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ABSTRACT 
 
 

We investigate the presence of long memory in emerging CEE stock markets using the 

nonparametric, semiparametric and parametric approaches.We consider the methodology of 

Bai and Peron to test for structural breaks in the return series and we perform tests of 

fractionally integrated process on subsamples in order to identify potential evidence of 

spurious long memory. We test for long memory in both conditional mean and conditional 

variance by combining a fractionally integrated regression function and a fractionally 

integrated skedastic function.We estimate ARFIMA-GARCH and ARFIMA-FIGARCH 

models under two proposed distributions. The the skewed Student-t distribution is found to 

better describe the data comparing to Gaussian distribution. 

We conclude that the Romanian, Hungarian and Czech Republic capital markets show 

evidence of dual long memory in returns and volatility, while the Bulgarian and Poland 

markets show strong features of long memory in volatility, but no long memory in return 

series. 
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I. INTRODUCTION 
 
 

The long memory property has been widely studied in economic series and its 

implications for economic theory have been extensively discusssed .The most considerable 

economical implications is the contradiction of the weak-form of market efficiency - Fama 

(1970) by allowing investors and portfolio managers to make prediction and to construct 

speculative strategies. The price of an asset determined in an efficient market should follow a 

martingale process in which each price change is unaffected by its predecessor and has no 

memory. Consequently, pricing derivative securities with martingale methods may not be 

appropriate if the underlying continuous stochastic processes exhibit long memory. Therefore, 

exploring long memory property is appealing for derivative market participants, risk 

managers and asset allocation decisions makers, whose interest is to reasonably forecast stock 

market movements.These are only few reasons explaining the high researchers’ interest, and 

the impressive number of papers written on this subject.  

This paper re-examines evidence of long-memory in the conditional mean and 

volatility of six stock indices, representing five emerging capital markets in Central and 

Eastern Europe: Romania, Bulgaria, Hungary, Poland and Czech. 

Many of these papers focus on the developed financial markets, while less attention has been 

accorded to emerging securities markets. Emerging markets are generally characterized by 

low dimensions and liquidity and in the same time by a higher volatility than developed 

financial markets. These different features may contribute to a different dynamics underlying 

returns and volatility, making attractive a further investigation in these markets. 

In the latest period, there is a great interest in discerning the reasons and underlying causes for 

the widespread a selection of relevant 

literature on the issues at hand. empirical finding of long memory. A number of authors have 

attempted to develop methodologies to distinguish between true long memory and other types 
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of processes displaying statistical long memory, this subject being intensively investigated in 

recently performed studies. 

This paper is organized as follows: Section II presents a selection of relevant literature related 

to this papers’ subject. Section III introduces the concepts and models used in the empirical 

analysis, while Section IV describes the data, the implementation of the models and discuss of 

the obtained results. Section V includes the conclusions. 

 

 
II. LITERATURE REVIEW  

 

A remarkable research has been performed concerning long memory property and its 

implications in various science fields from physics, climatology and hydrology to applications 

on stock markets, exchange rates and macroeconomic indicators. This section presents the 

studies supposed to be most relevant for the subject analyzed in this paper. 

Long memory modeling has been studied in econometrics and finance since Mandelbrot 

(1969) introduced long memory specifications for price processes. Fractionally integrated 

models started to become usually used in the 1980s when Geweke and Porter-Hudak (1983) 

developed the log periodogram regression estimator for the order of integration parameter d in 

the arfima model of Granger and Joyeux (1980) and Hosking (1981). 

Lo (1991) found little evidence of long-term memory in historical U.S. stock market returns 

while Cheung and Lai (1995) investigate the presence of long memory in stock returns for 18 

indices using a modified R/S statistic and the GPH test. R/S statistic shows mostly negative 

results, while GPH test confirm long memory in stock returns for only five indices.  

Ding, Granger and Engle (1993) found that there is substantially more correlation between 

absolute returns than returns themselves and consider that both ARCH type models based on 

squared returns and those based on absolute return can produce the property of long memory 

in volatility. In the same idea of spurious long memory, Ding and Granger (1996) pointed out 

that many other generating mechanisms can produce processes with the same features as long 

memory, and show that at least time-varying parameter models could be considered in this 

class. Lobato and Savin (1998) found no evidence of long memory in daily stock returns, but 
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strong evidence of long memory in squared returns while. Willinger, Taqqu and Teverovsky 

(1999) found empirical evidence of long-range dependence in stock price returns, but the 

evidence was not absolutely conclusive. Granger and Hyung (1999) shows for S&P 500 that 

absolute stock returns tend to show the long memory property due to the presence of 

structural breaks in the series rather than than due to a true I(d) process, concluding that linear 

process with breaks can imitate autocorrelations, as well as other properties of fractionally 

integrated processes.Using the spectral regression method, Barkoulas, Baum and Travlos 

(2000) found significant and robust evidence of positive long-term persistence in the Greek 

stock market. Henry (2002) investigated long range dependence in nine international stock 

index returns and found evidence of long memory in four of them, the German, Japanese, 

South Korean and Taiwanese markets, but not for the markets of the UK, USA, Hong Kong, 

Singapore and Australia.  

Chen (2000) calculated the classical rescaled range statistic of Hurst for seven Asia-Pacific 

countries' stock indices and concluded that all the index returns have long memory. Diebold 

and Inoue (2000), however, conclude upon the strong connection between long memory and 

regime switching, showing that that stochastic regime switching can be easily confused with 

long memory. 

Sadique and Silvapulle (2001) examined the presence of long memory in weekly stock returns 

of seven countries: Japan, Korea, New Zealand, Malaysia, Singapore, the USA and Australia. 

They found evidence for long-term dependence in four countries: Korea, Malaysia, Singapore 

and New Zealand.  

Cajueiro and Tabak (2005) state that the presence of long-range dependence in asset returns 

seems to be a stylized fact. They studied the individual stocks in the Brazilian stock market 

and found evidence that firm-specific variables can explain, at least partially, the long-range 

dependence phenomena. From the same point of view, Perron and Qu (2006) analytically 

show how a stationary short memory process with level shifts can generate spurious long 

memory.  

Granger and Hyung (2004) research came to support the conclusions of Diebold and Inoue 

and show that occasional breaks generate slowly decaying autocorrelations and other 

properties of I(d) processes, and that is not easy to distinguish between the two type of 
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processes. They demonstrated that at least a part of the long memory may be caused by the 

presence of neglected breaks in the series and suggest that their finding permit improvements 

of volatility prediction by combining I(d) model and occasional-break model.   

The idea of dual long memory process was first introduced by Teyssiere (1997) which show 

through Monte Carlo simulations that ignoring long memory in the conditional mean of a dual 

long memory process leads to significant biases in the estimation of the conditional volatility 

process. Consequently, in order to asses the robustness of the FIGARCH model the possibility 

of a fractional root in the conditional mean is introduced. They conclude that the ARFIMA-

FIGARCH model capture more or less the dynamics of daily exchange rates, due to the fact 

that the fractional parameter in the mean equation was found to be quite low, confirming the 

presence of long memory only in the conditional volatility. Other authors which investigated 

long memory using the technique proposed by Teyssiere(1997) are Beine and Sebastien 

(1999) which also estimate FIGARCH model for modeling daily exchange rates and conclude 

that allowing for a fractional root in the conditional mean appear to be pertinent but does not 

lead to other parameter estimates compared with the volatility sides. 

Yoon and Kang(2007) investigate dual long memory in the returns and volatility of Korean 

stock market starting from a slight different approach from that proposed by Teyssiere(1997), 

given that they first estimate ARFIMA model for the conditional mean, and depending on the 

obtained results they further analyze dual long memory applying the joint ARFIMA-

FIGARCH model. They found evidence of long memory in both moments and conclude that 

the dual long memory model provide a better explanation for long memory dynamics in both 

the conditional mean and variance. 

Similar result were obtained Kasman and Torun (2008) which investigate the presence of dual 

long memory in eight CEE emerging stock markets and found that strong evidence of long 

memory in both conditional mean and variance and that the ARFIMA-FIGARCH model 

outperforms ARFIMA-GARCH and ARFIMA-HYGARCH models in terms of out-of-sample 

forecast. 

Finally, more recent articles of high interest are those of Baillie and Morana (2007) and 

Baillie and Morana (2009) respectively,  although these approaches are not followed on the 

present paper. Baillie and Morana (2007) propose a new model for long memory in volatility , 
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designed to account for both long memory features and structural change in the conditional 

variance process. The model, named A-FIGARCH (Adaptive Fractionally Integrated 

GARCH) considers a time-varying intercept which allows for breaks, cycles and changes in 

drift.  Baillie and Morana (2009) propose a similar model to A-FIGARCH for the conditional 

mean, named Adaptive ARFIMA for which they conclude that appears to be capable of 

successfully dealing with various forms of breaks and discontinuities in the conditional mean 

of a time series. The model was proposed for investigating inflation dynamics but can also be 

applied to other economic time series data. They also propose a generalization of these 

models, the so called A2(Adaptive)-ARFIMA-FIGARCH , which allow for long memory and 

structural breaks in the conditional mean as well as for long memory and structural breaks in 

the conditional variance. 

 

III. DETECTING LONG MEMORY IN TIME SERIES 
 
 
There are various definitions of long memory processes. Especially, long memory could be 

expressed either in the time domain or in the frequency domain. In the time domain, a 

stationary discrete time series is said to be long memory if its autocorrelation function decays 

to zero like a power function. 

This meaning involves that the dependence between successive observations decays slowly as 

the number of lags tends to infinity. On the other hand, in the frequency domain, a stationary 

discrete time series is supposed to be long memory if the spectral density is unbounded at low 

frequencies. 

 
ACF and fractional integration 
 
A standard approach to examining long memory within time series is through an examination 

of the sample autocorrelation function. In particular, if the sample autocorrelations take a long 

time to decline to zero, then the process is said to exhibit long memory. That is, if the 

autocorrelations decay very slowly as the lag length increases then current values of the series 
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are related to own distant values. Absolute returns and squared returns show most obvious 

these patterns. 

Fig.1 Autocorrelation function for absolute returns 

    
 

         
 
 

      



 

Sandu Mihaela - Exploring Dual Long Memory in Returns and Volatility across CEE Stock Markets 

 

 
10 

 

Testing stationarity 
 
It is well known that deciding whether data are fractionally integrated or not based on the 

ADF tests may be inadequate, due to the fact that this type of unit root tests has low power to 

distinguish between the I(1) null hypothesis and the I(d) alternative. (Diebold and Rudebusch 

(1991) and Hassler and Wolters(1994). 

Originally designed to test an I(0) null hypothesis versus an I(1) alternative, the KPSS test 

proposed by Lee and Schmidt (1996) proved to perform well as a test for the null stationarity 

against the alternative of fractional integration. 

Therefore, by testing the both ADF and KPSS tests, one can distinguish between the three 

type of series: unit root, stationary and fractionally integrated. 

As noted in Baillie, Chung and Tieslau (1996) the combined use of ADF, PP and KPSS test 

leads to the following possible results:  

• rejection by the ADF and PP and failure to reject by the KPSS is considered a strong 

evidence of a stationary I(0) process; 

• failure to reject by the ADF and PP and rejection by the KPSS statistic indicates a unit 

root I(1) process; 

• failure to reject by all ADF, PP and KPSS is probably  a consequence of  data being 

insufficiently informative for the long-run characteristics of the process; 

• rejection by all ADF, PP and KPSS indicates that the process is described by neither I(0) 

nor I(1) processes and therefore it is probable better described by the fractional 

integrated alternative.  

In this paper we perform only ADF and KPSS tests but the interpretations remain the same. 

The combined evidence based on the ADF and KPSS test results indicates that for the index 

returns series neither an I(1) nor an I(0) process is a good representation of the data process, 

which suggests that a fractionally differenced process may be an appropriate representation 

for these series. 
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Determining the degree of fractional integration 
 

There are currently a significant number of estimation methods for and tests of long memory 

models. Probably one of the reasons for this large collection of tools for estimation and testing 

is the fact that good estimation techniques remain elusive, and many of the tests used for long 

memory have been shown through finite sample experiments to perform quite poorly.  

Therefore, we consider some of the most widely used estimators and tests: R/S statistic, 

wavelet based estimator, GPH estimator -as nonparametric and semiparametric approaches- 

and ARFIMA/FIGARCH model as parametric approach. 

 

• Nonparametric approach: The Rescaled Range Statistic 
 

The original statistical measurement of long memory introduced by Hurst(1951), and 

subsequently used by Mandelbrot(1975) is the R/S statistic (rescaled range statistic). 

The classical rescaled range statistic is defined as: 


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 The first term represents the maximum of the partial sums of the first k deviations of Xj from 

the sample mean. Given that the sum of all n deviations of the Xj’s from their mean is zero, 

this term is always nonnegative. In the same way, the second term is always nonpositive and 

hence the difference between the two terms, known as the range ,  is always nonnegative.  

Madelbrot and Wallis (1969) use the R/S statistic to detect long memory patterns using the 

following rationale: for a random process there is scaling relationship between the rescaled 

range and the number of observations n of the form: 

                                            R/S(n)  ~  nH                                              (2) 
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where H is the Hurst exponent. For a white noise process H = 0.5, while for a persistent, long 

memory process H > 0.5 The difference d = (H-0.5) represents the degree of fractional 

integration in the process. 

Mandelbrot and Wallis suggest estimating the Hurst coefficient by plotting the logarithm of 

R/S(n) against log(n). For large n, the slope of such a plot should provide an estimate of H. 

A major limitation of the rescaled range is its sensitivity to short-range dependence. Any 

departure from the predicted behavior of the R/S statistic under the null hypothesis need not 

be the result of long-range dependence, but may simply be an indication of short-term 

memory. Lo (1991) show that this result from the limiting distribution of the rescaled range: 

                                                               VnSR
n

⇒)(/
1

                                       (3) 

 where V is the range of a Brownian bridge on the unit interval. 

To differentiate between long-range and short-term dependence, Lo proposes a modification 

of the R/S statistic to ensure that its statistical behavior is invariant over a general class of 

short memory processes, but deviates for long memory processes. His version of the R/S test 

statistic differs only in the denominator. Rather than using the sample standard deviation, Lo’s 

formula applies the standard deviation of the partial sum, which includes not only the sums of 

squares of deviations for Xj, but also the weighted autocovariances (up to lag q): 
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where the γj are the usual autocovariance estimators. 

If q = 0, Lo’s statistic reduces to Hurst’s R/S statistic. This statistic is highly sensitive to the 

order of truncation q but there is no a statistical criteria for choosing q in the framework of 

this statistic. If q is too small, the statistic does not account for the autocorrelation of the 

process, while if q is too large, it accounts for any form of autocorrelation and the power of 

this test tends to its size. 

Therefore, while in principle this adjustment to the R/S statistic ensures its robustness in the 

presence of short-term dependency, selecting an appropriate lag order q still remains a 

problem. Moreover, Teverovsky, Taqqu and Willinger (1999) proved that Lo’s modification 

of R/S statistic is too strict. They show that Lo’s method has a strong preference for accepting 
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the null hypothesis of no long-range dependence, irrespective of whether long-range 

dependence is present in the data or not. They also conclude that an acceptance of the null 

hypothesis of no long-range dependence based on the modified R/S statistic should never be 

viewed as conclusive but should always be accompanied and supported by further analysis of 

the data. 

 

• Semiparametric approach 
 

a. Geweke-Porter-Hudak estimator 
 
Geweke and Porter-Hudak (1983) suggested a semi-parametric procedure to obtain an 

estimate of the fractional differencing parameter d based on the slope of the spectral density 

function around the angular frequency x = 0. More specifically, let I(x ) be the periodogram of 

y at frequency x defined by: 

2

1
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t t
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ξ                             (5) 

 
Then the spectral regression is defined by: 
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Where ( )1,...,0
2 −== T
T

λπλξλ  denotes the Fourier frequencies of the sample, T is the 

number of observations, and n = g(T) << T is the number of Fourier frequencies included in 
the spectral regression. 

Assuming that { } 0)(
)ln(lim,0)(lim,)(lim

2

==∞=
∞→∞→∞→ Tg
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 the negative of the slope 

coefficient in the spectral regression provides an estimate of d. Geweke and Porter-Hudak 

(1983) prove consistency and asymptotic normality for d < 0, while Robinson (1990) proves 

consistency for d  ∈(0, 0.5). 

The spectral regression estimator is not T1/2 consistent as it converges at a slower rate. The 

theoretical variance of the error term in the spectral regression is known to be
6

2π
. 
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A choice must be made with respect to the number of low-frequency periodogram ordinates 

used in the spectral regression. Improper inclusion of medium or high-frequency periodogram 

ordinates will contaminate the estimate of d; at the same time too small a regression sample 

will lead to imprecise estimates.  

We report fractional differencing parameter for T0.45, T0.50, T0.55 and T0.60 to investigate the 

sensitivity of our results to the choice of the sample size of the spectral regression. 

 
b. Wavelet based estimator 

 
Wavelet based estimator estimation of fractionally integration parameter allows for analysis in 

both the time and frequency domain and is based on discrete wavelet transform.  

For a chosen bandwidth, the discrete wavelet transform decomposes the data series in a sum 

of elementary contributions called wavelets which are well localized both in time and 

frequency domain.  

The Discrete Wavelet Transform is computed, the squares of the coefficients transform are 

averaged, and subsequently a linear regression on the logarithm of the average, versus the log 

of the scale parameter of the transform is performed. The result is directly proportional to H 

providing an estimate for the Hurst exponent.  

 
• Parametric approach: ARFIMA model 

 

All the estimation techniques presented above, are included in the two-step estimation 

procedure (this distinction was first made by Sowell (1991). 

These procedures only estimate the differencing parameter and in the second step the 

estimated differencing parameter is used to transform the observed series into a series that 

presumably follows an ARMA(p,q) model. The limitation of these models is that they use 

information only at low frequencies and therefore they do not take account of the short-term 

properties of the series when estimating the fractional differencing parameter. This has 

important implications since the estimate of the long-term parameter could be contaminated 

by the presence of short-term components. 
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Therefore, a more appropriate technique is the ARFIMA process introduced by Granger and 

Joyeux (1980) and Hosking (1981). This is a one-step estimation procedure: the process 

accounts for long-term dynamic through the fractionally integration parameter d, while 

traditional AR and MA components capture the short-term dynamics of the time series. The 

parameters are simultaneously estimated using maximum likelihood estimation. 

 

The ARFIMA(p,d,q) model is represented by: 

    tt
d uLyLL )()()1)(( Θ=−−Φ µ  where ),0.(..~ 2

ut diiu σ           (7) 

where L is the lag operator, d is the fractional differencing parameter, all the roots of Ф(L) 

and θ(L) lie outside the unit circle, and ut is white noise. 

Granger and Joyeaux(1981) show that 
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Ldk
L ,                                                   (8) 

 
where ( )Γ  is the gamma function. 

If  -0.5<d<0.5 the process is and invertible and for such processes, the effect of shocks to t on 

yt decays at the slow rate to zero; if d=0, then the process is stationary, so-called short 

memory, and the effect of shocks to t on yt decays geometrically; for d=1 the process follows 

a unit root process; for 0<d<0.5 the process exhibits positive dependence between distant 

observations implying long memory and for -0.5<d<0 the process exhibits negative 

dependence between distant observations, so called anti-persistence. 

The use of the fractional difference operator allows obtaining a continuum of possibilities 

between the polar cases of unit roots processes and of integrated processes of order 0.  

It is well known that, for standard ARMA processes, the autocorrelation function decreases 

exponentially. Opposing to this processes Hosking (1981) shows that the autocorrelation 

function for fractionally integrated process decay “slowly”, with a hyperbolical rate: 

                    12)( −∝ dττρ  as ∞→τ                                          (9) 

The autocorrelation of such fractionally integrated processes remain significant at long lags. 

 
 
 



 

Sandu Mihaela - Exploring Dual Long Memory in Returns and Volatility across CEE Stock Markets 

 

 
16 

 

Modeling long memory in volatility: Fractionally in tegrated GARCH (FIGARCH) 
 
 
Since the beginning of the GARCH model (Bollerslev, 1986; Engle, 1982), several 

researchers observed that the parameters of the GARCH model sum very close to one, 

indicating a high degree of volatility persistence to a shock. Following this remark, the 

IGARCH model has been developed (Engle & Bollerslev, 1986), in which the parameters of 

the GARCH model are constrained to equal one, such that shocks have impact on future 

volatility indefinitely.  

This idea, that volatility shocks were persistent but not infinite, led Baillie, Bollerslev and 

Mikkelsen (1996) to apply the idea of fractionally integration introduced by Granger(1980) 

and Hosking(1981) for the mean, to a GARCH framework. 

The FIGARCH(p,d,q) model is given by : 

 

( )( ) ( )[ ] tt
d LLL νβωεφ −+=− 11 2 , where 22

ttt σεν −=              (10) 

 

It is assumed that all the roots of )(Lφ  and ( )[ ]Lβ−1  lie outside the unit circle. 

If d=0, the FIGARCH(p,d,q) nests the classical GARCH (p,q) process, and if d=1 the process 

becomes an integrated GARCH process. 

The equation (10) can be rearranged as: 
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where  ( ) ...2
21 ++= LLL λλλ . Since the impact of a shock on the conditional variance of 

FIGARCH(p,d,q)  decreases at a hyperbolic rate when 10 <≤ d as stated in Baillie(1996), 

result that the long-term dynamics of the volatility is taken into account by the fractional 

integration parameter d, while the short-term dynamics is modeled through the traditional 

GARCH parameters. 

 
 
Model Distributions  

 
 

Skewness and kurtosis are expected to be important in a number of financial market 

applications including the pricing of financial assets. Since the ARCH class of processes 

captures time varying conditional variances, they also capture time varying conditional 

kurtosis. However, the Gaussian density is unable to capture the fat tails present in the 

unconditional distributions of financial market returns. The GARCH class of processes has 

therefore been combined with a number of distributions with tails fatter than the normal, for 

example, the Student’s t (Bollerslev, 1987). 

The parameters of volatility models can be estimated by using non-linear optimization 

procedures to maximize the logarithm of the Gaussian likelihood function. Under the 

assumption that the random variable zt~N(0,1) ,the log-likelihood of Gaussian or normal 

distribution (Lnorm) can be expressed as: 
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where T is number of observations. However, it is widely observed that the distribution of 

residuals tends to appear asymmetry and leptokurtosis. To capture excess kurtosis and 

skewness, the skewed Student-t distribution is considered. If zt~ SkST(0,1,k,ν) the log-

likelihood of the skewed Student-t distribution LSkST is as follows: 
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Where It = 1 if  zt ≥ -m/s or It = -1 if zt < -m/s, and k is an asymmetry parameter. The 

constants m = m(k,ν) and ),(2 vkss =  are the mean and standard deviation of the skewed 

Student-t distribution as follows:  


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The value of ln(k) can represent the degree of asymmetry of residual distribution. For 

example, if ln(k)>0 or ln(k)<0, the density is right (left) skewed. When k=1, the skewed 

Student-t distribution equals the general Student-t distribution. 

The parameter ν measures the degree of freedom. The lower the value of ν, the greater the 

number of extreme values (i.e., the fatter are the distribution tails than the normal 

distribution). When ν approaches infinity, excess kurtosis becomes zero and the normal 

distribution results. 

If the standardized residuals are not normal, assuming that the conditional mean and variance 

are correctly specified, GARCH estimates are consistent but asymptotically inefficient, with 

the degree of inefficiency increasing with the degree of departure from normality. The skewed 

Student’s t distribution should therefore reduce the excess kurtosis and skewness in the 

standardized residuals and provide efficiency gains. Moreover, if the distribution exhibits 

excess kurtosis, the QML estimates are consistent but may be biased in finite samples. 

Therefore, in order to capture skewness and kurtosis, the skewed Student’s t distribution 

should be considered. (this distribution has been proposed by Fernandez and Steel (1998) and 

subsequently extended by Lambert and Laurent (2001)). 
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IV. EMPIRICAL DATA AND RESULTS 
 

1. The Data  
 
Our estimates are based on daily closing stock prices. The data source is the provider of 

financial news, data and analytics, Bloomberg. The sample starts at different dates for the six 

indices and it ends at April 30, 2009, leading to a number of observations between 2119 and 

2882. 

The data were transformed into continuously compounded returns 












=

−1,

,
, log

ti

ti
ti p

p
r  where pi,t 

represents the value of index i at time t. In the case of a day following a nontrading day, the 

return is calculated using the closing price indices of the latest trading day and that day. 

The estimations and tests were performed in R version 2.9.0. 

For estimating ARFIMA-FIGARCH model, the Ox Console version 5.10, together with the 

G@rch Console 4.2 were used. Both consoles are part of Ox Econometric Software developed 

by Jurgen A. Doornik. 

 

2. Preliminary analysis 
 
After performing a preliminary analysis, the data appear extremely non-normal. Excepting 

BET-FI index, all of the return distributions are negatively skewed. 

The data also display a high degree of excess kurtosis. Such skewness and kurtosis are 

common features in asset return distributions, which are repeatedly found to be leptokurtic. 

The null hypothesis of normality of the Bera-Jarque test is rejected for all indices. The results 

of the ADF unit root test indicate that all of the returns series are stationary.  

The KPSS test for the null hypothesis of I (0) is conducted in two ways: based on a regression 

on a constant, and on a constant and time trend, respectively, and we conclude that the series 

cannot be characterized as I(0) processes. This is, according to Baillie, Chung and Tieslau 

(1996) an indication that the process is described by neither I(0) nor I(1) processes and 

therefore it is probable better described by the fractional integrated alternative. 
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3. Fractional parameter estimates 
 

All the nonparametric and semiparametric techniques were applied to return series, as well as 

to absolute and squared return series which are considered the most popular proxies for 

volatility in financial markets.The results are reported in Table 1. 

 

Table 1: Nonparametric and semiparametric estimates 

 

BET R/S  H Wavelet H d (GPH) BET-FI R/S  H Wavelet H d (GPH)
Returns 0.6263291 0.4960724 0.1505057 Returns 0.7625203 0.51634837 0.1842962
Squared returns 0.7694657 0.5149534 0.3544141 Squared returns 0.655354 0.5797175 0.4405869
Absolute returns 0.8325581 0.614134 0.3796489 Absolute returns 0.6909146 0.6645153 0.4339933
SOFIX R/S  H Wavelet H d (GPH) BUX R/S  H Wavelet H d (GPH)
Returns 0.4805514 0.4407017 0.3027533 Returns 0.5993203 0.4874384 -0.033794
Squared returns 0.6632112 0.5394242 0.3865293 Squared returns 0.7575655 0.7539982 0.3612529
Absolute returns 0.7128511 0.7029066 0.4445772 Absolute returns 0.8440155 0.7708724 0.4659885
WIG R/S  H Wavelet H d (GPH) PX R/S  H Wavelet H d (GPH)
Returns 0.6368706 0.5623532 0.0201389 Returns 0.5964553 0.524891 0.1023029
Squared returns 0.7688137 0.754955 0.303066 Squared returns 0.6827839 0.738836 0.3164356
Absolute returns 0.8064734 0.7746495 0.3800708 Absolute returns 0.7325632 0.7920493 0.4963583

 

For return series, the rescaled range statistic indicates a value of the Hurst exponent above 

0.5, except for SOFIX, for which the test indicates a value of 0.48. At a first sight, the 

absolute return series appear to be more persistent than squared return series, since the Hurst 

exponent values estimated through R/S method are significantly higher for absolute than for 

squared returns. This fact is confirmed by the rest of test conducted: wavelet based estimator 

and GPH estimator. This property is known as Taylor property, (Taylor, 1986) namely that 

the time series dependencies of financial volatility as measured by the autocorrelation 

function of absolute returns are stronger for absolute stock returns than for the squares. 

Following Cheung(1993), for choosing the right order of ARFIMA models, different 

specifications of the ARFIMA (p, ξ, q) with p,q=0:2 were estimated for each return series. 

The Akaike’s information Criterion (AIC), is used to choose the best model that describes the 

data. The selected orders and the estimation results are reported in Table 2. 
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The results indicate that the long memory parameter (ξ) is significantly different from zero for 

all the return series. These results appear in line with those of recent studies which state that 

long memory property is in general a characteristic of emerging rather than developed stock 

market (among the researcher which consider this, we mention  Barkoulas (2000), Kang and 

Yoon(2007), Kasman and Torun (2008)). 

 

Table 2. Estimation results of the ARFIMA models 

BET BET-FI SOFIX BUX WIG PX
ARFIMA ARFIMA ARFIMA ARFIMA ARFIMA ARFIMA

(0,ξ,1) (0,ξ,0) (1,ξ,1) (1,ξ,2) (0,ξ,2) (1,ξ,2)
Ф1 - - -0.9034 0.52359 - 0.38472

(0.0000) (0.0014) (0.0061)
Ф2 - - - - - -

ξ 0.0461 0.1096 0.0713 0.0814 0.03135** 0.1026
(0.0048) (0.0000) (0.0000) (0.0000) (0.0671) (0.0000)

θ1 -0.17412 - -0.850 0.53144 -0.0663 0.40374
(0.0000) (0.0000) (0.0007) (0.0017) (0.0035)

θ2 - - - 0.06745 0.02975 0.09132
(0.0000) (0.0823) (0.0000)

ln(L) -5862 -5042 -4376 -5643 -5208 -5189
SIC 4.0735 4.8101 4.1411 4.0755 3.7312 3.7418
AIC 4.0694 4.8081 4.1331 4.0670 3.7248 3.7333
Skewness -0.2621 0.1727 -0.5017 -0.1618 -0.2378 1.7411
kurtosis 5.7822 5.1083 25.4701 8.6850 3.1972 11.0143
Excess kurtosis 2.7822 2.1083 22.4701 5.6850 0.1972 8.0143
J-B 3915.92 2189.28 54780.01 8442.15 1177.87 14939.26
Q(20) 95.6889 26.2347 39.9162 94.0865 33.8216 67.5781

Model 

 
P-values are reported in the parentheses below corresponding parameter estimates; ln(L) is the 
value of the maximized Gaussian Likelihood; SIC/AIC is the Schwarz/Akaike information 
criteria. The Q(20) is the Ljung-Box statistic with 20 degrees of freedom based on the 
standardized residuals. The skewness and kurtosis are also based on standardized residuals.       
* and ** indicate significance level at the 5% and 10% respectively 

 
 

As can be observed in Table 2, all of the return distributions are negatively skewed except for 

BET-FI and PX. The data also display excess kurtosis suggesting that residuals appear to be 

fat-tailed and sharply peaked about the mean when compared with the normal distribution. 

Such skewness and kurtosis are common features in asset return distributions, which are 

frequently found to be leptokurtic.  
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Kasman and Torun (2008) suggest that modeling only the level of returns does not offer a 

clear representation on the presence of long memory in the CEE countries stock markets and 

therefore, one should also investigate the presence of long memory in volatility. 

Before investigating dual long memory in returns and volatility as suggested by Kasman and 

Torun (2008) we test for structural breaks in the return series, since it is well-known that 

estimating the long memory parameter without taking account existence of breaks in the data 

sets may lead to misspecification and to overestimate the true parameter. 

Numerous researchers consider that in many cases long memory could be seen as an artifact 

of processes that exhibit structural change over time (Diebold and Inoue (2002), Granger and 

Hyung (2004), Teverosky and Taqqu (1997)). They observed that in the presence of structural 

breaks, the series reveals the same properties as a long memory process (mainly in terms of 

persistence) leading to a so-called “spurious long-memory”. 

In order to examine for potential breaks within the conditional mean we first use the 

Supremum F test which computes the F statistic for each potential change point and find their 

maximum. The asymptotic critical values of the SupF test are reported by Andrews (1993).  

Subsequently, we follow the methodology of Bai and Perron (2003). The method tests for 

multiple breaks of unknown break dates without imposing any prior beliefs. The break tests 

involve regressing the variable of interest (in this case returns) on a constant and testing for 

breaks within that constant. First, the procedure assumes there is no break within the data 

against an alternate that there is up to b breaks in the data, where b is specified by the user. 

Furthermore, a minimum distance between breaks can also be specified. More details 

regarding Bai and Perron methodology can be found in Appendix 1. 

The result of the tests  are reported in the Table 3. 

 

Table 3: Testing for structural breaks 

BET BET-FI SOFIX BUX WIG PX
F statistic 15.4789 20.0107 32.4592 6.6669 9.8167 8.0598
p-value 0.001986 0.0002238 0.0000 0.12 0.02872* 0.06421**
Breakpoint at obs.no. 2440 1657 1746 - 2347 2329
Breakdate 7/23/2007 7/24/2007 10/30/2007 - 7/6/2007 7/9/2007
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The supF test indicates a single break for BET, BET-FI, and SOFIX.  For Hungary Stock 

Exchange index, the null hypothesis of no structural breaks can not be rejected. For WIG and 

PX, the null can be rejected at 5% and 10% significance level.  

We observe that the break date for BET and BET-FI is reported in the same period, at one day 

distance.Both dates are directly related to the historical maximum recorded on Bucharest 

Stock Exchange in July 2007. On July 24, 2007, the BET index registered 10814 points, the 

maximum historical value, representing a growth of 34% from early 2007. That day, value of 

transactions in shares made on the regular market of BSE was RON 60.6 Mio.  

One year letar, on July 24, 2008, BET index registered a value of 5915 points, down 45% 

from the peak reached in the previous year. BET-FI index dropped 62% during this period. 

On 24 July 2008, the trading in shares was RON 18.6 Mio - down with 69% from 24 July 

2007.The descending trend is still significant for the Romanian Stock Exchange, since as of 

April 30, 2009 (the date of the last observation in the sample) BET index dropped by 71.8% 

comparing to the maximum value registered in July 2007 and BET-FI by 80.5% 

The Andrews’ supremum test for SOFIX indicates as breakdate October 30, 2007, 

corresponding to its historical maximum value of 1,952.4 points. Since then, the index’ value 

decreased constantly to 358 points, the decline representing 81.66% from its historical 

maximum. 

The Warsaw Stock Exchange index, WIG, reached its all-time high 67 568.50 points on July 

6, 2007. That date is identified by the supF test as breakdate. The index is now at 57% from 

its historical maximum. The supF test indicates for PX index a breakpoint on July 9, 2007. 

Following Shimotsu (2006), in order to asses the stability of the properties for the entire 

sample, we split each full sample in two distinct subsamples (considering the breakpoint 

previously determined). 

Shimotsu (2006) show that if a time series follows an I(d) process, then each subsample of the 

time series also follows an I(d) process with the same value of d. He split the sample into b 

subsamples, estimate d for each subsample, and compare them with the estimate of d from the 

full sample .For spurious I(d) models, it turns out that the averaged estimates from the 

subsamples tend to differ from the full sample estimate, and their difference increases as the 

degree of sample splitting increases. 
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All the procedures (R/S, wavelet estimator, GPH, ARFIMA) were reestimated for each 

subsample so that to be able to make inferences about the properties of samples and 

subsamples.The results are reported in Table 4. 

 

Table 4. Subsamples estimates 

BET Full sample Before StrBreak After StrBreak 
R/S Hurst Exponent 0.6107111 0.6232049 0.590718
Wavelet Estimator for H 0.5090784 0.496072447 0.4388235
GPH estimator 0.157134 0.1518671 0.1496232

BET-FI Full sample Before StrBreak After StrBreak 
R/S Hurst Exponent 0.7625203 0.7571819 0.598512
Wavelet Estimator for H 0.5163484 0.6916477 0.6628132
GPH estimator 0.1842962 0.03527433 0.2535763

SOFIX Full sample Before StrBreak After StrBreak 
R/S Hurst Exponent 0.4805514 0.4152389 0.4356528
Wavelet Estimator for H 0.4407017 0.4328664 0.6404247
GPH estimator 0.3027533 0.1097595 0.5111778

WIG Full sample Before StrBreak After StrBreak 
R/S Hurst Exponent 0.6368706 0.6276843 0.7175956
Wavelet Estimator for H 0.5623532 0.5611866 0.7650836
GPH estimator 0.02013889 0.06955524 0.02715736

PX Full sample Before StrBreak After StrBreak 
R/S Hurst Exponent 0.5964553 0.5932412 0.7381239
Wavelet Estimator for H 0.524891 0.5214645 0.5052401
GPH estimator 0.1023029 0.104628 0.07740972 

 

For most of the indices, the subsamples appear to keep approximately the same features as the 

full sample. However, SOFIX index shows values of H estimated via R/S and wavelet 

analysis which are below 0.5 for the full sample as well as for each subsample in part, except 

for the wavelet estimator for the second subsample. In addition, the GPH estimator for d is 

quite different for each subsample, suggesting that the long memory pattern showed by the 

full sample is based in fact only on the second subsample period which has no more than 372 

observations. These findings motivate as to further investigate for a possible spurious long 

memory in index returns, by using the parametric approach ARFIMA(p,d,q), with the orders 

previously identified using AIC information criteria. The results are reported in Table 5. 
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Table 5. Subsamples estimates for ARFIMA model 

BET
ARFIMA(0,d,1)

Full sample Before structural break After structural break

d 0.04656 0.04479 0.003575
p-value 0.0059 (0.00758) (0.798)
BET-FI

ARFIMA(0,d,0)
Full sample Before structural break After structural break

d 0.1096 0.07605 0.1294
p-value 0.0000 0.0000 0.0000
SOFIX

ARFIMA(1,d,1)
Full sample Before structural break After structural break

d 0.0713 0.00004583 0.15008
p-value 0.0000 (0.998) (0.000692)
WIG

ARFIMA(0,d,2)
Full sample Before structural break After structural break

d 0.03135 0.00004583 0.05557
p-value 0.0671 (0.998657) 0.0000

PX
ARFIMA(1,d,2)

Full sample Before structural break After structural break

d 0.10255 0.05806 0.07736
p-value 0.0000 0.0000 0.0000  

 

Estimating fractionally integrated parameter via ARFIMA(1,d,1), can be clearly observed that 

the first sample between October 23, 2000 and October 30,2007 , provide no evidence of long 

memory features in SOFIX returns. Therefore, we suggest that in the case of Bulgarian capital 

market, the structural break occurred in October 2007 when SOFIX registered its historical 

high value (and after that declined drastically) is the underlying cause of persistence in return 

series, rather than a true long memory process.It is questionable if in general, a single 

breakpoint within a series could have the power to induce persistence consistent with long 

memory processes. However, in our case, we applied the same structural break tests on 

subsamples, and we found no evidence of other breakpoints. Therefore, we will consider only 

the first identified breakpoint As a result, we will further investigate for long memory in 

SOFIX volatility using a pure FIGARCH model. 

The results in Table 5 suggest that BET-FI and PX display the long memory feature in returns 

regardless if structural break occur. The fractional parameter differs significantly from zero in 

each subsample, confirming the result obtained for the full sample. BET shows long memory 
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in the first subsample, while for the second, d does not differ significantly from zero. 

However, considering the relevance of the first subsample in terms of number of observation 

included (2439 vs. 442), and that usually the presence of structural breaks influence the 

subsamples in the opposite way, we will consider as substantial the finding of long memory in 

the full sample. 

Finally, WIG return series appears to be significantly affected by the structural break occurred 

in July 2007, since for the first subsample the null hypothesis that the parameter equals zero 

cannot be rejected, while for the second subsample, d differs significantly from zero. As well 

as for SOFIX, this could be considered evidence of “spurious” long memory and therefore we 

will further investigate long memory in WIG volatility via FIGARCH model. 

We were unable to follow the same subsamples technique to test for structural breaks 

in absolute return series due to insufficient number of observations in the second subsamples.  

More specifically, unlike the finite-lag representation for the classical GARCH(p,q), the 

approximate maximum likelihood technique (QMLE) for FIGARCH(p,d,q) necessitates the 

truncation of the infinite distributed lags. Since the fractional differencing parameter is 

designed to capture the long-memory features, truncating at too low a lag may destroy 

important long-run dependencies, as shown in  Bollerslev and Mikkelsen(1996) who fix the 

truncation lag at 1000 after performing Monte Carlo simulations. 

Since we have around 400 observations for each index in the second subsample, the 

FIGARCH model cannot be estimated due tot the fact that the truncation order must be less 

than the sample size. 

 

4. Estimating ARFIMA-FIGARCH model 

 

An important matter in the ARFIMA-FIGARCH framework is the selection of appropriate 

lags ARFIMA (n,s)-FIGARCH(p,q). Following Yoon(2007) and Kasman(2008) we use for 

ARFIMA estimation the lag orders previously selected using AIC information criteria (n*,s*), 

and we estimate all the specification models ARFIMA(n*,s*)-FIGARCH(p,q) for p,q=0:2. 

The model which has the lowest AIC and passes Q-test simultaneously is used. 
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In order to perform a comparison between classical GARCH and the fractionally integrated 

version and to make also inferences regarding the most appropriate distribution which 

describe the data, we estimate for each index ARFIMA-GARCH and ARFIMA-FIGARCH 

models, under both the normal and skewed Student-t distribution. The fractionally integrated 

parameters, together with Pearson goodness-of-fit tests are reported in Table 6.  

 
Table 6: Estimation results of the ARFIMA-FIGARCH models 

 

ξ 0.038559** 0.049464* 0.0322 0.049475* ξ 0.1609 0.1753 0.1554 0.1759
(0.0902) (0.0220) (0.1665) (0.0262) (0.0095) (0.0016) (0.0143) (0.0013)

d - - 0.519482 0.371215 d - - 0.702972 0.60617
(0.0000) (0.0000) (0.0000) (0.0000)

P(60) 145.5949 44.7966 131.3915 39.5901 P(60) 61.7239 58.7045 88.5967 56.1596
(0.0000) (0.9143) (0.0000) (0.9755) (0.1675) (0.1866) (0.0009) (0.2244)

ξ 0.1006 0.0852 0.0983 0.0828 ξ -0.0283 0.0640 0.0600 0.067143**
(0.0000) (0.0001) (0.0000) (0.0002) (0.0251) (0.0589) (0.0659) (0.0589)

d 0 0 0.755778 0.595596 d - 0 0.462322 0.455978
(0.0006) (0.0000) (0.0000) (0.0000)

P(60) 136.9056 53.5866 139.5951 55.4750 P(60) 90.3605 66.0320 65.7296 64.1739
(0.0000) (0.6746) (0.0000) (0.6062) (0.0006) (0.0527) (0.0671) (0.0592)

Skewed Student t

ARFIMA(0, ξ,1)-GARCH(1,d,1) ARFIMA(0, ξ,1)-FIGARCH(1,d,1)
BET

Normal Skewed Student t Normal

BET-FI
ARFIMA(0, ξ,0)-GARCH(1,1) ARFIMA(0, ξ,0)-FIGARCH(1,1)

Normal Skewed Student t Normal Skewed Student t
BUX

ARFIMA(1, ξ,2)-GARCH(1,1) ARFIMA(1, ξ,2)-FIGARCH(1,d,1)

Normal Skewed Student t Normal Skewed Student t

PX
ARFIMA(1, ξ,2)-GARCH(1,1) ARFIMA(1,ξ,2)-FIGARCH(1,1)

Normal Skewed Student t Normal Skewed Student t

 
P-values are reported in the parentheses below corresponding parameter estimates. P(60) is the Pearson 
goodness-of-fit statistic for 60 cells; in breackets p-value(g-k-1).* and ** indicate significance level at the 5% 
and 10% respectively 
 
As seen in Table 6, for BET, BET-FI, PX and BUX, both long memory parameters ξ and d 

are significantly different from zero, indicating the presence of dual long memory property in 

return and volatility of the Romanian stock market representative indices.  

For SOFIX and WIG pure FIGARCH models were estimated and the results reported in Table 

7 show strong evidence of long memory in volatility.  
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Table 7: Estimation results of the FIGARCH models 
 

        

d 0.5410 0.5686 d 0.4505 0.4707
0.0000 0.0000 0.0000 0.0000

P(60) 285.5021 74.4403 P(60) 95.7241 63.1294
0.0000 0.0848 0.0003 0.1186

SOFIX
FIGARCH(1,d,1)

WIG
FIGARCH(2,d,1)

Normal Skewed Student tNormal Skewed Student t

 
  

Analyzing the parameter estimates of the joint ARFIMA-FIGARCH model, we can make 

some inferences related to the most appropriated model and the distribution which best 

describes the series. All the estimated models are detailed reported in Appendix 3. 

First, it can be observed that the sum of the estimates of α1 and β1 in the ARFIMA–GARCH 

model is very close to one, indicating that the volatility process is highly persistent. The sum 

of these parameters decreases when we use the ARFIMA-FIGARCH specification for 

modeling the series, in case of all indices. Moreover, the results indicate that the estimates of 

β1 in the GARCH model are very high, suggesting a strong autoregressive component in the 

conditional variance process and that the β1 estimates are lower in the FIGARCH than those 

of in the GARCH model.   

Also, according to the AIC, the FIGARCH models fit the return series better than the GARCH 

models. Unsurprisingly, the skewed Student-t distribution is found to outperform the normal 

distribution returns, since the t-statistics of the parameter ν is highly significant in all the 

returns series. The lower values of P(60) test statistics reconfirm the relevance of skewed 

Student-t distribution for all returns. Hence, the skewed Student-t distribution can be used to 

capture the tendency of stock return distribution referring to leptokurtosis. It should be noted 

that in all cases the FIGARCH coefficients satisfy the necessary and sufficient conditions for 

the nonnegativitiy of the conditional variances. (derived by Baillie(1996)). 

Similar results were obtained by Kang and Yoon (2007) in their search for long 

memory patterns in return and volatility of the Korean stock market. Their findings indicate 

that long memory dynamics in the return and volatility can be adequately estimated by the 

joint ARFIMA-FIGARCH model and that the skewed Student-t distribution is appropriate for 

incorporating the tendency of asymmetric leptokurtosis in a return distribution.  
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Kasman and Torun (2008) perform a research over eight CEE emerging capital 

markets with the purpose to investigate dual long memory property. Overall, they conclude 

that dual long memory is present in five from eight countries, and performing an out-of-

sample forecast they found that ARFIMA-FIGARCH model provides better forecast 

comparing to ARFIMA-GARCH and ARFIMA-HYGARCH models, also developed in their 

paper. For all the data series in their research, the sample period ends in January 2007. They 

also found evidence of long memory in returns and volatilities of Hungary and Czech 

Republic stock markets, while for Poland and Bulgaria they conclude upon the presence of 

long memory only in volatility. This is in line with our results, since for WIG and SOFIX, we 

found no long memory in returns on the first subsample (which ends in July and October 2007 

respectively) and strong evidence of long memory on the second subsample. 

Our results appear to confirm once more the idea that due to their different characteristic from 

the developed markets, emerging markets are more likely to be described by long memory 

processes, and therefore, this feature should be more investigated and explored in order 

conclude upon the reliability of these findings, and  their direct implications in the economy. 

 

V. CONCLUSIONS 
 
 

We have used non and semipramateric techniques, as well as the parametric ARFIMA model 

proposed by Granger and Joyeux(1980), in our search for long memory features in the 

Romanian capital market and other four emerging stock markets in the region. We also use 

the approach first proposed by Teyssiere(1997) consisting in the joint estimate of the 

ARFIMA-FIGARCH model. Our results are similar to those obtained by Kasman and Torun 

(2008) who investigate the dual long memory property in eight emerging CEE capital 

markets, without including the Romanian market. 

We have considered the methodology of Bai and Peron for testing for structural breaks in the 

return series and we have reestimated the non and semiparametric techniques, for each 

subsample in order to identify potential evidence of spurious long memory. We have 
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subsequently decided upon the distribution which best describes the data, comparing the 

performance of Gaussian distribution with skewed Student-t distribution. 

We have investigated for long memory in both conditional mean and conditional variance by 

combining a fractionally integrated regression function and a fractionally integrated skedastic 

function.More specifically, we have estimated ARFIMA-GARCH and ARFIMA-FIGARCH 

models using both proposed distribution, and we assessed the results using the Pearson 

goodness-of-fit test.  

The results strongly support the idea of dual long memory in Romanian capital market, as 

well as in the Hungarian and Czeck stock markets. For Bulgarian and Poland’s markets, 

strong features of long memory in volatility were identified, while concerning the long 

memory in these return series, we suggested that the apparent long memory features may 

represent a consequence of  structural breaks presence in the return series.  

However, at least for the Romanian capital market (for which, to the authors’ knowledge, the 

joint ARFIMA-FIGARCH model has not been estimated in previous papers) further research 

should be performed in order to make inferences regarding the consistency of our findings. 

The main limitation of the ARFIMA-FIGARCH model is related to the fact that it does not 

take into account for structural breaks in both the conditional mean and conditional variance. 

In this respect, one could further explore the long memory patterns in the Romanian capital 

market (and the analysis could be extended as to include also other stock markets) by using 

one of the most recently models developed for modeling both long memory processes and 

structural breaks,  namely the A2 (Adaptive)ARFIMA-FIGARCH model proposed by Baillie 

and Morana (2009). They first proposed the A-FIGARCH model for the conditional volatility 

(2007) and subsequently they developed a similar model for the conditional mean, which 

considers a time-varying intercept allowing for breaks, cycles and changes in drift.  The 

generalization of these models, the A2-ARFIMA-FIGARCH, allows for long memory and 

structural breaks simultaneously in the conditional mean and conditional variance. 

To conclude, due to long memory implications to risk management, asset allocation decision, 

pricing derivatives or constructing speculative strategies, our results suggest that it is worth 

exploring long memory in emerging markets which are more likely to show significant 

evidence of such features. However, the researcher should first perform a thorough 



 

Sandu Mihaela - Exploring Dual Long Memory in Returns and Volatility across CEE Stock Markets 

 

 
31 

 

investigation of models and techniques available for long memory testing due to the well-

known sensitivity of results to the selected technique.  

Moreover, it cannot be overstated how important is to use such a technique which takes into 

account for other processes which can induce similar properties with long memory processes, 

in order to ensure the genuine character of the long memory phenomenon.  
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Appendix 1: Non-negativity constraints 
 
When estimating a FIGARCH model, the parameters have to fulfill some restrictions to 

ensure the positivity of conditional variances. Baillie et al. (1996) derived a group of two sets 

of inequalities. For a FIGARCH(1,d,1), the positivity constraints are:  

3

2
11

d
d

−≤≤− φβ  

( )111 2

1 αβφ +≤






 −− d
d

d
 

where 111 βαφ +=  
Restrictions for lower order models can be derived directly from the previously presented 

while for higher order models parameters restrictions cannot be so easily represented. 

However, Caporini(2003) mentions that in practical applications one will rarely have to make 

use of a specification with p>2. (where p is the GARCH term). 

 

 

Appendix 2: Bai and Perron methodology for structural breaks 
 
The Bai-Perron (BP) methodology considers the following multiple structural break model, 

with m breaks (m+1 regimes) 

11
'' uzxy ttt ++= δβ , 1,.....1 Tt =  

12
'' uzxy ttt ++= δβ , 21 ,....1 TTt +=  

……………………………………. 

11
'' uzxy mttt ++= +δβ , TTt m ,....1+=  

Where yt is the observed dependant variable at time t.The break points ( )mTT ,....1 are treated as 

unknown, and are estimated together with the unknown coefficients when T observations are 

available. In the terminology of Bai and Perron, this is a partial structural change model, in 

the sense that β does not change, and is effectively estimated over the entire sample. If β=0, 

this becomes a pure structural change model where all coefficients are subject to change. 
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Appendix 3: Estimation of ARFIMA-FIGARCH models 
 

Table 1: ARFIMA-FIGARCH for BET 
 

µ 0.120116 0.08669* 0.103417 0.076813

(0.002) (0.0387) (0.0041) (0.0559)

Ф1 - - - -

Ф2 - - - -

ξ 0.038559** 0.049464* 0.0322 0.049475*

(0.0902) (0.022) (0.1665) (0.0262)

θ1 0.150723 0.13304 0.156281 0.134828

0.0000 0.0000 0.0000 0.0000

θ2 - - -

ώ 0.138226 0.173226 0.095609 0.300451

(0.0051) (0.0033) (0.0402) 0.0000

α1 0.227037 0.269633 0.466026 0.42907

0.00000 0.0000 0.0003 (0.0984)

α2 - - - -

β1 0.752619 0.713049 0.645352 0.54033

0.00000 0.0000 0.00000 (0.044)

β2 - - - -

d - - 0.519482 0.371215

0.0000 0.0000

ν - 5.16013 - 5.59537

0.0000 0.0000

ln(k) - 0.025942 - 0.029179

(0.3042) (0.2343)

ln(L) -5390.6 -5291.51 -5364.9 -5272.30
AIC 3.746309 3.678938 3.729169 3.666299
Q(20) 32.6493** 33.4769** 34.4892** 32.0277 **

(0.0263764) (0.021166) (0.0160801) (0.0310313)

Qs(20) 23.2455 33.4769 13.914 15.616

(0.1813325) (0.021166) (0.7346793) (0.6193279)

ARCH(5) 2.0222* 1.5052 0.33442 0.33497
(0.0725) (0.1847) (0.8923) (0.892)

RBD(10) 13.69 10.00 4.59 3.53
(0.1875974) (0.4401308) (0.9168096) (0.9659432)

P(60) 145.5949 44.7966 131.3915 39.5901
0.0000 (0.91426) (0.000001) (0.975501)

Σαi+Σβi 0.979656 0.982682 1.111378 0.9694

Σβi 0.752619 0.713049 0.645352 0.54033

BET
Normal Skewed Student t Normal

ARFIMA(0,ξ,1)-GARCH(1,d,1) ARFIMA(0,ξ,1)-FIGARCH(1,d,1)

Skewed Student t
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Table 2: ARFIMA-FIGARCH for BET-FI 
 

ARFIMA(0,ξ,0)-GARCH(1,1) ARFIMA(0,ξ,0)-FIGARCH(1,1)
Normal Skewed Student t Normal Skewed Student t

µ 0.1170 0.1310 0.1135 0.1315

(0.1462) (0.0715) (0.154) (0.0677)

Ф1 - - - -

Ф2 - - - -

ξ 0.1006 0.0852 0.0983 0.0828
0.0000 0.0001 0 0.0002

θ1 - - - -

θ2 - - - -

ώ 0.148166 0.191158 0.179273 0.240682
(0.0073) (0.0086) (0.0137) 0.0288

α1 0.177186 0.217455 0.161053 0.227043
0.00000 0.0000 0.1388 (0.0548)

α2 - - - -

β1 0.81906 0.785537 0.708688 0.562969

0.00000 0.0000 0.00000 (0.0006)

β2 - - - -

d 0 0 0.755778 0.595596
0.0006 0.0000

ν - 5.205205 - 5.536404
0.0000 0.0000

ln(k) - 0.077417 - 0.081156
(0.0052) (0.0033)

ln(L) -4688.2 -4618.66 -4686.0 -4613.20
AIC 4.476064 4.411697 4.474999 4.407442
Q(20) 24.8211 31.6462** 25.1964 32.2579**

[0.2083615] [0.0472168]  [0.1940193] [0.0406264]

Qs(20) 10.622 12.7388 9.19695 9.98524

[0.9097031] [0.8068488] [0.9550042] [0.9323872]

ARCH(5) 0.55115 0.76162 0.38078 0.51003
[0.7376]  [0.5775]   [0.8622] [0.7689]  

RBD(10) 3.46 4.35 2.43 1.93
[0.9683062]  [0.9303439] [0.9918248] [0.9968829]

P(60) 136.9056 53.5866 139.5951 55.4750
0.0000 (0.674567) (0.000001) (0.606217)

Σαi+Σβi 0.996246 1.002992 0.869741 0.790012

Σβi 0.81906 0.785537 0.708688 0.562969

BET-FI
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Table 3: ARFIMA-FIGARCH for BUX 
 

µ 0.081444 0.070431 0.09509 0.071909

0.0003 0.0428 0.0074 0.0428

Ф1 -0.866006 0.556353 0.659877 0.571698

0.00000 0.0019 0.0000 0.0005

Ф2 - - - -

ξ -0.0283 0.063991 0.0600 0.0671

0.0250660 0.0588720 0.0659170 0.0588750

θ1 0.954776 -0.586381 -0.665399 -0.605014

0.0000 0.0034 0.0000 0.0009

θ2 0.083519 -0.047753 -0.052083 -0.045309

0.0079 0.0704 0.0347 0.0868

ώ 0.07013 0.081663 0.091313 0.112467

0.0029 0.0001 0.0066 0.007

α1 0.106261 0.103916 0.2145 0.207993

0.0000 0.0000 0.0025 0.0053

α2 - - - -

β1 0.871877 0.868124 0.564758 0.545716

0.0000 0.0000 0.0000 0.0000

β2 - - - -

d - - 0.462322 0.455978

0.0000 0.0000

ν - 7.535435 - 7.478346

0.0000 0.0000

ln(k) - -0.014351 - -0.013331

0.5998 0.6287

ln(L) -5163 -5108 -5155 -5106

AIC 3.724107 3.68608 3.719145 3.68563

Q(20) 36.4234 33.9567 33.0919 34.405

0.0040253 0.0085047 0.010973 0.0074407

Qs(20) 22.0843 21.9771 18.2669 18.887

0.2282653 0.2330027 0.4382021 0.3988139

ARCH(5) 0.37304 0.32292 0.14252 0.15631

0.8674 0.8994 0.9823 0.9782

RBD(10) 9.58 10.63 9.57 10.27

0.4784 0.3873 0.4787 0.4169

P(60) 90.3605 66.0320 65.7296 64.1739

0.0006 0.0527 0.0671 0.0592

Σαi+Σβ 0.9781 0.9720 0.7793 0.7537

Σβi 0.8719 0.8681 0.5648 0.5457

BUX
Skewed Student t

ARFIMA(1,ξ,2)-GARCH(1,1) ARFIMA(1,ξ,2)-FIGARCH(1,d,1)

Normal Skewed Student t Normal
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Table 4: ARFIMA-FIGARCH for PX 
 

Ф1 0.639916 0.560244 0.651441 0.559181

0.0000 0.0000 0.0000 0.0000

Ф2 - - -

ξ 0.1609 0.1753 0.1554 0.1759
(0.0095) (0.0016) (0.0143) (0.0013)

θ1 -0.71838 -0.671191 -0.726863 -0.670871

0.0000 0.0000 0.0000 0.0000

θ2 -0.02519 -0.026412 -0.022742 -0.027224

(0.4105) (0.4372) (0.4551) (0.4327)

ώ 0.062633 0.052873 0.06788 0.064888
0.0000 0.0000 (0.0002) (0.0008)

α1 0.137459 0.128792 0.068355 0.11511
0.0000 0.0000 (0.3497) (0.0523)

α2 - - -

β1 0.837682 0.851172 0.670748 0.620867

0.0000 0.0000 0.0000 0.0000

β2 - - - -

d - - 0.702972 0.60617
0.0000 0.0000

ν - 7.901925 - 7.563628
0.0000 0.0000

ln(k) - -0.045633 - -0.043358
(0.1173) (0.1477)

ln(L) -4662 -4613 -4661 -4611
AIC 3.356238 3.323018 3.356776 3.32182
Q(20) 20.2115 20.8214 19.9535 20.2973

(0.2635526) (0.2343822) (0.2766138) (0.2593065)

Qs(20) 27.9482 27.0261 21.8433 22.1935

(0.0628485) (0.0785073) (0.2390143) (0.2235076)

ARCH(5) 2.3281 2.1888* 1.6832 1.7511
(0.0403) (0.0528) 0.1351 (0.1196)

RBD(10) 16.19 15.27 12.92 12.38
(0.0943828) (0.1224334) (0.2281323) (0.260621)

P(60) 61.7239 58.7045 88.5967 56.1596
(0.16745) (0.186643) (0.000863) (0.224418)

Σαi+Σβi 0.9751 0.9800 0.7391 0.7360

Σβi 0.8377 0.8512 0.6707 0.6209

Normal Skewed Student t Normal
PX 

Skewed Student t

ARFIMA(1,ξ,2)-GARCH(1,1) ARFIMA(1,ξ,2)-FIGARCH(1,1)
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Table 5: FIGARCH estimation for SOFIX 
 

ώ 0.010318 0.058635
(0.2915) (0.1741)

α1 0.622053 0.481553
0.0000 (0.0417)

α2 - -
β1 0.795544 0.621756

0.0000 (0.0044)
β2 - -
d 0.541028 0.568614

0.0000 0.0000
ν - 3.647303

0.0000
ln(k) - 0.020172

(0.3795)
ln(L) -3656 -3455
AIC 3.455042 3.267697
Qs(20) 19.9213 22.8513

(0.3373) (0.19636)
ARCH(5) 0.71708 0.9729

(0.6106) (0.4329)
RBD(10) 8.49 6.97

(0.5809) (0.72833)
P(60) 285.5021 74.4403*

0.0000 (0.084777)

Skewed Student t
SOFIX

Normal
FIGARCH(1,d,1)
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Table 6: FIGARCH estimation for WIG 
 

ω 0.060636 0.055881
(0.0257) (0.0151)

α1 0.165798 0.156037
(0.0001) (0.0001)

α2 - -
β1 0.62756 0.636777

0.0000 0.0000
β2 - -
d 0.47143 0.493638

0.0000 0.0000
ν - 7.3008

0.0000
ln(k) - -0.0030

(0.9022)
ln(L) -4930.167 -4880.571
AIC 3.527639 3.493617
Qs(20) 14.3419 14.4898

(0.706547) (0.6966464)
ARCH(5) 0.67035 0.62153

(0.646) (0.6834)
RBD(10) 7.15881 6.8078

(0.7103718) (0.743457)
P(60) 104.4732 68.619*

(0.000046) (0.061)

WIG
FIGARCH(1,d,1)

Normal Skewed Student t
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Appendix 4: Estimation results of the GPH tests 
 

λ=0.45 λ=0.5 λ=0.55 λ=0.6 λ=0.65
BET 0.1223 0.1505 0.1498 0.1131 0.1618

(0.1064) (0.0958) (0.0735) (0.0550) (0.0510)
BET-FI 0.0802 0.1843 0.2549 0.2384 0.1593

(0.0899) (0.0883) (0.0817) (0.0623) (0.0537)
SOFIX 0.3029 0.3028 0.3060 0.2348 0.1638

(0.1048) (0.0894) (0.0820) (0.0662) (0.0541)
BUX 0.0209 -0.0338 0.0721 0.1558 0.1038

(0.1256) (0.0895) (0.0700) (0.0573) (0.0508)
WIG 0.1470 0.0201 0.0222 0.0475 0.0773

(0.1496) (0.1080) (0.0850) (0.0638) (0.0507)
PX 0.1296 0.1023 0.1578 0.1488 0.1073

(0.1109) (0.0914) (0.0750) (0.0575) (0.0463) 
                       *the standard error deviations are reported in parenthesis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Sandu Mihaela - Exploring Dual Long Memory in Returns and Volatility across CEE Stock Markets 

 

 
43 

 

 
Appendix 5: Index Graphs 
 

Fig.1 BET Index 
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Fig.2 BET-FI Index 
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Fig.3 BUX Index 
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Fig.4 PX Index 
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Fig.5 SOFIX Index 
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Fig.6 WIG Index 

 
 

 
 


