the ARFIMA (p&, g) with p,g=0:2 were estimated for each retumese
The Akaike’s information Criterion (AIC), is used thoose the best model that describes the

data. The selected orders and the estimation sesdtreported in Table 2.
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The results indicate that the long memory parani{éjas significantly different from zero for
all the return series. These results appear inviie those of recent studies which state that
long memory property is in general a characterigtiemerging rather than developed stock
market (among the researcher which consider thésinention Barkoulas (2000), Kang and
Yoon(2007), Kasman and Torun (2008)).

Table 2.Estimation results of the ARFIMA models

BET BET-FI SOFIX BUX WIG PX
Model ARFIMA ARFIMA  ARFIMA  ARFIMA  ARFIMA  ARFIMA
(0&,1) (0£,0) (15,1) (18.2) (05,2) (15,2)
@, - - -0.9034  0.52359 - 0.38472
(0.0000)  (0.0014) (0.0061)
o, - - - - - -
g 0.0461 0.1096 0.0713 0.0814  0.03135** 0.1026
(0.0048) (0.0000) (0.0000)  (0.0000)  (0.0671)  (0.0000)
0, -0.17412 - -0.850 0.53144  -0.0663  0.40374
(0.0000) (0.0000)  (0.0007)  (0.0017)  (0.0035)
0, - - - 0.06745  0.02975  0.09132
(0.0000)  (0.0823)  (0.0000)
In(L) -5862 -5042 -4376 -5643 -5208 -5189
sIC 4.0735 4.8101 4.1411 4.0755 3.7312  3.7418
AIC 4.0694 4.8081 4.1331 4.0670 3.7248  3.7333
Skewness -0.2621 0.1727 -0.5017  -0.1618  -0.2378  1.7411
kurtosis 5.7822 5.1083 25.4701  8.6850 3.1972  11.0143
Excess kurtosis ~ 2.7822 2.1083 22.4701  5.6850 0.1972  8.014
J-B 3915.92 2189.28  54780.01 844215  1177.87 14939.26
Q(20) 95.6889 26.2347 39.9162  94.0865  33.8216 67.5781

P-values are reported in the parentheses belowesmonding parameter estimates; In(L) is the
value of the maximized Gaussian Likelihood; SIC/AKCthe Schwarz/Akaike information
criteria. The Q(20) is the Ljung-Box statistic wi0 degrees of freedom based on the
standardized residuals. The skewness and kurtosislao based on standardized residuals.
* and ** indicate significance level at the 5% ah@Pb6 respectively

As can be observed in Table 2, all of the retustritiutions are negatively skewed except for
BET-FI and PX. The data also display excess kistesggesting that residuals appear to be
fat-tailed and sharply peaked about the mean wloempared with the normal distribution.
Such skewness and kurtosis are common featuressiet @eturn distributions, which are

frequently found to be leptokurtic.
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Kasman and Torun (2008) suggest that modeling thdylevel of returns does not offer a
clear representation on the presence of long mematye CEE countries stock markets and
therefore, one should also investigate the presehlomg memory in volatility.

Before investigating dual long memory in returnsl aolatility as suggested by Kasman and
Torun (2008) we test for structural breaks in teeum series, since it is well-known that
estimating the long memory parameter without taldngount existence of breaks in the data
sets may lead to misspecification and to overesértiee true parameter.

Numerous researchers consider that in many casgsni@mory could be seen as an artifact
of processes that exhibit structural change owee tiDiebold and Inoue (2002), Granger and
Hyung (2004), Teverosky and Taqqu (1997)). Theyolk=d that in the presence of structural
breaks, the series reveals the same propertiedcagy anemory process (mainly in terms of
persistence) leading to a so-called “spurious lovegnory”.

In order to examine for potential breaks within tbenditional mean we first use the
Supremum F test which computes the F statistiedmh potential change point and find their
maximum. The asymptotic critical values of the Stgét are reported by Andrews (1993).
Subsequently, we follow the methodology of Bai &wetron (2003). The method tests for
multiple breaks of unknown break dates without isipg any prior beliefs. The break tests
involve regressing the variable of interest (irstbase returns) on a constant and testing for
breaks within that constant. First, the procedwsumes there is no break within the data
against an alternate that there is ugp toreaks in the data, whebeis specified by the user.
Furthermore, a minimum distance between breaks alao be specified. More details
regarding Bai and Perron methodology can be fonrpipendix 1.

The result of the tests are reported in the Table

Table 3: Testing for structural breaks

BET  BET-FI SOFIX BUX  WIG PX
F statistic 154789  20.0107 32.4592 6.6669 9.8167  8.0598
p-value 0.001986 0.0002238 0.0000 0.12 0.02872* 0.06421**
Breakpoint at obs.no. 2440 1657 1746 - 2347 2329
Breakdate 7/23/2007  7/24/2007 10/30/2007 - 7/6/2007 ©OF2
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The supF test indicates a single break for BET, #ETand SOFIX. For Hungary Stock
Exchange index, the null hypothesis of no strud¢treaks can not be rejected. For WIG and
PX, the null can be rejected at 5% and 10% sicgmiite level.

We observe that the break date for BET and BETsFéported in the same period, at one day
distance.Both dates are directly related to théotical maximum recorded on Bucharest
Stock Exchange in July 200@n July 24, 2007, the BET index registered 1081lihtppthe
maximum historical value, representing a growtt34% from early 2007. That day, value of
transactions in shares made on the regular mafilg$i was RON 60.6 Mio.

One year letar, on July 24, 2008, BET index regestea value of 5915 points, down 45%
from the peak reached in the previous year. BET&éx dropped 62% during this period.
On 24 July 2008, the trading in shares was RON Mdb- down with 69% from 24 July
2007.The descending trend is still significant fioe Romanian Stock Exchange, since as of
April 30, 2009 (the date of the last observatiorthe sample) BET index dropped by 71.8%
comparing to the maximum value registered in JO§72and BET-FI by 80.5%

The Andrews’ supremum test for SOFIX indicates asakdate October 30, 2007,
corresponding to its historical maximum value &5P.4 points. Since then, the index’ value
decreased constantly to 358 points, the declineesepting 81.66% from its historical
maximum.

The Warsaw Stock Exchange index, WIG, reachedlitinge high 67 568.50 points on July
6, 2007. That date is identified by the supF tesbr@akdate. The index is now at 57% from
its historical maximum. The supF test indicatesH&rindex a breakpoint on July 9, 2007.
Following Shimotsu (2006), in order to asses thabity of the properties for the entire
sample, we split each full sample in two distinadbsamples (considering the breakpoint
previously determined).

Shimotsu (2006) show that if a time series foll@amsl(d) process, then each subsample of the
time series also follows an 1(d) process with tame value of d. He split the sample ito
subsamples, estimatifor each subsample, and compare them with thenatdiofd from the

full sample .For spurious I(d) models, it turns dbat the averaged estimates from the
subsamples tend to differ from the full sampleneate, and their difference increases as the
degree of sample splitting increases.
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All the procedures (R/S, wavelet estimator, GPH,FMRA) were reestimated for each
subsample so that to be able to make inferencesitabe properties of samples and

subsamples.The results are reported in Table 4.

Table 4. Subsamples estimates

BET Full sample Before StrBreak After StrBreal
R/S Hurst Exponent 0.6107111 0.6232049 0.590718
Wavelet Estimator for  0.5090784 0.496072447 0.4388235
GPH estimator 0.157134 0.1518671 0.1496232
BET-FI Full sample Before StrBreak After StrBreal
R/S Hurst Exponent 0.7625203 0.7571819 0.598512
Wavelet Estimator for  0.5163484 0.6916477 0.6628132
GPH estimator 0.1842962 0.03527433 0.2535763
SOFIX Full sample Before StrBreak After StrBreal
R/S Hurst Exponent 0.4805514 0.4152389 0.4356528
Wavelet Estimator for ~ 0.4407017 0.4328664 0.6404247
GPH estimator 0.3027533 0.1097595 0.5111778
WIG Full sample Before StrBreak After StrBreal
R/S Hurst Exponent 0.6368706 0.6276843 0.7175956
Wavelet Estimator for  0.5623532 0.5611866 0.7650836
GPH estimator 0.02013889 0.06955524 0.02715736
PX Full sample Before StrBreak After StrBreal
R/S Hurst Exponent 0.5964553 0.5932412 0.7381239
Wavelet Estimator for 0.524891 0.5214645 0.5052401
GPH estimator 0.1023029 0.104628 0.07740972

For most of the indices, the subsamples appeazdp Bpproximately the same features as the
full sample. However, SOFIX index shows values addtimated via R/S and wavelet

analysis which are below 0.5 for the full samplevadi as for each subsample in part, except
for the wavelet estimator for the second subsanhpladdition, the GPH estimator fdiis

quite different for each subsample, suggestingttiatong memory pattern showed by the

full sample is based in fact only on the secondauntple period which has no more than 372
observations. These findings motivate as to furitegstigate for a possible spurious long
memory in index returns, by using the parametrgrapch ARFIMA(p,d,q), with the orders

previously identified using AIC information criteri The results are reported in Table 5.
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Table 5 Subsamples estimates for ARFIMA model

BET
ARFIMA(0.d.1) Full sample  Before structural break After structumadak
d 0.04656 0.04479 0.003575
p-value 0.0059 (0.00758) (0.798)
BET-FI
ARFIMA(0.d.0) Full sample  Before structural break After structumadak
d 0.1096 0.07605 0.1294
p-value 0.0000 0.0000 0.0000
SOFIX
ARFIMA(1,d.1) Full sample  Before structural break After structumadak
d 0.0713 0.00004583 0.15008
p-value 0.0000 (0.998) (0.000692)
WIG
ARFIMA(0.d.2) Full sample  Before structural break After structumadak
d 0.03135 0.00004583 0.05557
p-value 0.0671 (0.998657) 0.0000
PX
ARFIMA(L,d.2) Full sample Before structural break After structumadak
d 0.10255 0.05806 0.07736
p-value 0.0000 0.0000 0.0000

Estimating fractionally integrated parameter vialFARA(1,d,1), can be clearly observed that
the first sample between October 23, 2000 and @ct80,2007 , provide no evidence of long
memory features in SOFIX returns. Therefore, wegssgthat in the case of Bulgarian capital
market, the structural break occurred in Octobdy72@hen SOFIX registered its historical
high value (and after that declined drasticallydhis underlying cause of persistence in return
series, rather than a true long memory process.ljuestionable if in general, a single
breakpoint within a series could have the powemnthuce persistence consistent with long
memory processes. However, in our case, we appiedsame structural break tests on
subsamples, and we found no evidence of other pogatis. Therefore, we will consider only
the first identified breakpoint As a result, we Iwflirther investigate for long memory in
SOFIX volatility using a pure FIGARCH model.

The results in Table 5 suggest that BET-FI and R}ldy the long memory feature in returns
regardless if structural break occur. The fractigramameter differs significantly from zero in

each subsample, confirming the result obtainedHerfull sample. BET shows long memory
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in the first subsample, while for the secomtidoes not differ significantly from zero.
However, considering the relevance of the firstssmple in terms of number of observation
included (2439 vs. 442), and that usually the preseof structural breaks influence the
subsamples in the opposite way, we will considesudistantial the finding of long memory in
the full sample.

Finally, WIG return series appears to be signiftbaaffected by the structural break occurred
in July 2007, since for the first subsample thd hypothesis that the parameter equals zero
cannot be rejected, while for the second subsardpdéfers significantly from zero. As well
as for SOFIX, this could be considered evidenctspfirious” long memory and therefore we
will further investigate long memory in WIG volatyl via FIGARCH model.

We were unable to follow the same subsamples tqaknio test for structural breaks
in absolute return series due to insufficient nundfebservations in the second subsamples.
More specifically, unlike the finite-lag represeima for the classical GARCH(p,q), the
approximate maximum likelihood technique (QMLE) #IGARCH(p,d,q) necessitates the
truncation of the infinite distributed lags. Sintdee fractional differencing parameter is
designed to capture the long-memory features, atimg at too low a lag may destroy
important long-run dependencies, as shown in Bud#g and Mikkelsen(1996) who fix the
truncation lag at 1000 after performing Monte Cailoulations.

Since we have around 400 observations for eachxindethe second subsample, the
FIGARCH model cannot be estimated due tot the tfaat the truncation order must be less

than the sample size.

4. Estimating ARFIMA-FIGARCH model

An important matter in the ARFIMA-FIGARCH framewoig& the selection of appropriate
lags ARFIMA (n,s)-FIGARCH(p,q). Following Yoon(20pand Kasman(2008) we use for
ARFIMA estimation the lag orders previously seléctsing AIC information criteria (n*,s*),
and we estimate all the specification models ARF(nt4s*)-FIGARCH(p,q) for p,q=0:2.
The model which has the lowest AIC and passes (Fi@siltaneously is used.
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In order to perform a comparison between classe?®@RCH and the fractionally integrated
version and to make also inferences regarding tlost nmppropriate distribution which
describe the data, we estimate for each index ARFGARCH and ARFIMA-FIGARCH

models, under both the normal and skewed Studéistribution. The fractionally integrated

parameters, together with Pearson goodness-adstis are reported in Table 6.

Table 6: Estimation results of the ARFIMA-FIGARCH models

ARFIMA(0, £,1)-GARCH(1,d,1) ARFIMA(0, &,1)-FIGARCH(1,d,1) ARFIMA(L, £,2)-GARCH(1,1) ARFIMA(L,¢,2)-FIGARCH(1,1)
BET Normal Skewed Studentt ~ Normal ~ Skewed Student t PX Normal Skewed Student t Normal Skewed Student t
13 0.038559** 0.049464* 0.0322 0.049475* 13 0.1609 0.1753 0.1554 0.1759
(0.0902) (0.0220) (0.1665) (0.0262) (0.0095) (0.0016) 01@3) (0.0013)
d - - 0.519482 0.371215 d - - 0.702972 0.60617
(0.0000) (0.0000) (0.0000) (0.0000)
P(60) 145.5949 44,7966 131.3915 39.5901 P(60) 61.7239 088.7 88.5967 56.1596
(0.0000) (0.9143) (0.0000) (0.9755) (0.1675) (0.1866) 0@09) (0.2244)
ARFIMA(0, £,0)-GARCH(L,1)  ARFIMA(0,£,0)-FIGARCH(1,1) ARFIMA(L, £,2)-GARCH(1,1)  ARFIMA(L,&,2)-FIGARCH(L,d,1)
BET-FI Normal Skewed Studentt  Normal ~ Skewed Student t BUX Normal Skewed Student t Normal Skewed Student t
13 0.1006 0.0852 0.0983 0.0828 13 -0.0283 0.0640 0.0600 0.067143*
(0.0000) (0.0001) (0.0000) (0.0002) (0.0251) (0.0589) 0689) (0.0589)
d 0 0 0.755778 0.595596 d - 0 0.462322 0.455978
(0.0006) (0.0000) (0.0000) (0.0000)
P(60) 136.9056 53.5866 139.5951 55.4750 P(60) 90.3605 386.0 65.7296 64.1739
(0.0000) (0.6746) (0.0000) (0.6062) (0.0006) (0.0527) 0601) (0.0592)

P-values are reported in the parentheses belowsmonding parameter estimates. P(60) is the Pearson
goodness-of-fit statistic for 60 cells; in breackptvalue(g-k-1).* and ** indicate significance &hat the 5%
and 10% respectively

As seen in Table 6, for BET, BET-FI, PX and BUXtlbdong memory parameteésand d
are significantly different from zero, indicatiniget presence of dual long memory property in
return and volatility of the Romanian stock manegiresentative indices.

For SOFIX and WIG pure FIGARCH models were estimated the results reported in Table

7 show strong evidence of long memory in volatility
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Table 7: Estimation results of the FIGARCH models

FIGARCH(1,d,1) FIGARCH(2,d,1)

SOFIX Normal  Skewed Student t WG Normal Skewed Student t

d 0.5410 0.5686 d 0.4505 0.4707
0.0000 0.0000 0.0000 0.0000

P(60)  285.5021 74.4403 P(60) 95.7241 63.1294
0.0000 0.0848 0.0003 0.1186

Analyzing the parameter estimates of the joint ARRIFIGARCH model, we can make
some inferences related to the most appropriatedemand the distribution which best
describes the series. All the estimated modelslatia@led reported in Appendix 3.

First, it can be observed that the sum of the egémofal andpl in the ARFIMA-GARCH
model is very close to one, indicating that theatibty process is highly persistent. The sum
of these parameters decreases when we use the ARFIGBIARCH specification for
modeling the series, in case of all indices. Moszpthe results indicate that the estimates of
B1 in the GARCH model are very high, suggestingrangt autoregressive component in the
conditional variance process and that ffheestimates are lower in the FIGARCH than those
of in the GARCH model.

Also, according to the AIC, the FIGARCH modelstfie return series better than the GARCH
models. Unsurprisingly, the skewed Student-t distion is found to outperform the normal
distribution returns, since the t-statistics of fp@rametew is highly significant in all the
returns series. The lower values of P(60) tesistitzd reconfirm the relevance of skewed
Student-t distribution for all returns. Hence, giewed Student-t distribution can be used to
capture the tendency of stock return distributiefeming to leptokurtosis. It should be noted
that in all cases the FIGARCH coefficients satifg necessary and sufficient conditions for
the nonnegativitiy of the conditional variancesr{ded by Baillie(1996)).

Similar results were obtained by Kang and Yoon @30 their search for long
memory patterns in return and volatility of the Kan stock market. Their findings indicate
that long memory dynamics in the return and vatgtitcan be adequately estimated by the
joint ARFIMA-FIGARCH model and that the skewed Stattt distribution is appropriate for

incorporating the tendency of asymmetric leptoksigan a return distribution.
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Kasman and Torun (2008) perform a research ovent €@FEE emerging capital
markets with the purpose to investigate dual loremory property. Overall, they conclude
that dual long memory is present in five from eigiountries, and performing an out-of-
sample forecast they found that ARFIMA-FIGARCH mbdwovides better forecast
comparing to ARFIMA-GARCH and ARFIMA-HYGARCH modelalso developed in their
paper. For all the data series in their resealeh sample period ends in January 2007. They
also found evidence of long memory in returns amhtilities of Hungary and Czech
Republic stock markets, while for Poland and Buldiney conclude upon the presence of
long memory only in volatility. This is in line witour results, since for WIG and SOFIX, we
found no long memory in returns on the first subskenfwhich ends in July and October 2007
respectively) and strong evidence of long memoryhensecond subsample.

Our results appear to confirm once more the idaadbe to their different characteristic from
the developed markets, emerging markets are mked/ lto be described by long memory
processes, and therefore, this feature should be nmvestigated and explored in order

conclude upon the reliability of these findingsdatheir direct implications in the economy.

V. CONCLUSIONS

We have used non and semipramateric techniquegelaas the parametric ARFIMA model

proposed by Granger and Joyeux(1980), in our sefmcHong memory features in the

Romanian capital market and other four emergingkstoarkets in the region. We also use
the approach first proposed by Teyssiere(1997) isting in the joint estimate of the

ARFIMA-FIGARCH model. Our results are similar toofe obtained by Kasman and Torun
(2008) who investigate the dual long memory prgopent eight emerging CEE capital

markets, without including the Romanian market.

We have considered the methodology of Bai and Prrotesting for structural breaks in the
return series and we have reestimated the non amdparametric techniques, for each

subsample in order to identify potential evidendespurious long memory. We have
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subsequently decided upon the distribution whickt lescribes the data, comparing the
performance of Gaussian distribution with skewadt8nt-t distribution.

We have investigated for long memory in both cdoddl mean and conditional variance by
combining a fractionally integrated regression fisit and a fractionally integrated skedastic
function.More specifically, we have estimated ARAM,ARCH and ARFIMA-FIGARCH
models using both proposed distribution, and weessssd the results using the Pearson
goodness-of-fit test.

The results strongly support the idea of dual lomgmory in Romanian capital market, as
well as in the Hungarian and Czeck stock markets. Bulgarian and Poland’s markets,
strong features of long memory in volatility werdentified, while concerning the long
memory in these return series, we suggested tlagpparent long memory features may
represent a consequence of structural breaksmrese the return series.

However, at least for the Romanian capital mart@twhich, to the authors’ knowledge, the
joint ARFIMA-FIGARCH model has not been estimatedorevious papers) further research
should be performed in order to make inferenceardkgg the consistency of our findings.
The main limitation of the ARFIMA-FIGARCH model ielated to the fact that it does not
take into account for structural breaks in bothdbeditional mean and conditional variance.
In this respect, one could further explore the lomgmory patterns in the Romanian capital
market (and the analysis could be extended asctade also other stock markets) by using
one of the most recently models developed for moddboth long memory processes and
structural breaks, namely the fAdaptive)ARFIMA-FIGARCH model proposed by Baillie
and Morana (2009). They first proposed the A-FIGARQodel for the conditional volatility
(2007) and subsequently they developed a similadeintor the conditional mean, which
considers a time-varying intercept allowing for dke, cycles and changes in drift. The
generalization of these models, the-ARFIMA-FIGARCH, allows for long memory and
structural breaks simultaneously in the conditianabn and conditional variance.

To conclude, due to long memory implications t& msanagement, asset allocation decision,
pricing derivatives or constructing speculativeatggies, our results suggest that it is worth
exploring long memory in emerging markets which amere likely to show significant
evidence of such features. However, the researsheuld first perform a thorough
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investigation of models and techniques availableldog memory testing due to the well-
known sensitivity of results to the selected teghmei

Moreover, it cannot be overstated how importaribisise such a technique which takes into
account for other processes which can induce sirpilaperties with long memory processes,

in order to ensure the genuine character of thg nemory phenomenon.
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Appendix 1. Non-negativity constraints

When estimating a FIGARCH model, the parameterse hav fulfill some restrictions to
ensure the positivity of conditional variances.|Baket al. (1996) derived a group of two sets
of inequalities. For a FIGARCH(1,d,1), the posiymtonstraints are:
2-d

3

d[ﬂ - 1_2dj S ,Bl(d + al)

Bi-d<s@g<

whereg =a, + 5,
Restrictions for lower order models can be deridaéctly from the previously presented

while for higher order models parameters restmdioannot be so easily represented.
However, Caporini(2003) mentions that in practegaplications one will rarely have to make
use of a specification with p>2. (where p is theR&A term).

Appendix 2: Bai and Perron methodology for structural breaks
The Bai-Perron (BP) methodology considers the Yalhg multiple structural break model,
with m breaks (m+1 regimes)

Y, =xfB+20, +u,t=1...T,

Y, =xB+20,+u, t=T,+1..T,

Y, =XB+20,,, +u, t=T +1..T
Where yis the observed dependant variable at time t. Faakopoints(T,,...T_ ) are treated as
unknown, and are estimated together with the unknowefficients when T observations are
available. In the terminology of Bai and Perronstis a partial structural change model, in

the sense thdt does not change, and is effectively estimated twerentire sample. =0,

this becomes a pure structural change model whiereedficients are subject to change.
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Appendix 3: Estimation of ARFIMA-FIGARCH models

Table 1: ARFIMA-FIGARCH for BET

ARFIMA(0,§,1)-GARCH(1,d,1)  ARFIMA(0,51)-FIGARCH(1,d,1)

BET Normal Skewed Student t Normal Skewed Student t
1 0.120116 0.08669* 0.103417 0.076813
(0.002) (0.0387) (0.0041) (0.0559)
o, - - - -
o, - - - -
3 0.038559** 0.049464* 0.0322 0.049475*
(0.0902) (0.022) (0.1665) (0.0262)
0, 0.150723 0.13304 0.156281 0.134828
0.0000 0.0000 0.0000 0.0000
0, - - -
o 0.138226 0.173226 0.095609 0.300451
(0.0051) (0.0033) (0.0402) 0.0000
al 0.227037 0.269633 0.466026 0.42907
0.00000 0.0000 0.0003 (0.0984)
a, - - - -
By 0.752619 0.713049 0.645352 0.54033
0.00000 0.0000 0.00000 (0.044)
B - . . .
d - - 0.519482 0.371215
0.0000 0.0000
v - 5.16013 - 5.59537
0.0000 0.0000
In(k) - 0.025942 - 0.029179
(0.3042) (0.2343)
In(L) -5390.6 -5291.51 -5364.9 -5272.30
AIC 3.746309 3.678938 3.729169 3.666299
Q(20) 32.6493** 33.4769** 34.4892* 32,0277 **
(0.0263764) (0.021166) (0.0160801) (0.0310313)
Q4(20) 23.2455 33.4769 13.914 15.616
(0.1813325) (0.021166) (0.7346793) (0.6193279)
ARCH(5) 2.0222% 1.5052 0.33442 0.33497
(0.0725) (0.1847) (0.8923) (0.892)
RBD(10) 13.69 10.00 4,59 3.53
(0.1875974) (0.4401308) (0.9168096) (0.9659432)
P(60) 145.5949 44.7966 131.3915 39.5901
0.0000 (0.91426) (0.000001) (0.975501)
ZCIi+Z[3i 0.979656 0.982682 1.111378 0.9694
2B 0.752619 0.713049 0.645352 0.54033
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Table 2: ARFIMA-FIGARCH for BET-FI

peT| ARFIMA(0,5,0)-GARCH(1,1) ARFIMA(0,¢,0)-FIGARCH(1,1)

Normal Skewed Student t Normal Skewed Student t
u 0.1170 0.1310 0.1135 0.1315
(0.1462) (0.0715) (0.154) (0.0677)
01 - - - -
02 - - - -
£ 0.1006 0.0852 0.0983 0.0828
0.0000 0.0001 0 0.0002
61 = = - -
8, - - - -
® 0.148166 0.191158 0.179273 0.240682
(0.0073) (0.0086) (0.0137) 0.0288
at 0.177186 0.217455 0.161053 0.227043
0.00000 0.0000 0.1388 (0.0548)
a, - - - -
B, 0.81906 0.785537 0.708688 0.562969
0.00000 0.0000 0.00000 (0.0006)
B, - - - -
d 0 0 0.755778 0.595596
0.0006 0.0000
v - 5.205205 - 5.536404
0.0000 0.0000
In(k) - 0.077417 - 0.081156
(0.0052) (0.0033)
In(L) -4688.2 -4618.66 -4686.0 -4613.20
AIC 4.476064 4.411697 4.474999 4.407442
Q(20) 24.8211 31.6462** 25.1964 32.2579**
[0.2083615] [0.0472168]  [0.1940193] [0.0406264]
Q«(20) 10.622 12,7388 9.19695 9.98524
[0.9097031] [0.8068488]  [0.9550042] [0.9323872]
ARCH(5) 0.55115 0.76162 0.38078 0.51003

[0.7376] [0.5775] [0.8622] [0.7689]
RBD(10) 3.46 435 243 1.93
[0.9683062] [0.9303439]  [0.9918248] [0.9968829]
P(60) 136.9056 53.5866 139.5951 55.4750
0.0000 (0.674567) (0.000001) (0.606217)
20+20, 0.996246 1.002992 0.869741 0.790012
2Bi 0.81906 0.785537 0708688 0.562969
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Table 3: ARFIMA-FIGARCH for BUX

ARFIMA(1,§,2)-GARCH(1,1) ARFIMA(1,§,2)-FIGARCH(1,d,1)
BX Normal Skewed Student t Normal Skewed Student t

M 0.081444 0.070431 0.09509 0.071909
0.0003 0.0428 0.0074 0.0428
o, -0.866006 0.556353 0.659877 0.571698
0.00000 0.0019 0.0000 0.0005
o, - - - -
H -0.0283 0.063991 0.0600 0.0671
0.0250660 0.0588720 0.0659170 0.0588750
0, 0.954776 -0.586381 -0.665399 -0.605014
0.0000 0.0034 0.0000 0.0009
0, 0.083519 -0.047753 -0.052083 -0.045309
0.0079 0.0704 0.0347 0.0868
@ 0.07013 0.081663 0.091313 0.112467
0.0029 0.0001 0.0066 0.007
a1 0.106261 0.103916 0.2145 0.207993
0.0000 0.0000 0.0025 0.0053
a - - - -
B 0.871877 0.868124 0.564758 0.545716
0.0000 0.0000 0.0000 0.0000
B2 - - - -
d - - 0.462322 0.455978
0.0000 0.0000
v - 7.535435 - 7.478346
0.0000 0.0000
In(K) - -0.014351 - -0.013331
0.5998 0.6287
In(L) -5163 -5108 -5155 -5106
AIC 3.724107 3.68608 3.719145 3.68563
Q(20) 36.4234 33.9567 33.0919 34.405
0.0040253 0.0085047 0.010973 0.0074407
Q(20) 22.0843 21.9771 18.2669 18.887
0.2282653 0.2330027 0.4382021 0.3988139
ARCH(5)  0.37304 0.32292 0.14252 0.15631
0.8674 0.8994 0.9823 0.9782
RBD(10) 9.58 10.63 9.57 10.27
0.4784 0.3873 0.4787 0.4169
P(60) 90.3605 66.0320 65.7296 64.1739
0.0006 0.0527 0.0671 0.0592
Zai+ZB  0.9781 0.9720 0.7793 0.7537
21 0.8719 0.8681 0.5648 0.5457
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Table 4: ARFIMA-FIGARCH for PX

ARFIMA(1,§,2)-GARCH(1,1)  ARFIMA(1,5,2)-FIGARCH(1,1)

PX Normal  Skewed Student t Normal  Skewed Student t

o, 0.639916 0.560244  0.651441 0.559181
0.0000 0.0000 0.0000 0.0000

o, - - -
H 0.1609 0.1753 0.1554 0.1759
(0.0095) (0.0016) (0.0143) (0.0013)

0, -0.71838 -0.671191 -0.726863 -0.670871
0.0000 0.0000 0.0000 0.0000

0, -0.02519 -0.026412 -0.022742 -0.027224
(0.4105) (0.4372) (0.4551) (0.4327)

0 0.062633 0.052873 0.06788 0.064888
0.0000 0.0000 (0.0002) (0.0008)

al 0.137459 0.128792  0.068355 0.11511
0.0000 0.0000 (0.3497) (0.0523)

a, - - -
B, 0.837682 0.851172  0.670748 0.620867
0.0000 0.0000 0.0000 0.0000

B : - - -
d - - 0702972 0.60617
0.0000 0.0000

v - 7.901925 - 7.563628
0.0000 0.0000

In(k) - -0.045633 - -0.043358
(0.1173) (0.1477)

In(L) -4662 -4613 -4661 -4611
AIC 3.356238 3.323018 3.356776 3.32182
Q(20) 20.2115 20.8214 19.9535 20.2973
(0.2635526) (0.2343822)  (0.2766138) (0.2593065)

Q,(20) 27.9482 27.0261 21,8433 22,1935
(0.0628485) (0.0785073)  (0.2390143) (0.2235076)

ARCH(5) 2.3281 2.1888* 1.6832 1.7511
(0.0403) (0.0528) 0.1351 (0.1196)

RBD(10) 16.19 15.27 12,92 12.38
(0.0943828) (0.1224334)  (0.2281323) (0.260621)

P(60) 61.7239 58.7045 88.5967 56.1596
(0.16745) (0.186643)  (0.000863) (0.224418)

ZGi+ZBi 0.9751 0.9800 0.7391 0.7360
2B 0.8377 0.8512 0.6707 0.6209
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Table 5: FIGARCH estimation for SOFIX

FIGARCH(L,d,1)

SOFIX Normal Skewed Student
[6) 0.010318 0.058635
(0.2915) (0.1741)
al 0.622053 0.481553
0.0000 (0.0417)
a, - -
B, 0.795544 0.621756
0.0000 (0.0044)
B> - -
d 0.541028 0.568614
0.0000 0.0000
v - 3.647303
0.0000
In(k) - 0.020172
(0.3795)
In(L) -3656 -3455
AIC 3.455042 3.267697
Q.(20) 19.9213 22.8513
(0.3373) (0.19636)
ARCH(5) 0.71708 0.9729
(0.6106) (0.4329)
RBD(10) 8.49 6.97
(0.5809) (0.72833)
P(60) 285.5021 74.4403*
0.0000 (0.084777)
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Table 6: FIGARCH estimation for WIG

FIGARCH(L,d,1)

WIG Normal Skewed Student t
w 0.060636 0.055881
(0.0257) (0.0151)
al 0.165798 0.156037
(0.0001) (0.0001)
a2 - -
Bl 0.62756 0.636777
0.0000 0.0000
B2 - -
d 0.47143 0.493638
0.0000 0.0000
v - 7.3008
0.0000
In(k) - -0.0030
(0.9022)
In(L) -4930.167 -4880.571
AlIC 3.527639 3.493617
Qs(20) 14.3419 14.4898
(0.706547) (0.6966464)
ARCH(5) 0.67035 0.62153
(0.646) (0.6834)
RBD(10) 7.15881 6.8078
(0.7103718) (0.743457)
P(60) 104.4732 68.619*
(0.000046) (0.061)
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Appendix 4: Estimation results of the GPH tests

%=0.45 »=05  A=055 A=0.6 2=0.65
BET 0.1223 0.1505  0.1498 0.1131  0.1618
(0.1064)  (0.0958) (0.0735) (0.0550) (0.0510)
BET-FI 0.0802 0.1843  0.2549 02384  0.1593
(0.0899)  (0.0883) (0.0817) (0.0623) (0.0537)
SOFIX 0.3029 0.3028  0.3060 0.2348  0.1638
(0.1048)  (0.0894) (0.0820) (0.0662) (0.0541)
BUX 0.0209 -0.0338 0.0721 0.1558 0.1038
(0.1256)  (0.0895)  (0.0700) (0.0573) (0.0508)
WIG 0.1470 0.0201 0.0222 0.0475 0.0773
(0.1496)  (0.1080) (0.0850) (0.0638) (0.0507)
PX 0.1296 0.1023 0.1578 0.1488 0.1073

(0.1109) (0.0914) (0.0750) (0.0575) (0.0463)
*the standard error deviai@re reported in parenthesis.
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Appendix 5: Index Graphs

Fig.1 BET Index
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Fig.2 BET-FI Index
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Fig.3 BUX Index
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Fig.4 PX Index
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Fig.5 SOFIX Index
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Fig.6 WIG Index
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