
The Academy of Economic Studies 

The Faculty of Finance, Insurance, Banking and Stock Exchange 

Doctoral School of Finance and Banking 

 

 
 
 
 
 
 
 
 
 

Dissertation Paper 
 
 

Stylized Facts and Discrete Stochastic Volatility 
Models  

 
 

 
 

 

 
MSc student Sima Ionut Alin 

Coordinator Professor Moisă Altăr  

 

 
 
 
 

Bucharest, July 2007 



 2

 

Table of contents 

 

 

Table of contents 2

Abstract 3

1. Introduction 4

2. Literature review 5

3. Stochastic Volatility Models 6

4. Model estimation and comparison 8

5. Data 15

6. Stylized facts 16

6.1 Leptokurtic distribution and slow decaying autocorrelation function 16

6.2 Taylor effect 20

6.3 The asymmetric response of volatility to the return shocks 25

7. Conclusions 32

8. References  34

Appendix 38

 

 

 

 

 

 

 

 

 

 

 

 

 



 3

 

 

 

Abstract 

 

 

 

 This dissertation paper highlights the ability of the discrete stochastic volatility 

models to predict some important properties of the data, i.e. leptokurtic distribution of 

the returns, slowly decaying autocorrelation function of squared returns, the Taylor 

effect and the asymmetric response of volatility to return shocks. Although, there are 

many methods proposed for stochastic volatility model estimation, in this paper Markov 

Chain Monte Carlo techniques were considered. It was found that the existent 

specifications in the stochastic volatility literature are consistent with the empirical 

properties of the data. Thus, from this point of view the discrete stochastic volatility 

models are reliable tools for volatility estimation.  
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1. Introduction 

 

 

 Stochastic volatility (SV) models find many financial applications, such as 

volatility estimation and forecasting, option pricing, asset allocation, and risk 

management. They are also considered in the literature as an alternative to ARCH-type 

models, introduced by Engle (1982). Although, the improvement of stochastic volatility 

models corresponds in time with the ARCH-type models, the former models are less 

popular in the empirical literature because of their complexity and difficulty of 

estimation. After the seminal work of Jacquier, Polson and Rossi (1994), who perform 

fully Bayesian inference through Markov Chain Monte Carlo scheme, a vast literature on 

the Bayesian analysis of SV models have appeared.  

 In this dissertation paper, it is investigated the ability of the stochastic volatility 

models to capture some important properties of the data, i.e. the so called stylized facts. If 

they do not predict this properties, their usefulness in volatility estimation and prediction 

is questionable. The stylized facts considered here are: leptokurtic distribution, slow 

decaying autocorrelation function, Taylor effect and the asymmetric response of volatility 

to the return shocks. 

 The dissertation paper is organized as follows. Section 2 reviews the main papers 

from the literature that treat the topic of the stylized facts predicted by the SV models. 

Section 3 presents the stochastic volatility models subject to estimation and stylized facts 

prediction testing. The SV models are estimated using Markov Chain Monte Carlo 

techniques that are described in Section 4. This section also discusses the Deviance 

Information Criterion that is a tool for model comparison. Section 5 describes the data 

used for model estimation and also emphasizes the stylized facts. In Section 6, it is 

analyzed the ability of the SV models to predict the stylized facts highlighted in the 

previous section and the last section concludes.     
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2. Literature review 

 

The stochastic volatility (SV) models are considered in the literature as a 

successful alternative to the class of Autoregressive Conditionally Heteroscedastic 

(ARCH) models introduced by Engle (1982) and generalized by Bollerslev (1986) and 

others. As it is stated in the literature, the first paper that considers time changing 

volatility is due to Clark (1973). A very simple SV model was proposed by Taylor 

(1986), while Hamilton (1989) considers a simple discrete SV. Hull and White (1987) 

introduced the continuous-time diffusion model, which become widely used in the 

option-pricing literature. The basic SV model that appears in the empirical literature is a 

discrete approximation of the Hull and White (1987) continuous time stochastic volatility 

model. 

Although the SV models were developed in parallel with the ARCH-type models, 

they are less popular because of their estimation complexity. The latent volatility enters 

the model nonlinearly, which leads to a likelihood function depending upon high-

dimensional integrals. A variety of estimation procedures has been proposed to overcome 

this difficulty, including the Generalized Method of Moments (Melino and Turnbull, 

1990), the Quasi Maximum Likelihood (Harvey et al. 1994 and Ruiz, 1994), the Efficient 

Method of Moments (Gallant et al., 1997), and Markov Chain Monte Carlo procedures 

(Jacquier et al.,1994 ; Kim et al., 1998). 

Following the approach developed by Terasvirta (1996) for the GARCH models, 

Liesenfeld and Jung (1997) showed that the lognormal SV model does not adequately 

account for the leptokurtic distribution of the returns and slowly decaying autocorrelation 

function of the squared returns simultaneously. As a solution to this problem they 

propose that a heavier-tailed distribution to be used for the errors of the returns. Bai, 

Russell and Tiao (2003) using a different approach, conclude that lognormal SV model 

generates leptokurtosis but often not sufficiently large to explain the sample kurtosis.  

Taylor (1986) observed that the autocorrelations of the absolute returns are larger 

then the autocorrelations of the squared returns. Granger and Ding (1995) denote this 

property of the financial returns as Taylor effect. Ding, Granger and Engle (1993) 
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suggested that the autocorrelation function of absolute returns raised to power θ is 

actually maximized when θ is one.  

Malmsten and Terasvirta (2004) and Galan, Perez and Ruiz (2004) analyze the 

Taylor effect in the context of the autoregressive stochastic volatility model. Veiga (2007) 

extended their approach for another two SV models, namely Long Memory 

Autoregressive Stochastic Volatility model and Two Factor Long Memory Stochastic 

Volatility model. 

Harvey and Shephard (1996) provided one of the first econometric treatments of 

an asymmetric SV model using quasi maximum likelihood method. The asymmetric 

effect was achieved by considering a contemporaneous negative correlation between 

return shocks and volatility shocks. Another well known asymmetric model was proposed 

by Jacquier, Polson and Rossi (2004). In their model, the asymmetric response of the 

volatility is predicted by a negative correlation between return shocks and lagged 

volatility shocks. Yu (2004) showed that the specification with contemporaneous 

correlation is superior to that with the inter-temporal correlation.  

Yu (2004) propose an asymmetric SV model that resemble the EGARCH model 

specification elaborated by Nelson (1991) and extended the news impact curve 

introduced in the literature by Engle and Ng (1993). An asymmetric SV model that 

resemble GJR model (Glosten, Jagannathan, Runkle, 1993) was also proposed by Asai 

and McAleer (2004).    

There are many other specifications in the literature that are not discussed in this 

paper, for example, Jensen (2004) develops semiparametric inference for long memory 

SV models, So et al. (1998) and Carvalho and Lopez (2004) accommodates Markov 

jumps in the log-volatilities. In an excellent review, Asai et al. (2006) describes some 

important multivariate stochastic volatility models that exist in the literature. 

 

3. Stochastic Volatility Models 

 

In the theoretical finance literature, the SV model is often formulated in terms of 

stochastic differential equation of the form: 
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where s(t) represents the logarithm of the asset price, σ2(t) the volatility of the asset 

return, B1(t) and  B2(t) are two Brownian motions. First we consider that the two 

Brownian motions are independent ( corr(dB1, dB2)=0 ). 

 In the empirical literature the above continuous time model is discretized via 

Euler –Maruyama approximation. Using the notations s(t+1) – s(t) = y(t), B1(t+1)- B1(t) = 

ut , B2(t+1)- B2(t) = vt , 1+β = φ, lnσ2(t) = ht and μ = α(1+φ) the SV model becomes: 
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where yt is the asset return at the moment t, ht is the log-volatility of the return, φ the 

persistence parameter (see section 6.1), η is the standard deviation of the log-volatility 

process, ut and vt are the return shock and volatility shock respectively with the 

conditions that ...~ diiut  , )1,0(...~ Ndiivt  and corr( ut, vt) = 0. We will denote this as 

the basic SV model. Although, the assumption that the log-volatility is Gaussian may 

seem rather ad hoc, Andersen, Bollerslev, Diebold and Ebens (2001) and Andersen, 

Bollerslev, Diebold and Labys (2003) show that the empirical distribution of the log-

volatility of several exchange rates and index returns could be approximated by the 

Normal distribution. 

 The main properties of the basic SV model have been reviewd by Ghysels, 

Harvey and Renault (1996) and Shephard (1996). The stochastic process considered for 

the log-volatility is stationary if the autoregressive parameter, φ, is in absolute value less 

then one. Furthermore, as it will be shown in section 6.1, the basic SV model imply a 

leptokurtic distribution for the returns series, even if it is assumed a Gaussian distribution 

for the error in the mean equation. 

If it is also assumed that )1,0(...~ Ndiiut  then the basic SV model is also known 

in the literature as lognormal SV model. Changing the specification for the return error 

distribution and considering ut ~ t [df] yields a second model denoted here as t SV model. 

If we consider that the two Brownian motions from continuous model (1) are 

correlated ( corr(dB1, dB2) = ρ ), which implies that the error terms from the discrete 
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model  are also correlated ( corr( ut, vt) = ρ ), then the model (2) becomes an asymmetric 

SV model. The models mentioned above and other specifications will be presented in 

more details in the following sections, grouping them with respect to their capability of 

capturing some stylized facts of financial time series.   

 

4. Model estimation and comparison 

 

The stochastic volatility models were estimated in this paper using a Bayesian 

approach. This method implies the integration over posterior distribution to make 

inference about model parameters or to make predictions. Because the models estimated 

here involve high-dimensional probability distributions, the integration can be done only 

numerically. The most popular techniques in this domain are Markov Chain Monte Carlo 

methods (MCMC), originated in the statistical physics literature. MCMC are a class of 

algorithms for sampling from probability distributions based on constructing a Markov 

chain that has the desired distribution as its stationary distribution. The state of the chain 

after a large number of steps is then used as a sample from the desired distribution.   

Of course, this is not the only method that someone can use to estimate the SV 

models. In the literature, there are some other proposals, such as: 

 Generalized Method of Moments (Melino and Turnbull (1990), and 

Sorenson (2000)); 

 Quasi – Maximum Likelihood (Harvey (1994)); 

 Efficient Method of Moments (Gallant (1997)); 

 Simulated Maximum Likelihood (Danielsson (1994), and Sandmann and 

Koopman (1998)). 

Markov Chain Monte Carlo procedures for the SV models have been first 

suggested by Jacquier, Polson and Rossi (1994). They proposed a single mover algorithm 

which proved to have some drawbacks such as slow convergence, a highly dependent 

consecutive states and inefficient mixing. To improve the simulation efficiency Shephard 

and Pitt (1997), Kim, Shephard and Chib (1998), Chib, Nardari and Shephard (1998), 

Lisenfeld and Richard (2006) and Gerlach and Tuyl (2006) proposed multi-mover 

algorithms that sample the latent volatility vector in a single block. 
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Many of the algorithms needed to estimate SV models with the methods 

mentioned above have been implemented in low level programming languages such as 

C++ or FORTRAN. For example, the SVPack (Ox software for volatility models) 

implementation of Kim, Shephard and Chib (1998) is based on C++ code while the 

MCMC algorithm of Jacquier, Polson and Rossi (1994) was implemented using 

FORTRAN code. While the implementation of these specially tailored packages is 

numerically efficient, the requiring effort for writing and debugging a program is usually 

major.  

I had two reasons for choosing MCMC techniques. First, among all the above 

methods, MCMC ranks as one as the best estimation tools (see for example, Andersen, 

Chung and Sorensen (1999)), and second, Bayesian analysis of stochastic volatility 

models can be easily implemented using WinBUGS (Bayesian Analysis Using Gibbs 

Sampling for Windows). Meyer and Yu (2000, 2006) advocated using the all-purposes 

Bayesian software, BUGS, to implement MCMC estimation for univariate and 

multivariate SV models and showed that BUGS provide a flexible environment to 

estimate these models. However, due to the single move Gibbs sampler, convergence can 

be slow. Therefore, to achieve a satisfactory precision for parameter estimates, a large 

number of iterations are needed, increasing the computational cost.  

Skaug and Yu (2007) developed several algorithms to perform classical and 

Bayesian likelihood-based analysis of SV models using automatic differentiation (AD), 

combined with the Laplace approximation. They also demonstrated the ease with which 

univariate and multivariate SV models can be estimated using the latent variable module 

ADMB-RE of the of the software package AD Model Builder. 

The Bayesian approach involves the specification of the full probability model, 

that is the specification of the likelihood , p(y|θ), and the prior distribution for the 

parameters, p(θ).  The likelihood represents the probability of the data, y = (y1, y2, …, 

yn), given the parameters, θ = (μ, φ, η, ρ, ν, h) where h = (h1, h2, …, hn), and the prior 

distribution represents the prior knowledge about the parameter distribution. Having the 

likelihood and the priors one can calculate the joint probability distribution, p(y,θ): 

( ) ( ) ( )θθθ yppyp ⋅=,  
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After observing the data, Bayes theorem is used to determine the joint posterior 

distribution of the parameters, p(θ | y): 

( ) ( ) ( )
( ) ( ) ( ) ( )θθ

θθθ
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The high-dimensional integral can be interpreted as the normalizing constant that makes 

the area under the posterior distribution to be one. It is common in the Bayesian statistics 

to ignore the normalizing constant and to write the posterior as a proportional distribution 

to the product of the joint prior distribution and likelihood. 

For example, the joint posterior distribution for the lognormal SV model has the 

form: 
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where p(ht | ht-1, μ, φ, η) is the probability distribution function for ht conditional on the 

model parameters, which is N ( μ + φht-1 , η2 ), and p(yt | ht) is the likelihood of the return 

yt, which is also Gaussian, i.e. yt ~ N ( 0, exp(ht) ).  

For the t_SV model, the joint posterior distribution also contains the pr ior 

distribution for the parameter ν (degrees of freedom), and the likelihood is the Student-t 

distribution, i.e. yt ~ t ( 0, exp(ht) , ν ). 

For the asymmetric SV model proposed by Harvey and Shephard (1994), the 

likelihood and prior for log-volatility are Gaussian, i.e. yt ~ N ( (ρ/η)*exp(ht/2)*(ht+1– μ– 

φ*( ht – μ)) , exp(ht)*(1-ρ2) ) respectively ht+1 ~ N ( μ + φ*(ht – μ) , η2). 

As priors I used very common distributions from the empirical literature (Kim, 

Shephard and Chib (1998), Meyer et al.(2000), Yu (2004)): μ ~ N  (0, 25), φ* ~ Beta (20, 

1.5), φ = 2φ*-1, η2 ~ InverseGamma (2.5, 0.025), ρ ~ Uniform (-1, 1) and ψ ~ N (0, 25).  

Because, it is not possible to derive an analytic expression for the posterior 

distribution of the SV models parameters, it is necessary to use MCMC techniques, such 

as Metropolis algorithm (Metropolis et al., 1953), Metropolis-Hastings algorithm 

(Hastings, 1970) and Gibbs sampling (Geman and Geman, 1984), the independence 

sampler (Tierney, 1994). 
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 Like it was pointed above, MCMC is essentially Monte Carlo integration using 

Markov chains. MCMC draws samples from the required distribution (in our case the 

posterior distribution) by running a ingeniously constructed Markov chain for a long 

time. These techniques only require that the desired distribution to be known up to a 

constant of normalization. There are many ways of constructing these chains, but all of 

them, including the Gibbs sampler, are special cases of the general framework of 

Metropolis et al. (1953) and Hastings (1970).  

For the Metropolis – Hastings algorithm, at each time t, the next state θt+1 is 

chosen by first sampling a candidate point θ* from a proposal distribution q(.| θt). The 

proposal distribution, theoretically, can be any parametric distribution, but the choice 

highly influences the convergence of the chains to the stationary distribution. The 

candidate point θ* is then accepted with probability k(θt | θ*), where: 
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If the candidate point is accepted, the next state becomes θt+1 = θ*, and if the candidate is 

rejected, the chain does not move. 

 The Metropolis algorithm considers only symmetric proposals, having the form  

q(θ* | θt) = q(θt | θ*). Often it is convenient to choose a proposal which generates each 

component of θ* conditionally independently, given θt. For the Metropolis algorithm the 

acceptance probability reduces to: 
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A special case of the Metropolis algorithm is the random-walk Metropolis, for which 

q(θ* | θt) = q( | θt - θ* | ).  

 The independence sampler is a Metropolis-Hasting algorithm whose proposal has 

the form q(θ* | θt) = q(θ*). For this the acceptance probability can e written as: 

( ) ( ) ( )
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In general, the independence sampler can work well or very badly. For the independence 

sampler to work well, q(.) should be a good approximation to p(.), and q(.) to be heavier-

tailed than p(.). 

 Gibbs sampling, instead of updating the whole θ en bloc, it is  often more 

convenient and computationally efficient to divide θ into components { θ1, θ2, …, θm} of 

possibly differing dimension, and then update these components one by one. If θ-i 

comprise all elements of θ except θi, then the full conditional distribution p(θi | θ-i ) is the 

distribution of the ith component of θ conditioning on all the remaining components: 

( ) ( )
( )∫

=−
i

ii dyp
ypp

θθ
θθθ
,
,  

For the Gibbs sampling, the proposal distribution for updating the ith component of θ is: 

( ) ( )iiii pq −= θθθθ **  

The acceptance probability of the Gibbs sampler is 1; that is, Gibbs sampler candidates 

are always accepted. Thus Gibbs sampling consists purely in sampling from full 

conditional distributions. Sampling from full conditional distributions can be done with 

methods like: 

 Inversion (Ripley, 1987);  

 Rejection sampling (Ripley, 1987; Carlin and Gelfand, 1991); 

 Ratio-of-uniforms method (Wakefield et al., 1991; Bennett, 1995); 

 Adaptive rejection sampling (Gilks and Wild, 1992); 

 Adaptive rejection Metropolis sampling (Gilks et al., 1995); 

 Slice sampling (Neal, 1997), and other. 

The inversion method, the adaptive rejection sampling and slice sampling are 

implemented in WinBUGS. This software also contains an expert system for choosing 

the appropriate sampling method for each full conditional distribution, thus the user is not 

required to specify the sampling method. 

 

Sometimes the researcher has to choose between two or more models to measure 

a given phenomena, and he prefers the model that is less complex, that can be estimated 

easily, and with a satisfactory goodness of fit.  Usually a model with more parameters, 
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i.e. more complex, has also a better goodness of fit. Therefore, the researcher has to make 

a tradeoff between the complexity of the model and the goodness of fit.  

In this paper for model selection it was used the Deviance Information Criterion 

(DIC) that was proposed by Spiegelhalter, Best, Carlin and Linde (2002). This is useful 

in Bayesian model selection problems where the posterior distributions of the models 

have been obtained by MCMC simulations. DIC is a generalization of Akaike 

Information Criterion (AIC) and Bayesian Information Criterion (BIC), also known as 

Schwartz Criterion, and can be computed in WinBUGS for many models, including 

stochastic volatility models. It combines a Bayesian measure of fit with a measure of 

complexity. Berg, Meyer and Yu (2004) demonstrate its usefulness in the model selection 

process for the family of stochastic volatility models 

Many model checking criteria (Carlin and Louis, 1996; Gelman, Carlin, Stern and 

Rubin, 1996; Gilks, Richardson and Spiegelhalter, 1996; Key, Pericchi and Smith, 1999) 

have been proposed and discussed before the development of DIC. While Bayes factors 

(e.g. Kass and Raftery, 1995) have been viewed for many years as the only correct way to 

carry out Bayesian model comparison, they have come under increasing criticism (Lavine 

and Schervish, 1999). One serious drawback is that they are not well-defined when using 

improper priors which are typically the case in practice when employing noninformative 

priors. For stochastic volatility models, informative and thus proper prior distributions are 

usually employed and Bayes factors are well defined. Nonetheless, the number of 

unknown parameters in SV models exceeds the number of observations because of the 

latent volatilities. Computation of the Bayes factor requires the marginal likelihoods and 

thus a marginalization over the parameter vectors in each model. If the dimension of the 

parameter space is large, these extremely high-dimensional integration problems pose a 

formidable computational challenge.  

In the context of SV models Kim, Shephard and Chib (1998) and Chib, Nardari 

and Shephard (2002) have shown how to compute Bayes factors using the marginal 

likelihood approach of Chib (1995) and evaluating the marginal likelihood at the 

posterior mean using particle filtering (Kitagawa, 1996; Pitt and Shephard, 1999). Bayes 

factors remain a computationally intensive task and are not particularly user-friendly tool 

for practitioners.  
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Other well known information criterions are BIC (Bayesian Information 

Criterion) and AIC (Akaike Information Criterion). Either criterion requires the 

specification of the number of free parameters in each model. In the SV models the 

parameters are augmented by the latent volatilities which are not independent, because 

they exhibit a Markovian dependence structure, therefore they can not be considered as 

free parameters. Thus, neither BIC nor AIC can be used for SV models comparison. 

Following the original suggestion of Dempster (1974) for model choice in 

Bayesian framework DIC computation is based on posterior distribution of the log-

likelihood or  the deviance, D(.), which is computed as: 

( ) ( )( )θθ ypD log2 ⋅−=  

where θ represents the model parameters, y are the data, and p(y|θ) is the likelihood. The 

expectation ( )[ ]θDED = , i.e. the posterior mean of the deviance, is a measure of how 

well the model fits the data (in the WinBUGS output it is denoted as Dbar); the larger 

this is, the worse the fit. 

 Another component of the DIC is the effective number of parameters of the model 

which is computed as:  

( )θDDpD −=  

where ( )θθ E=  and ( )θD  is the deviance of the posterior means (in the WinBUGS 

output it is denoted as Dhat). The larger pD, the easier it is for the model to fit the data. 

This term accounts for the model complexity. Putting together the elements defined 

above, the Deviance Information Criterion (DIC) is calculated as: 

DpDIC D +=                                                        (4) 

After computing the DIC, the model with a lower value for this criterion is preferred. It is 

clear that, as the number of parameter number of parameters also means a higher 

complexity of the model and pD term compensates for this effect.  
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5. Data 

 

To test whether the stochastic volatility models predict the leptokurtic 

distributions of the returns, the slowly decaying autocorrelation function of the squared 

returns and the Taylor effect, I used seven exchange rates (CHF/RON, EUR/RON, 

GBP/RON, JPY/RON, NOK/RON, SEK/RON, USD/RON) and five indices (BET-C, 

CAC-40, DAX, FTSE-100, MIB-30). The exchange rates time series are from National 

Bank of Romania data base and they are daily series from 4 January 2000 to 4 June 2007. 

The indices data were provided by REUTERS and they are also daily series from 4 

January 2000 to 4 April 2007.  

Summary statistics for this time series are reported in tabel 1. For all time series 

considered here, the null hypothesis for the Jarque-Bera test is rejected and also they 

reveal high levels for kurtosis, i.e. their distributions are leptokurtic. Among the clasical 

summary statistics, table 1 also reports the autocorrelation function at the first lag, 

ACF(1), that will be used in section 6.1 when discussing the theoretical and empirical 

combination between kurtosis and  ACF(1). 

To show that the time series used in this paper also have the property of slow 

decaying autocorrelation function and the Taylor effect, the autocorrelation functions for 

squared returns and for absolute returns are illustrated in figure 1. It can be observed that 

excepting JPY/RON, GBP/RON and NOK/RON, both stylized facts are predicted by the 

data. For JPY/RON, GBP/RON and NOK/RON series, the autocorrelation function for 

squared returns and for absolute returns are overlapping and it is not clear whether they 

share the Taylor effect property.  

When analyzing the stochastic volatility models that are designed to predict the 

asymmetric response of volatility to return shocks, I extend the data with another eight 

stocks time series. I selected the most liquid stocks listed on the Bucharest Stock 

Exchange: Impact (IMP), Oltchim (OLT), Banca Transilvania (TLV), SIF-1, SIF-2, SIF-

3, SIF-4, SIF-5. They are daily close prices and cover the period 5 January 2000 to 5 June 

2007. 
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6. Stylized facts 

 

6.1 Leptokurtic distribution and slow decaying autocorrelation function 

 

In this section we will analyze the ability of the SV models to capture adequately 

two stylized facts: the leptokurtic distribution of returns and the slow decaying 

autocorrelation function of squared returns.  These are analyzed together, because, as will 

be shown later, they are related. Specifically, the ACF of the squared returns depends on 

the kurtosis of the returns.  

 Liesenfeld and Jung (1997) demonstrate that the lognormal SV model is too 

restrictive to account adequately for both regularities mentioned above simultaneously, 

and the substitution of the normal distribution for the parameter ut by a heavy-tailed 

distribution, such as Student-t, can solve the problem. Their approach is similar to 

Terasvirta (1996), who analyzed ACF – excess kurtosis relationship for GARCH model. 

Later, Malmsten and Terasvirta (2004) extended this study of the ACF - kurtosis 

relationship for SV model, GARCH model and EGARCH model.  

Liesenfeld and Jung (1997) showed that the kurtosis of the returns is given by the 

following relation: 

( )
( )[ ] ( ) ( ) 2

2
224

22

4

1
exp

ϕ
ησσ
−

=⋅== hht

t

t whereuE
yE

yE
k                        (5) 

In relation (5) σh represents the unconditional variance of log-volatility (ht) and is a 

function of the volatility of the return log-volatility (η2) and the persistence parameter 

(φ).  From this relation we an argue that the theoretical kurtosis of the return distribution 

can be attributed to the theoretical kurtosis of the return error distribution (E(u4)) and to 

the kurtosis due to the variability of the return log-volatility.  

 In the case of the conditional normality assumption for the return, E(u4) is 3, 

which means that the theoretical kurtosis of the return distribution is greater then 3. This 

excess kurtosis implied by the lognormal SV model is consistent with the empirical 

observations mentioned earlier in section 5.  

 The theoretical autocorrelation function (ACF) of the squared return implied by 

the basic SV model can be shown to have the form: 
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From the relation (6) it can be concluded that the ACF decay by an exponentially rate that 

depends by the parameter φ. Figure 2 depicts the ACF as a function of φ and t fixing the 

other parameters. It is obvious from this figure that as the parameter φ increase, the ACF 

decrease with a slower rate. This is the reason why the parameter φ is referred as the 

persistence parameter.  

According to the relation (5) and (6) the theoretical autocorrelation function can 

be rewritten as a function of the theoretical kurtosis of the return distribution (k), 

persistence parameter (φ) and the kurtosis of the error distribution (E(u4)): 
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Equation (7) represents the theoretical ACF – kurtosis relationship implied by the basic 

SV model which can be particularized for the lognormal SV model by imposing the 

restriction that E(u4) is 3. The theoretical relation between the kurtosis of the return 

distribution and the autocorrelation of lag 1 for the squared return is illustrated in figure 

3.a for different values for the persistence parameter (φ = {0.7, 0.9, 0.95, 0.99}). This 

figure also plots the empirical ACF – kurtosis relationship for the exchange rates (the 

blue points) and the indices (the red points) described in the data section.  

The usual empirical values obtained in the literature for the persistence parameter 

are above 0.9. From figure 3.a it can be observed that the theoretical ACF(1)-kurtosis 

relationship implied by the lognormal SV model can be a good approximation for the 

indices time series, but not also for the exchange rates time series considered here. The 

lognormal SV model would have captured the empirical combination between ACF and 

kurtosis for the exchange rate series if the persistence parameter would have been around 

0.7 (implying a faster decaying ACF), which is not empirically feasible. This means that 

for some time series the lognormal SV model can not capture simultaneously the slow 

decaying ACF of the squared returns and relatively high kurtosis of the return 

distribution. In other words, for a given ACF(1) the empirical kurtosis is higher then the 

theoretical kurtosis implied by the SV model with normal return errors. Although, the 
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lognormal SV model can simulate returns with a kurtosis grater than 3, as it was shown in 

relation 3, this excess kurtosis implied by the model is not enough to capture the 

empirical kurtosis. This drawback of the basic SV model with normal return errors can be 

solved by using a distribution with fatter tails.   

Other distributions used in the literature that allow E(u4) to be greater then three 

are the Student-t and generalized error distribution (described by Box and Tiao (1973)). 

In this paper, it was considered the Student-t distribution to account for higher kurtosis. 

The density function of the Student-t distribution with mean zero and variance one is 

given by the following relation: 
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where the parameter ν represents the degrees of freedom. For df approaching infinity the 

t-distribution approaches a normal distribution. If ut is Student-t distributed with the 

density function (8) then its kurtosis is given by: 
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4
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ν foruE t                                           (9) 

Imposing the condition (9) to the relation (7) one can obtain the theoretical ACF – 

kurtosis relationship implied by the t_SV model. This connection is depicted in figure 3.b 

considering only the first lag for the autocorrelation function and setting the df parameter 

to the value 10 which imply a kurtosis of 4 for the return error (ut). As the degrees of 

freedom parameter increase, the kurtosis of the return errors goes toward three and the 

curves from figure 3.b moves to the up and left part of the figure approaching the 

theoretical ACF-kurtosis relation implied by the lognormal SV model.  This means that 

the t_SV model is more flexible and the lognormal model can be viewed as a special case 

of the t_SV model when ν is very large (and E(u4) is very close to 3). In conclusion, the 

t_SV model can capture more adequately the excess kurtosis and the slower decaying 

ACF simultaneously.  

  As it was pointed above, to plot the ACF – kurtosis relation for the t_SV model it 

was used for the parameter ν a value of 10. To determine a more precise value for the 
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kurtosis of the return error, I have estimated in WinBugs the t_SV model for the seven 

exchange rate series and for the five nieces series, where the degrees of freedom 

parameter (ν) was introduced as a hyper-parameter. For the comparison purpose, I have 

also estimated the lognormal SV model. The estimation results are presented in table 2 

and table 3.  

 The estimates for the log-volatility mean (μ), persistence parameter (φ) and for 

the standard deviation of the log-volatility process (η) - or the precision (1/η) for some 

series – are very similar between models. Except for the BET-C who has a persistence 

parameter close to 0.85, all the other indices present a very high persistence above 0.99. 

For the exchange rates the persistence varies between 0.936 for the NOK/RON 

(lognormal model) and 0.997 for the USD/RON exchange rate (both models). The log-

volatility mean estimate is around -10.5 for exchange rates, which implies that the daily 

standard deviation varies around of a mean of approximately 0.525 %. For the indices the 

log-volatility mean is lower, it varies from -7.93 (DAX, t_SV model) to -9.33 (BET-C, 

t_SV model).  

The estimates for the degrees of freedom parameter varies between 13.85 

(SEK/RON) and 20.47 (USD/RON) for exchange rates, and between 16.48 (MIB-30) and 

25.49 (CAC-40). Using relation (9) one can estimate the kurtosis for the error ut (3.502 

for CHF/RON, 3.495 for EUR/RON and GBP/RON, 3.552 for JPY/RON, 3.425 for 

NOK/RON, 3.609 for SEK/RON, 3.364 for USD/RON) and compare it with the kurtosis 

of the return error in the lognormal model (that is 3). 

 Another way of illustrating that the empirical ACF – kurtosis relation is fitted 

better with the t_SV model then with the lognormal model is to plot on the same axes the 

empirical ACF, the ACF implied by the lognormal SV model and the ACF implied by 

the t_SV model.. The values of the ACF implied by the two models were determined by 

evaluating the theoretical ACF with the estimated parameters. These plots are depicted in 

figure 4 where the green bar-type plot represents the empirical ACF, the red line is the 

theoretical ACF implied by the lognormal model and the blue line is the theoretical ACF 

implied by the t_SV model.  
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6.2 The Taylor effect 

 

This section analyzes the presence of the Taylor effect in the context of stochastic 

volatility models. After examining 40 series of returns, Taylor (1986) observes that the 

sample autocorrelation of absolute returns seem to be larger than the sample 

autocorrelation of squares. This effect will be referred here as the Taylor effect in wade 

sense, because in the literature there are some other definitions given to this empirical 

feature.  

Granger and Ding (1995), although they were the first who denote this empirical 

property of financial series as the “Taylor effect” their definition is more restrictive: if yt 

is the series of returns and acf(θ, k) represents the sample autocorrelation of the order k 

of |yt|θ then the Taylor effect is defined as acf(1,k) > acf(θ,k) for any θ different from 1.  

This definition was based on the results found by Ding, Granger and Engle (1993) that 

the autocorrelations of the absolute returns raised to the power θ are maximized when θ is 

around 1. It must be mentioned that their analysis used only one time series, in particular 

S&P500 index. Later, Ding and Granger (1996), after an analysis that include several 

series of daily exchange rates and stock prices, changed their conclusion by observing 

that the maximum autocorrelation is not always obtained when θ =1 but for smaller 

values of θ.  

Malmsten and Terasvirta (2004), define the Taylor effect as acf( 1,k) > acf(2,k) , 

which means that autocorrelations of absolute returns are larger then the autocorrelations 

of the squared returns. They have also summarized the ability of three conditional 

volatility models to predict the Taylor effect. The three models are Generalized 

Autoregressive Conditionally Heteroscedasticity (GARCH) model, Exponential GARCH 

(EGARCH) model, Stochastic Volatility model (the basic SV). 

The autocorrelation function of |yt|θ for the GARCH model is unknown, except for 

θ = 2. Therefore, to test whether GARCH models represent the Taylor effect Ding, 

Granger and Engle(1993), He and Terasvirta (1999) used Monte Carlo simulations. The 

general, conclusion was that the GARCH models do not always generate the Taylor 

property. Furthermore, Malmsten and Terasvirta (2004) showed that for the EGARCH 

model the Taylor property holds for high values of the kurtosis. However, looking at their 
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results, it is possible to observe that for empirically relevant values of the kurtosis, the 

difference between autocorrelations of squares and absolute returns is very small.  

 In the context of stochastic volatility models, the presence of the Taylor effect can 

be better analyzed, because there can be derived analytical expressions for the 

autocorrelation function of |yt|θ for any value of θ (Harvey (1998)). Harvey and Streibel 

(1998) show that for some particular autoregressive SV models the larger the variance of 

the volatility, the smaller the value of θ that maximize the autocorrelations. Galan, Perez 

and Ruiz (2004) analyze the circumstances under which the basic SV model can present 

the Taylor effect. Veiga (2007) extended their approach for another two SV models, 

namely Long Memory Autoregressive Stochastic Volatility model and Two Factor Long 

Memory Stochastic Volatility model. Both papers conclude that the SV models have 

difficulties in generating the Taylor effect.  

 Following Harvey (1998), the autocorrelation function of |yt|θ can be written as: 
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where σh
2 is defined in relation (5), and Г(.) is the Gamma function. Relations (10) and 

(11) shows that the autocorrelation function at the order k of the absolute value of the 

returns razed to the power θ depends on the persistence parameter (φ), on the standard 

deviation of the log-volatility(η) and on the degrees of freedom parameter (ν) if the 

distribution for the error ut is considered to be Student. It is obvious that, if the degree of 

freedom parameter tends to infinity then the autocorrelation function for Student errors 
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tends to the autocorrelation function for Normal errors. This the reason why it will be 

used in this paper the notation acf(θ, φ, η, ∞,k) to denote the autocorrelation function for 

Normal errors.  

 It is obvious from relation (10) that the autocorrelation function is a very 

complicated non-linear function, and we can not have an analytical expression for the 

value of θ that maximize it. Figure 5 plots the autocorrelation function of order 1 for a 

standard deviation of the log-volatility (η) set to 0.15 (which is empirically reasonable) 

and for different (and relevant) values of the persistence parameter (φ). As mentioned 

above, setting ν to infinity means that we consider a normal distribution for the error of 

the returns. It is clear from this graphical representation that the higher the persistence 

parameter, the lower the value that maximizes the autocorrelation function. Furthermore, 

we can observe that parameter θ is larger then 1 for low values of φ, and tends toward 1 

as φ increase.  

 To have a better idea about the values of the power parameter (θ) that maximize 

the function acf(.) for a given φ and k, I maximized this function with respect to θ setting 

the persistence parameter to the value 0.85, 0.9, 0.95, 0.96, 0.97, 0.98, 0.99 and the lag 

parameter to the value 1, 5, 10, 25, 50, 75, 100. This was implemented in Maple, using 

the function NLPSolve (“Non-Linear Programming Solve”) from the Optimization 

toolbox. The results are reported in table 4.  Values on the grey font represent the values 

of the power parameter that maximize the curves from figure 5, precisely, for a 

persistence parameter of 0.99 the power parameter is 1.05 and it increase to 1.59 for φ of 

0.95. Another observation from table 4 is that as the lag parameter increase, the optimal 

value for the parameter θ decrease but very slowly. This is consistent with the conclusion 

of Galan, Perez and Ruiz (2004) that the optimal θ is approximately the same for 

different lags. According to this conclusion, to analyze how the other parameters affect 

the optimal value of θ, we set the lag parameter to1. 

 To investigate the influence of the parameter η to the optimal θ, the 

autocorrelation function was again maximized in Maple for different values of η (0.1, 

0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6) and for different values of φ (the same as in table 4). 

The results are reported in table 5. The optimal values of the parameter θ close to 1 are 

highlighted with grey color. It can be concluded that the higher the standard deviation of 
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log-volatility, the lower the value of power parameter that maximize the theoretical 

autocorrelation function (see also figure 6). For high values φ and high values of η, the 

power parameter is less then 1, and for low values of φ and low values of η, the 

parameter on interest is larger then 1. This means, that the Taylor effect in the wide sense 

is predicted by the lognormal SV model only for some particularly values of φ and η: if φ 

is 0.99 then η must be higher then approx. 0.15, if φ is 0.98 then η must be higher then 

approx. 0.2, if φ is 0.97 then η must be higher then approx. 0.25 and so on. One can be 

interested in these combinations between φ and η implied by the theoretical 

autocorrelation function, because these can be compared with the empirical 

combinations.  

To do this in a more comprehensive manner, consider first figure 7.a. This 

illustrates the autocorrelation function for lag 1 for three different values of power 

parameter (1, 1.5, and 2). For each value for the parameter θ we have a different surface. 

For low values of φ and η the three surfaces are very close, and the distance between 

them increases as φ and η increase. More importantly, where the blue surface is above the 

green and the red ones, we have the combinations between φ and η for which acf(θ = 2) is 

grater them acf(θ = 1), that is the lognormal SV model does not predict the Taylor effect. 

If the red surface is above the other two, it means that acf(θ = 1) is higher then acf(θ = 

1.5) and acf(θ = 2) respectively. Here we can find the desired combinations between φ 

and η that permits the lognormal SV model to predict the Taylor effect. To verify, 

whether these theoretical combinations are also consistent with the empirical ones, a 

three dimensional representation similar to that from figure 7.a was transformed into a bi-

dimensional representation as in figure 7.b where there are also plotted the empirical 

combinations between φ and η. The new representation replace the surface for θ = 1.5 

with other relevant values. 

The blue region from figure 7.b represents the φ-η combinations for which acf(θ = 

2) > acf(θ = 1), but the acf(.) function is maximized  by a θ higher then 1 and not 

necessary 2. For this region the lognormal SV model does not predict the Taylor effect. 

This is the region where we find the empirical φ-η combination for JPY/RON, 

NOK/RON and GBP/RON (more precisely, they are on the frontier with the green 

region) This means that for the three exchange rates mentioned above, the difference 
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between autocorrelation of squared returns and autocorrelation of absolute returns 

implied by the lognormal SV model is negligible. This seems to be a good prediction, 

because we recall from figure 1, that for this particularly three time series the empirical 

autocorrelations functions are overlapping. The green region represents the φ-η 

combinations for which acf(θ = 1) > acf(θ = 2), but the acf(.) function is maximized  by a 

θ higher then 1. In this region we find CHF/RON, SEK/RON, FTSE-100, DAX. In the 

red region acf(θ = 1) > acf(θ = 2), but the acf(.) function is maximized  by a θ lower then 

1. The empirical points that appear in this particular region correspond to BET-C and 

USD/RON. The white band represents the η-φ combinations for which the acf (.) 

function is maximized for a θ of 1 This last region is consistent with the Taylor effect in 

the restrictive sense as defined by Granger and Ding (1995). It can be observed that there 

are some time series that support this definition, namely EUR/RON, CAC-40, MIB-30.  

Using the same approach as for the lognormal SV model, the analysis of the 

Taylor property in the t_SV model is now straightforward. The additional parameter that 

appears in this model is the degree of freedom parameter (ν). An important observation 

for this model is that, the acf(θ = 2) is never higher then acf(θ = 1) for ν < 16 and for 

empirically relevant values for η and φ (that is η < 0.8, 0.8 < φ <0.999). In other words, 

for time series with ν lower then 16, the t_SV model always predict the Taylor effect. To 

test whether our estimates from table 3 have this property, we compare the empirical φ-η 

combinations with the theoretical ones, as we have already done for the lognormal SV 

model. The time series were grouped according to their estimated degrees of freedom 

parameter as follows: for ν = 15 (SEK/RON and JPY/RON); for ν = 16 (CHF/RON, 

EUR/RON, GBP/RON and MIB-30); for  ν = 20 (USD/RON,  NOK/RON and BET-C); 

for  ν =25 (CAC-40, DAX and FTSE-100).    

Figure 8 illustrates the new results, for every group defined above. The first 

observation is that all the series considered here predict the Taylor effect in the context of 

the t_SV model, even JPY/RON, NOK/RON, GBP/RON which in the context of the 

lognormal model do not share this property. This means that the it is possible for the 

t_SV model to overestimate the difference between autocorrelation of squared returns 

and autocorrelation of absolute returns.  In the green region where acf (.) is maximized by 

a θ higher then 1 (but lower then 2) we have: CHF/RON, GBP/RON, JPY/RON, 
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NOK/RON and SEK/RON. None of the indices considered lies in this region. In the red 

region where acf (.) is maximized by a θ lower then 1 we have: EUR/RON, USD/RON, 

BET-C, DAX and MIB-30. Finally, on the white band where acf (.) is maximized by a θ 

very close to 1, we have: CAC-40 and FTSE-100. 

 

6.3 The asymmetric response of volatility to the return shocks 

 

This section examines the asymmetric response of volatility to return shocks and 

discuss the shape of the news impact curve (NIC) implied by the asymmetric stochastic 

volatility models. Models that share the asymmetric property not only improve the ability 

to describe return dynamics, but also provide more accurate option prices. 

This asymmetric property that we are interested here implies that a negative return 

shock has a higher impact on future volatility than does a positive shock of the same size. 

It seams that this effect is empirically relevant for stock returns and not necessarily for 

exchange rate returns. This is maybe the reason why the explanations for asymmetric 

response of volatility are from the stock market perspective.  I found in the literature two 

explanations for the asymmetric response of volatility: the leverage effect and the 

feedback effect. 

The leverage effect explain the asymmetry suggesting that when a bad news 

arrives on the market (i.e. a negative return shock), it decrease the value of the firm’s 

equity and hence increase its leverage. In consequence, the equity becomes more risky 

and its volatility increase. Similarly, when good news arrives on the market, the leverage 

of the firm decrease and also its volatility. According to this effect there must be a 

negative relationship between future volatility and returns. 

The feedback effect (French, Schwert and Stambauch (1987), Campbell and 

Hentschel (1992) and Wu (2001)) predicts that under the assumption of volatility 

clustering a large piece of news (good or bad) will lead to high volatility which tends to 

be followed by another large volatility. Since the volatility is priced, an increased in 

volatility should increase the required rate of return and hence decrease the stock price. 

Consequently, when a large piece of bad news arrives the decrease of the stock price is 

amplified by the higher volatility which also decreases the stock price. When a large 
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piece of good news arrives the overall effect is ambiguous, because good news means 

positive shocks, but also higher volatility to be priced which determine the stock price to 

fall.  

 Although both effects can explain volatility asymmetry, they differ in how 

volatility responds to the god news. In particular, while the leverage effect predicts a 

downward movement of future expected volatility, the volatility feedback effect does not 

predict any relationship between volatility and returns when good news arrives. 

In the option pricing literature, asymmetric stochastic volatility models dates back 

to 1987 (Hull and White), four years earlier than the first asymmetric ARCH model 

(Nelson, 1991). Even though, in the empirical finance the ARCH-type models were more 

popular than the SV models, and one of the reasons may be the difficulty in estimating 

SV models. As mentioned above, one of earliest asymmetric ARCH models is Nelson’s 

(1991) Exponential Generalized Autoregressive Conditionally Heteroscedasticity 

(EGARCH): 
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where yt is the return, σt
2 is the conditional variance,  ut is the standard return shock, and 

ht is the log-volatility of returns.  

Another popular asymmetric ARCH model is GJR model (Glosten, Jagannathan 

and Runkle, 1993) defined as: 
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where I(yt-1 < 0) =1 if yt-1 < 0, and 0 otherwise. 

 Engle and Ng (1993) introduced the news impact curve (NIC) to analyze the 

relationship between current return shocks and expected volatility. Particularly, these 

relations can be determined by conditioning the expression for σt+1
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information available at time t and earlier, and then considering σt+1
2 (or ht+1) as a 

function of ut.  

 Following Yu (2004), news impact curves can be defined as: 
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where 
2

σ  and h  represent the long run mean of  σt
2 and ht respectively. Also note that 

positive ut corresponds to good news and negative ut corresponds to bad news. 

 From relations (12) and (15) it can be easily shown than the news impact curve 

(NIC) for EGARCH model is: 
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The asymmetric response of volatility is present by the model if β is different from 0.  

If β < 0 and β + ψ >0 then NIC is asymmetrically V-shaped, and if β < ψ < - β then NIC 

is monotonically decreasing.  

 From relations (13) and (14) results that the NIC for GJR model is: 
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The NIC for this model is asymmetrically U-shaped for β > 0 and γ > 0 (which is 

empirically relevant). 

 Specifying an asymmetric SV model was until recently an open question. There 

was a puzzle whether one should use a contemporaneous or an inter-temporal correlation 

between return shocks and volatility shocks. In section  3 , using Euler – Maruyama 

approximation we obtained the discrete version if the continuous stochastic volatility 

model (1), very popular in the option pricing literature: 
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In addition, if we impose the condition: 
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Corr (ut , νt ) = ρ                                                       (18) 

then we have the discrete SV model ( referred here as asv.hs ) estimated by Harvey and 

Shephard (1996) using quasi maximum likelihood method, or, if we impose the 

condition: 

Corr (ut , νt-1 ) = ρ                                                       (19) 

then we are dealing with Jacquier, Polson and Rossi (2004) SV model ( referred here as 

asv.jpr ).For estimation purpose, it is common to rewrite the model (2) with condition 

(18) (the asv.hs model) in a Gaussian nonlinear state space form with uncorrelated 

measurement and transition equation error as: 
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where ( ) 21/ ρρν −⋅−= ttt uw  and hence is iid N(0,1), and corr ( ut , wt ) = 0.  

In the same way, using the transformation ( ) 2
1 1/ ρρν −⋅−= − ttt uw , the log-volatility 

function for the asv.jpr model can be written as: 
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 Yu (2004.a) provides both theoretical and empirical evidence that the correct 

timing should be the contemporaneous correlation specification. From the theoretical 

perspective, the asv.jpr model has two drawbacks: first, it is not consistent with the 

efficient market hypothesis, and second, the leverage effect is not warranted. To be 

precise, for the asv.hs model the expression 11 −+ ⋅⋅=
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 can be negative but also positive (although the numerator is always 

negative, the denominator can have both signs). From the empirically point of view, Yu 

(2004.a) estimated both models for S&P500 index and compared them through Bayes 

factors. His conclusion was that the asv.hs model fits the data better which makes it also 

empirically superior to asv.jpr model. 
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There is no doubt that theoretically the asv.jpr model has some drawbacks, but 

empirically maybe the S&P500 was a bad choice for asv.jpr model and a good one for 

the asv.hs model. To see whether for another time series the empirical results are 

different or not, I considered 15 time series: two exchange rates (EUR/RON and 

USD/RON), five indices (BET-C, CAC-40, DAX, FTSE-100 and MIB-30) and eight well 

known stocks listed on Bucharest Stock Exchange (IMP, OLT, SIF 1, SIF 2, SIF 3, SIF 4, 

SIF 5 and TLV). The model comparison was made for this time with a more recent 

proposed tool, precisely Deviance Information Criterion (DIC). 

The model estimates are presented in table 6. First it ca be noticed that for the 

exchange rates data and for the foreign indices, both models predict a high persistence 

parameter (0.9833 (asv.hs) and 0.9767 (asv.jpr) for EUR/RON ,0.99 (both models) for 

USD/RON; 0.9871 (asv.hs) and 0.9904 (asv.jpr) for CAC-40; 0.9861 (asv.hs) and 09903 

(asv.jpr) for DAX, 0.9848 (asv.hs) and 0.9874 (asv.jpr) for FTSE-100, 0.98 (both 

models) for the MIB-30). This is not also the case for the Romanian stock market data, 

where the persistence is relatively low (0.8385 (asv.hs) and 0.837 (asv.jpr) for BET-C; 

0.8876 (asv.hs) and 0.8881 (asv.jpr) for IMP; 0.8498 (asv.hs) and 0.8554 (asv.jpr) for 

OLT; 0.8782 (asv.hs) and 0.8787 (asv.jpr) for SIF 1; 0.8782 (asv.hs) and 0.8766 (asv.jpr) 

for SIF 2; 0.869 (asv.hs) and 0.8674 (asv.jpr) for SIF3; 0.8841 (asv.hs) and 0.8851 

(asv.jpr) for SIF 4; 0.8092 (asv.hs) and 0.8228 (asv.jpr) for SIF 5 and finally 0.8635 

(asv.hs) and 0.8601(asv.jpr) for TLV). Moreover, the estimates for the persistence 

parameter are very close between the two models. 

 Regarding the correlation coefficient, I found no evidence for any asymmetric 

response of Romanian stocks volatility. The asymmetry parameter is statistically 

significant (and with the right sign) only for the four foreign indices (-0.82 (asv.hs) and -

0.853 (asv.jpr) for CAC-40; -0.7731 (asv.hs) and -0.8003 (asv.jpr) for DAX; -0.8233 

(asv.hs) and -0.8141 (asv.jpr) for FTSE -100; and finally -0.6911(asv.hs) and -0.7701 

(asv.jpr) for MIB-30)). 

Table 7 reports the values for the Deviance Information Criterion (DIC) for model 

comparison purpose. The results are, surprisingly, in favor of asv.jpr model.  For 7 series 

from 15 DIC for asv.jpr is lower than DIC for asv.hs suggesting that the former fits better 
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the data. For 5 series from 15 the two models have approximately the same DIC, and only 

for 3 series asv.hs model is empirically superior.  

 

Yu (2004.b) generalized the news impact curve developed for ARCH-type models 

by Engle and Ng (1993) as discussed above, to incorporate also the SV models. 

Therefore, he propose to fix information dated at time t or earlier at a constant, evaluate 

lagged ht+1 at the long run mean of ht (noted as h), and then define the NIC to be the 

relation between E(ht+1) and ut. To maintain the notation from (15), the proposed NIC can 

be written as: 

G(ut) = E(ht+1| ut , ht = h, ht-1 = h, …)                                        (22) 

It can be observed from relation (22), that instead of examining the relationship between 

future volatility and return shocks, Yu considered the relationship between the expected 

future volatility and return shocks. The ARGH-type models having a deterministic 

conditional volatility function, the expectation of σt+1
2 is the same as σt+1

2 and NIC 

proposed by Engle and Ng (1993) are a special case of the more general NIC proposed by 

Yu (2004 b). 

 From (20) and (22) one can infer that the general NIC for Harvey and Shephard 

model (asv.hs model) has the form: 

( ) tt uhuG ⋅⋅+−⋅+= ηρμϕμ )(                                                         (23) 

This is a linear function in ut with a slope of ρη. The parameter η represents the standard 

deviation of the log-volatility so it is always positive, which imply that the monotonicity 

of the NIC is determined by the sign of ρ. The leverage effect is predicted by the asv.hs 

model if ρ < 0 (which is typically the case in practice).  

Yu (2004.b) proposed also a general asymmetric model that includes the asv.hs model as 

well an ARCH term: 

⎪⎩

⎪
⎨
⎧

⋅−⋅+⋅⋅+⋅+−⋅+=

⋅=⋅=

+ ttttt

ttttt

wuyhh

uhuy
2

1 1)(

)2/exp(

ρηηρψμϕμ

σ
                      (24) 

In addition to model (23) the new general model (24) (denoted hereafter as g.asv model) 

incorporates the absolute value of returns as in the EGARCH model. It is assumed in (24) 

that wt is iid N(0,1) and corr ( ut , wt ) = 0. Precisely, it can be observed that this general 

model includes the following specifications: 
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 the asv.hs model, when ψ = 0; 

 an asymmetric ARCH model, when ρ = +/- 1; 

 a symmetric ARCH model (but not the standard one), when η = 0; 

 the basic SV model with an ARCH term, when ρ = 0; 

 the basic SV model when ρ = 0 and ψ = 0. 

It must be noted that none of the previous SV models discussed in this paper 

include any ARCH terms. The NIC for this model is: 

( ) ( )
( )⎩

⎨
⎧

<⋅⋅−⋅+−⋅+
≥⋅⋅+⋅+−⋅+

=
0)(
0)(

tt

tt
t uifuh

uifuh
uG

σψηρμϕμ
σψηρμϕμ

                              (25) 

The NIC is asymmetric for ρη different from zero. If ρ < 0 and ψσ > -ρη, the NIC is 

asymmetrically V-shaped and if ρ < ψσ < -ρη, the NIC is monotonically decreasing.  

The g.asv model is highly related with the asymmetric SV model proposed by 

Asai and McAleer (2004) which is also an extension of the model estimated by Harvey 

and Shephard (1996). The conditional log-volatility is given by the following stochastic 

relation: 

( ) ttttt wuyIhh ⋅−⋅+⋅⋅+<⋅+−⋅+=+
2

1 10)( ρηηργμϕμ                      (26) 

It is not difficult to observe from (26) that Asai and McAleer’s model resemble 

the GJR specification, by introducing the indicator function (I(yt < 0)). 

Estimating the g.asv model, one can determine which of the four incorporated 

models is confirmed by the data. The estimates for the g.asv model are reported in table 

8. The time series used to estimate this model are: USD/RON, EUR/RON, BET-C, 

FTSE-100, MIB-30, SIF 1, SIF 2, SIF 5 and OLT.  None of the nine series support the 

symmetric or the asymmetric ARCH specification, i.e. none of the series involved here 

have the parameter ρ very close to one or the parameter η equal to 0. This could be an 

evidence for the superiority of the SV specification with latent volatility over ARCH 

specification with deterministic volatility. BET-C, SIF 1 and OLT support the basic SV 

model; SIF 2, SIF 5, and USD/RON support the basic SV model with an ARCH term, 

and FTSE-100 and EUR/RON support the asv.hs model. For the Italian index (MIB-30) 

all parameters are statistically significant different from zero. 
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7. Conclusions 

 

This dissertation paper, analyze the ability of the discrete stochastic volatility 

models to capture four stylized facts: leptokurtic distribution of the returns, slowly 

decaying autocorrelation function, Taylor effect and asymmetric response of volatility to 

return shocks.  

The first two above mentioned stylized facts are discussed together because they 

are related, i.e. there can be derived a theoretical relation between autocorrelation and 

kurtosis. Comparing the theoretical autocorrelation – kurtosis relation with the empirical 

one, it was observed that the lognormal SV model for a given autocorrelation the 

theoretical kurtosis is not enough to capture the high excess kurtosis observed 

empirically. This problem was solved by imposing a fatter – tail distribution ( here the 

Student-t distribution) for the return shocks. Therefore, the t_SV model (stochastic 

volatility model with Student distributed return shocks), captures more adequately slowly 

decaying autocorrelation function and excess kurtosis simultaneously, for empirically 

relevant values for the persistence parameter. 

The ability of the SV models to predict Taylor effect is also analyzed for 

lognormal SV model and for t_SV model as well. Although, both models can predict 

Taylor effect, it seems that the t_SV model overestimates the difference between 

autocorrelation of the absolute returns and the autocorrelation of the squared returns. 

In the literature there are some SV models that incorporate the asymmetric 

response of volatility to return shocks. In this dissertation, were discussed only two 

specifications, that is the Harvey and Shephard (1996) model and Jacquier, Polson and 

Rossi (2004) model. In the first model the asymmetric volatility is predicted by a 

negative correlation between volatility shocks and contemporaneous returns shocks, 

which differs from the second model where the it is assumed an inter-temporal 

correlation between volatility shocks an lagged return shocks. Although, from a 

theoretical perspective the model of Jacquier, Polson and Rossi (2004) has some 

drawbacks (i.e. it can not predict the asymmetry for all possible values of the 

parameters), from the empirical point of view, this model seems to fit the data better  then 

the Harvey and Shephard (1996) model.  
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Estimating a general stochastic volatility model (proposed by Yu (2004)) which 

incorporates some ARCH terms, it was found that the stochastic specification for the 

volatility is more appropriate. Actually, it was found no evidence to support the ARCH 

models specification.    
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Appendix 

Figure 1. Autocorrelation function for squared returns (red line) and  
absolute returns (blue line) 
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Figure 2.  Theoretical ACF(t,φ) for the basic SV model 

 
 

 

Figure 3. Theoretical ACF(1) – kurtosis relation  

 

       a).  for the lognormal SV model                          b).  for t_SV model 
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Figure 4. Empirical, theoretical lognormal and t_SV model ACFs 

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

Au
to

co
rr

el
at

io
n

Sample Autocorrelation Function (ACF) for CHF/RON

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

Au
to

co
rr

el
at

io
n

Sample Autocorrelation Function (ACF) for EUR/RON

 

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

Au
to

co
rr

el
at

io
n

Sample Autocorrelation Function (ACF) for GBP/RON

 
0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

Au
to

co
rr

el
at

io
n

Sample Autocorrelation Function (ACF) for JPY/RON

 

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

Au
to

co
rr

el
at

io
n

Sample Autocorrelat ion Function (ACF) for NOK/RON

 
0 10 20 30 40 50

-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

Au
to

co
rr

el
at

io
n

Sample Autocorrelation Function (ACF) for SEK/RON

 

0 10 20 30 40 50
-0.2

0

0.2

0.4

0.6

0.8

Lag

Sa
m

pl
e 

Au
to

co
rr

el
at

io
n

Sample Autocorrelation Function (ACF) for USD/RON

 



 42

Figure 5.  acf(θ, φ, 0.15, ∞, 1)                             Figure 6.  acf(θ, 0.98, η, ∞, 1) 

 

       
 

Figure 7. Combinations between φ and η consistent with Taylor effect for the 

lognormal SV model 

 

a. Theoretical combinations between            b. Theoretical and empirical combinations 

                            φ and η                                                      between φ and η 
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Figure 8. Theoretical and empirical combinations between φ and η consistent with 

Taylor effect for the t_ SV model 

 

a. JPY, SEK (ν =15)                                                 b. CHF, EUR, GBP, MIB-30 (ν =16) 

              
 

c. USD, BET-C, NOK (ν =20)                                  d. CAC-40, DAX, FTSE-100 (ν =25)   
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 Table 1. Data summary statistics 
 

a. exchange rates series 
 

 CHF/RON EUR/RON GBP/RON JPY/RON NOK/RON SEK/RON USD/RON 
 Mean  0.000274  0.000290  0.000250  5.76E-05  0.000291  0.000247  0.000149 
 Median  0.000000 -9.35E-05  0.000240 -0.000228  0.000000  0.000000  0.000636 
 Maximum  0.035600  0.033856  0.034360  0.033269  0.037442  0.043314  0.032902 
 Minimum -0.050280 -0.051064 -0.048380 -0.050789 -0.041556 -0.049305 -0.049684 
 Std. Dev.  0.006022  0.005741  0.005398  0.006596  0.006069  0.006130  0.005253 
 Skewness  0.206333  0.241668 -0.063077  0.073039  0.078485  0.259145 -0.317956 
 Kurtosis  8.007229  9.164532  8.523430  5.949496  6.203464  8.779745  10.71887 
 ACF(1) 0.132 0.137 0.151 0.095 0.188 0.155 0.174 
 Jarque-Bera  1987.858  3011.011  2403.780  686.7681  810.0873  2651.833  4723.850 
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000  0.000000 

 
 

b. indices series 
 

 BET-C CAC-40 DAX FTSE-100 MIB-30 
 Mean  0.001332  0.000106  0.000164  3.75E-05  9.95E-05 
 Median  0.000872  0.000195  0.000552  0.000167  0.000323 
 Maximum  0.111222  0.072533  0.078452  0.060815  0.080837 
 Minimum -0.121724 -0.073907 -0.064358 -0.054355 -0.077874 
 Std. Dev.  0.013377  0.014140  0.015869  0.011142  0.012293 
 Skewness -0.390028  0.032458  0.077256 -0.071905 -0.130834 
 Kurtosis  13.02025  6.073581  5.741223  6.172357  6.930179 
 ACF(1) 0.37 0.195 0.251 0.163 0.168 
 Jarque-Bera  7841.211  733.6428  585.1510  782.8117  1204.334 
 Probability  0.000000  0.000000  0.000000  0.000000  0.000000 
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Tabel 2. Parameter estimates for the lognormal SV model 

a. exchange rates series 

time 
series node  mean  sd 2.50%  median 97.50% 

mu -10.41 0.2225 -10.81 -10.43 -9.963 
phi 0.9803 0.006725 0.9622 0.9809 0.9955 CHF/RON 
eta 0.1661 0.0206 0.1322 0.1671 0.2063 
mu -10.73 0.2794 -11.24 -10.76 -10.15 
phi 0.9797 0.006948 0.9588 0.9801 1 EUR/RON 
eta 0.2332 0.0317 0.1813 0.232 0.2946 
mu -10.64 0.09908 -10.84 -10.64 -10.46 
phi 0.9446 0.01958 0.9026 0.9471 0.9755 GBP/RON 
eta 0.1891 0.03171 0.1421 0.1872 0.2342 
mu -10.2 0.08811 -10.37 -10.2 -10.03 
phi 0.9461 0.01422 0.9145 0.9473 0.9716 JPY/RON 
1/eta 32.81 10.12 18.8 30.36 55.22 
mu -10.37 0.0856 -10.53 -10.37 -10.21 
phi 0.9362 0.019 0.8983 0.9404 0.9665 NOK/RON
eta 0.2021 0.03655 0.1555 0.1915 0.29 
mu -10.48 0.1588 -10.79 -10.49 -10.17 
phi 0.9673 0.009773 0.9448 0.9689 0.9872 SEK/RON 
eta 0.2063 0.03153 0.1597 0.2013 0.2709 
mu -12.83 0.4875 -13.77 -12.83 -11.89 
phi 0.9973 0.001652 0.9881 0.9976 1.007 USD/RON 
eta 0.1401 0.01364 0.1148 0.1392 0.1688 

 

b. indices series 

time 
series node  mean  sd 2.50%  median 97.50% 

mu -9.265 0.1031 -9.459 -9.267 -9.059 
phi 0.8434 0.02686 0.788 0.8446 0.8938 BET-C 
eta 0.6121 0.06024 0.4995 0.6093 0.7251 
mu -8.255 0.3249 -8.83 -8.274 -7.579 
phi 0.9943 0.002916 0.9854 0.9948 1.003 CAC-40 
eta 0.1131 0.01105 0.0934 0.1127 0.1353 
mu -7.942 0.3818 -8.537 -7.961 -7.183 
phi 0.995 0.002913 0.9834 0.9954 1.006 DAX 
eta 0.114 0.01467 0.08455 0.1142 0.1438 
mu -8.995 0.3567 -9.562 -9.043 -8.172 
phi 0.9911 0.004223 0.976 0.9919 1.003 FTSE-100 
eta 0.1338 0.01556 0.1088 0.1317 0.1656 
mu -8.356 0.4051 -9.052 -8.39 -7.546 
phi 0.9939 0.003504 0.982 0.995 1.005 MIB-30 
eta 0.1302 0.01455 0.1042 0.1276 0.1598 
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Tabel 3. Parameter estimates for the t_SV model 

 

a. exchange rates series 

time 
series node  mean  sd 2.50% 

 
median 97.50% 

nu 15.94 4.004 9.834 15.45 25.01 
mu -10.49 0.2601 -10.94 -10.52 -10.01 
phi 0.9859 0.005361 0.9708 0.9868 1.001 

CHF/RON 

1/eta 55.07 11.73 34.56 56.46 76.52 
nu 16.13 4.28 9.179 15.73 25.89 
mu -10.78 0.3229 -11.35 -10.8 -10.11 
phi 0.9838 0.005598 0.9683 0.9844 0.9971 

EUR/RON 

eta 0.2062 0.02408 0.1649 0.2062 0.2501 
nu 16.13 4.462 9.529 15.62 25.88 
mu -10.73 0.1315 -10.98 -10.73 -10.47 
phi 0.9725 0.008668 0.9532 0.9721 0.9889 

GBP/RON 

1/eta 79.64 17.99 49.64 80.19 119 
nu 14.86 4.384 8.782 14.14 25.48 
mu -10.33 0.1049 -10.52 -10.33 -10.12 
phi 0.9593 0.01339 0.9282 0.9608 0.9814 

JPY/RON 

1/eta 52.45 17.28 26.29 53.52 92.84 
nu 18.1 4.775 11.83 16.97 30.37 
mu -10.44 0.103 -10.64 -10.44 -10.24 
phi 0.9625 0.01437 0.9289 0.9657 0.9847 

NOK/RON 

eta 0.137 0.02686 0.09813 0.1349 0.1907 
nu 13.85 3.832 8.54 13.08 23.44 
mu -10.59 0.2263 -10.98 -10.6 -10.12 
phi 0.9829 0.007135 0.9642 0.983 0.998 

SEK/RON 

eta 0.1431 0.02357 0.1062 0.1397 0.1865 
nu 20.47 5.312 12.6 19.64 30.93 
mu -12.87 0.6637 -14.27 -12.8 -11.85 
phi 0.9974 0.001677 0.9863 0.9973 1.008 

USD/RON 

eta 0.1316 0.01636 0.1068 0.1343 0.1589 

 
b. indices series 

time 
series node  mean  sd 2.50% 

 
median 97.50% 

nu 19.87 5.135 12.26 19.06 31.11 
mu -9.335 0.1075 -9.54 -9.336 -9.122 
phi 0.8526 0.03048 0.7949 0.8532 0.9081 

BET-C 

eta 0.5855 0.06789 0.4563 0.5874 0.7042 
nu 25.49 5.53 16.46 25.2 37.75 
mu -8.257 0.329 -8.844 -8.282 -7.647 

CAC-40 

phi 0.9951 0.002652 0.9841 0.995 1.007 
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eta 0.1061 0.01159 0.08383 0.1049 0.1324 
nu 24.4 5.431 15.96 23.73 37.04 
mu -7.932 0.4754 -8.722 -7.969 -7.136 
phi 0.9952 0.003014 0.9844 0.996 1.007 

DAX 

eta 0.1192 0.01079 0.1006 0.118 0.1449 
nu 24.53 6.144 15.08 24.07 36.96 
mu -9.01 0.5417 -9.672 -9.159 -8.034 
phi 0.992 0.004252 0.9786 0.9933 1.004 

FTSE-100 

eta 0.1267 0.01679 0.09959 0.1239 0.1603 
nu 16.48 4.106 9.529 16.12 25.68 
mu -8.459 0.3826 -9.138 -8.478 -7.723 
phi 0.9955 0.002601 0.984 0.9962 1.006 

MIB-40 

eta 0.1136 0.01413 0.0921 0.113 0.1395 
 

Table 4. Values of θ that maximize the function acf(θ, φ, 0.15, ∞, k) 

 

eta=0.15 the order of the autocorrelation function (k) 

phi 1 5 10 25 50 75 100 

0.85 1.8 1.76 1.71 1.69 1.69 1.69 1.69 

0.9 1.74 1.68 1.64 1.6 1.59 1.59 1.59 

0.95 1.59 1.54 1.49 1.41 1.37 1.36 1.36 

0.96 1.53 1.48 1.43 1.35 1.3 1.28 1.28 

0.97 1.44 1.4 1.35 1.27 1.21 1.18 1.17 

0.98 1.31 1.27 1.23 1.15 1.08 1.04 1.02 

0.99 1.05 1.02 0.99 0.94 0.87 0.82 0.79 

 

Table 5. Values of θ that maximize the function acf(θ, φ, η, ∞, 1) 

 

k=1 Phi 

eta 0.85 0.9 0.95 0.96 0.97 0.98 0.99 

0.1 1.91 1.87 1.78 1.74 1.68 1.58 1.36 

0.15 1.80 1.74 1.59 1.53 1.44 1.31 1.05 
0.2 1.68 1.60 1.41 1.34 1.23 1.09 0.83 

0.25 1.57 1.46 1.25 1.17 1.06 0.92 0.67 

0.3 1.45 1.34 1.11 1.03 0.92 0.78 0.56 

0.4 1.24 1.11 0.88 0.80 0.71 0.58 0.40 

0.5 1.06 0.94 0.72 0.64 0.56 0.45 0.30 

0.6 0.92 0.79 0.59 0.53 0.45 0.36 0.23 
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Table 6. Estimates for the asv.hs and asv.jpr models 

 

a. exchange rate series 

time series model  node  mean  sd 2.50%  median 97.50% 
asv.hs mu -10.66 0.319 -11.24 -10.68 -9.974 
asv.jpr mu -10.79 0.2609 -11.28 -10.8 -10.25 
asv.hs phi 0.9833 0.005936 0.968 0.984 0.9976 
asv.jpr phi 0.9767 0.0071 0.9591 0.9772 0.9923 
asv.hs rho -0.1915 0.0755 -0.337 -0.1925 -0.04714
asv.jpr rho 0.1107 0.07831 -0.04612 0.1127 0.2604 
asv.hs eta 0.2279 0.02608 0.1799 0.2265 0.2821 

EUR/RON 

asv.jpr eta 0.2476 0.02759 0.1965 0.247 0.3016 
asv.hs mu -12.66 0.8066 -14.02 -12.74 -11.03 
asv.jpr mu -12.56 0.7903 -13.93 -12.65 -11.07 
asv.hs phi 0.9959 0.00362 0.9854 0.9971 1.002 
asv.jpr phi 0.9958 0.003614 0.9833 0.9972 1.006 
asv.hs rho -0.0635 0.07451 -0.23 -0.05449 0.05759 
asv.jpr rho -0.06774 0.07075 -0.2214 -0.06128 0.05428 
asv.hs eta 0.1417 0.01662 0.1131 0.1404 0.1779 

USD/RON 

asv.jpr eta 0.1411 0.01812 0.1118 0.1386 0.1779 

 

b. stocks indices 

time series model  node  mean  sd 2.50%  median 97.50% 
asv.hs mu -9.263 0.1054 -9.466 -9.264 -9.053 
asv.jpr mu -9.308 0.1046 -9.511 -9.311 -9.1 
asv.hs phi 0.8385 0.02836 0.7791 0.84 0.8902 
asv.jpr phi 0.837 0.0298 0.7756 0.8386 0.8908 
asv.hs rho -0.03611 0.04989 -0.1335 -0.03637 0.06204 
asv.jpr rho 0.06028 0.04497 -0.02819 0.06012 0.1478 
asv.hs eta 0.6283 0.0619 0.5123 0.6262 0.7525 

BET-C 

asv.jpr eta 0.6311 0.06355 0.5159 0.6292 0.755 
asv.hs mu -8.768 0.1636 -9.056 -8.781 -8.416 
asv.jpr mu -8.166 0.1994 -8.523 -8.177 -7.739 
asv.hs phi 0.9871 0.003046 0.9766 0.9872 0.9998 
asv.jpr phi 0.9904 0.002115 0.9821 0.9905 0.9982 
asv.hs rho -0.8208 0.04479 -0.8984 -0.8247 -0.731 
asv.jpr rho -0.853 0.04163 -0.9211 -0.856 -0.7619 
asv.hs eta 0.1407 0.01558 0.1092 0.14 0.1732 

CAC-40 

asv.jpr eta 0.1303 0.01101 0.1083 0.1303 0.1523 
asv.hs mu -8.51 0.1709 -8.805 -8.522 -8.13 
asv.jpr mu -7.905 0.2322 -8.308 -7.921 -7.409 
asv.hs phi 0.9861 0.003346 0.9738 0.9865 0.9978 

DAX 

asv.jpr phi 0.9903 0.002397 0.9799 0.9907 1.002 
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asv.hs rho -0.7731 0.04635 -0.8515 -0.7762 -0.6761 
asv.jpr rho -0.8003 0.04547 -0.8794 -0.8014 -0.7074 
asv.hs eta 0.146 0.01479 0.1193 0.1456 0.1764 
asv.jpr eta 0.1339 0.01448 0.108 0.1327 0.1633 
asv.hs mu -9.411 0.1419 -9.671 -9.418 -9.124 
asv.jpr mu -8.876 0.1871 -9.216 -8.885 -8.483 
asv.hs phi 0.9848 0.003042 0.9731 0.9853 0.9956 
asv.jpr phi 0.9874 0.002703 0.976 0.9874 0.9983 
asv.hs rho -0.8233 0.05061 -0.887 -0.8329 -0.7174 
asv.jpr rho -0.8141 0.04549 -0.8853 -0.8208 -0.7308 
asv.hs eta 0.1555 0.01319 0.1274 0.1549 0.1834 

FTSE-100 

asv.jpr eta 0.1503 0.01285 0.1255 0.15 0.1788 
asv.hs mu -8.975 0.2023 -9.306 -8.996 -8.529 
asv.jpr mu -8.437 0.2649 -8.87 -8.468 -7.823 
asv.hs phi 0.9839 0.004263 0.9705 0.9845 0.9961 
asv.jpr phi 0.9879 0.003249 0.9765 0.9871 0.9987 
asv.hs rho -0.6911 0.06231 -0.7964 -0.6928 -0.5615 
asv.jpr rho -0.7701 0.04636 -0.8463 -0.775 -0.6672 
asv.hs eta 0.156 0.01669 0.1244 0.1551 0.1907 

MIB-30 

asv.jpr eta 0.1493 0.01457 0.1226 0.1484 0.1783 

 

c. stocks series 

time series model  node  mean  sd 2.50%  median 97.50% 
asv.hs mu -7.318 0.1602 -7.621 -7.322 -6.991 
asv.jpr mu -7.338 0.1611 -7.639 -7.343 -7.006 
asv.hs phi 0.8876 0.02249 0.8412 0.8888 0.9294 
asv.jpr phi 0.8881 0.02362 0.8406 0.8881 0.9324 
asv.hs rho -0.01786 0.05276 -0.1228 -0.01755 0.08508 
asv.jpr rho 0.05147 0.04821 -0.04313 0.05163 0.1466 
asv.hs eta 0.6702 0.07084 0.5354 0.6686 0.809 

IMP 

asv.jpr eta 0.6722 0.07406 0.5304 0.6756 0.8105 
asv.hs mu -7.112 0.1089 -7.321 -7.113 -6.897 
asv.jpr mu -7.102 0.1101 -7.318 -7.102 -6.888 
asv.hs phi 0.8498 0.02704 0.7939 0.8509 0.899 
asv.jpr phi 0.8554 0.0246 0.8018 0.8567 0.9 
asv.hs rho 0.05232 0.05696 -0.0613 0.05318 0.1619 
asv.jpr rho 0.09397 0.0489 -0.002101 0.09375 0.1915 
asv.hs eta 0.6243 0.06384 0.512 0.6259 0.7401 

OLT 

asv.jpr eta 0.6094 0.0576 0.5049 0.606 0.7242 
asv.hs mu -7.714 0.1258 -7.956 -7.716 -7.46 
asv.jpr mu -7.736 0.1235 -7.975 -7.737 -7.491 
asv.hs phi 0.8782 0.02312 0.8301 0.8786 0.9204 
asv.jpr phi 0.8787 0.0227 0.8312 0.8802 0.9195 
asv.hs rho 0.033 0.05424 -0.07355 0.03272 0.138 
asv.jpr rho 0.08516 0.04826 -0.01003 0.08559 0.1775 
asv.hs eta 0.577 0.05679 0.4722 0.5779 0.6804 

SIF 1 

asv.jpr eta 0.5785 0.05656 0.4809 0.5755 0.6953 
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asv.hs mu -7.529 0.1172 -7.757 -7.53 -7.297 
asv.jpr mu -7.545 0.1157 -7.774 -7.545 -7.325 
asv.hs phi 0.8782 0.02231 0.8284 0.8796 0.918 
asv.jpr phi 0.8766 0.0213 0.8308 0.8784 0.9151 
asv.hs rho 0.06804 0.05472 -0.03977 0.06819 0.1724 
asv.jpr rho 0.124 0.0489 0.02982 0.124 0.2216 
asv.hs eta 0.5394 0.05068 0.4476 0.5363 0.6404 

SIF 2 

asv.jpr eta 0.5516 0.04859 0.4688 0.5476 0.6529 
asv.hs mu -7.688 0.1214 -7.922 -7.689 -7.448 
asv.jpr mu -7.717 0.1193 -7.947 -7.717 -7.479 
asv.hs phi 0.869 0.02319 0.8243 0.8702 0.9103 
asv.jpr phi 0.8674 0.02292 0.8182 0.8683 0.9088 
asv.hs rho 0.02065 0.0547 -0.08688 0.02036 0.1267 
asv.jpr rho 0.08192 0.04845 -0.01385 0.08252 0.1773 
asv.hs eta 0.5934 0.05569 0.4913 0.5888 0.6875 

SIF 3 

asv.jpr eta 0.6013 0.05533 0.5001 0.6001 0.7114 
asv.hs mu -7.604 0.1277 -7.849 -7.606 -7.348 
asv.jpr mu -7.623 0.125 -7.867 -7.624 -7.372 
asv.hs phi 0.8841 0.02168 0.8374 0.8849 0.9244 
asv.jpr phi 0.8851 0.02204 0.8393 0.8869 0.9237 
asv.hs rho 0.01443 0.0538 -0.09136 0.01559 0.1167 
asv.jpr rho 0.08004 0.04742 -0.01535 0.08091 0.1729 
asv.hs eta 0.5646 0.05639 0.4607 0.5638 0.6781 

SIF 4 

asv.jpr eta 0.5607 0.05897 0.4613 0.5568 0.6719 
asv.hs mu -7.587 0.09733 -7.776 -7.588 -7.395 
asv.jpr mu -7.578 0.1002 -7.773 -7.578 -7.376 
asv.hs phi 0.8092 0.03078 0.7444 0.811 0.8658 
asv.jpr phi 0.8228 0.02993 0.7604 0.8245 0.8776 
asv.hs rho 0.0659 0.05152 -0.03206 0.06617 0.1658 
asv.jpr rho 0.08262 0.04603 -0.007327 0.08206 0.1736 
asv.hs eta 0.6785 0.06095 0.5699 0.676 0.8011 

SIF 5 

asv.jpr eta 0.6508 0.05943 0.5435 0.6493 0.767 
asv.hs mu -8.277 0.1092 -8.49 -8.278 -8.059 
asv.jpr mu -8.315 0.1062 -8.524 -8.314 -8.103 
asv.hs phi 0.8635 0.02499 0.8088 0.8646 0.9084 
asv.jpr phi 0.8601 0.02741 0.7998 0.8623 0.9084 
asv.hs rho 0.02461 0.05584 -0.08341 0.02386 0.1363 
asv.jpr rho 0.1102 0.04946 0.01404 0.11 0.2085 
asv.hs eta 0.5508 0.05601 0.4546 0.5472 0.6666 

TLV 

asv.jpr eta 0.559 0.0606 0.453 0.5538 0.6866 

 



 51

Table 7. DIC for asv.hs and asv.jpr models 

 

a. exchange rates series 

time series  model Dbar Dhat pD DIC 
asv.hs -14481.7 -14663.5 181.792 -14299.9 EUR/RON 
asv.jpr -14451 -14603.9 152.928 -14298 
asv.hs -15329.8 -15415.4 85.596 -15244.2 USD/RON 
asv.jpr -15327.1 -15409.9 82.85 -15244.2 

 

b. stocks  indices series 

time series model Dbar Dhat pD DIC 
asv.hs -11940.3 -12265.1 324.756 -11615.6 BET-C 
asv.jpr -11948.2 -12280.1 331.899 -11616.3 
asv.hs -13455.2 -14688.4 1233.2 -12222 CAC-40 
asv.jpr -13779.1 -15075.8 1296.71 -12482.4 
asv.hs -12725.1 -13828.4 1103.34 -11621.7 DAX 
asv.jpr -12923.6 -14099.2 1175.56 -11748.1 
asv.hs -14452.2 -15662.3 1210.09 -13242.1 FTSE-100 
asv.jpr -14340.4 -15535 1194.63 -13145.7 
asv.hs -13145.3 -14041.7 896.478 -12248.8 MIB-30 
asv.jpr -13587.1 -14684.8 1097.63 -12489.5 

 

c. stocks series 

time series model Dbar Dhat pD DIC 
asv.hs -8213.76 -8545.67 331.902 -7881.86 IMP 
asv.jpr -8220.22 -8557.50 337.28 -7882.94 
asv.hs -7687.45 -8001.77 314.315 -7373.14 OLT 
asv.jpr -7686.95 -8003.86 316.91 -7370.04 
asv.hs -8799.30 -9092.44 293.139 -8506.16 SIF 1 
asv.jpr -8816.34 -9122.5 306.164 -8510.18 
asv.hs -8446.36 -8725.97 279.608 -8166.75 SIF 2 
asv.jpr -8482.6 -8786.71 304.104 -8178.50 
asv.hs -8795.04 -9093.15 298.107 -8496.93 SIF 3 
asv.jpr -8814.91 -9129.41 314.5 -8500.41 
asv.hs -8630.70 -8917.59 286.888 -8343.81 SIF 4 
asv.jpr -8641.23 -8937.65 296.424 -8344.81 
asv.hs -8564.89 -8900.30 335.407 -8229.48 SIF 5 
asv.jpr -8556.73 -8889.19 332.459 -8224.27 
asv.hs -9797.32 -10076.5 279.139 -9518.18 TLV 
asv.jpr -9829.57 -10132.7 303.103 -9526.47 
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Table 8. Estimates for the g.asv  model 

 

a. indices series 

time 
series  node  mean  sd 2.50%  median 97.50% DIC 

mu -9.042 0.4224 -9.57 -9.134 -7.93 
phi 0.8572 0.04193 0.7741 0.8579 0.9394 
psi -2.004 3.906 -9.568 -1.915 5.96 
rho -0.03994 0.05087 -0.1387 -0.04058 0.05845 

BET-C 

eta 0.6091 0.06728 0.477 0.6123 0.7362 -11620.5
mu -10.04 0.4511 -10.59 -10.17 -8.973 
phi 0.9707 0.01129 0.9478 0.9705 0.9902 
psi 2.762 2.134 -0.6063 2.7 6.965 
rho -0.8573 0.0514 -0.9308 -0.8626 -0.7584 

FTSE-100 

eta 0.1585 0.01506 0.1315 0.1574 0.1862 -13511.2
mu -7.832 0.5749 -8.9 -7.823 -6.749 
phi 0.9892 0.004134 0.9775 0.9898 0.9995 
psi -1.39 0.625 -2.53 -1.402 -0.2187 
rho -0.6862 0.06054 -0.7816 -0.6909 -0.5594 

MIB-30 

eta 0.1557 0.01875 0.1252 0.1537 0.1965 -12237 

 
b. stocks series 

time 
series  node  mean  sd 2.50% 

 
median 97.50% DIC 

mu -6.188 1.03 -7.733 -6.324 -3.923 
phi 0.9376 0.02844 0.8703 0.9441 0.975 
psi -3.678 1.582 -6.289 -3.88 0.05954 
rho 0.02811 0.05632 -0.08099 0.0283 0.1376 

SIF 1 

eta 0.5191 0.05467 0.4229 0.5154 0.6346 -8533.27 
mu -4.823 1.292 -7.194 -4.806 -2.31 
phi 0.9586 0.02128 0.8986 0.965 0.9817 
psi -4.337 1.188 -6.386 -4.442 -1.549 
rho 0.07375 0.05685 -0.0362 0.07292 0.1862 

SIF 2 

eta 0.4629 0.04603 0.3856 0.4597 0.5604 -8210.13 
mu -3.232 1.448 -6.523 -3.135 -0.6454 
phi 0.9663 0.02085 0.9083 0.9717 0.9832 
psi -6.004 1.133 -8.027 -6.048 -3.833 
rho 0.05089 0.05681 -0.05907 0.05041 0.1631 

SIF 5 

eta 0.4831 0.05043 0.3995 0.4786 0.5989 -8267.79 
mu -7.32 0.2382 -7.692 -7.35 -6.773 
phi 0.8151 0.043 0.7253 0.8171 0.8934 
psi 1.719 1.666 -1.444 1.669 5.138 
rho 0.05346 0.057 -0.05856 0.05374 0.1637 

OLT 

eta 0.6401 0.061 0.5266 0.6382 0.761 -7357.86 
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c. exchange rates series 

time 
series  node  mean  sd 2.50% 

 
median 97.50% DIC 

mu -10.07 0.583 -11.11 -10.11 -8.844 
phi 0.9853 0.005621 0.971 0.9858 0.9966 
psi -2.409 1.954 -6.13 -2.424 1.607 
rho -0.183 0.0793 -0.3334 -0.1835 -0.02638 

EUR/RON 

eta 0.2322 0.02498 0.1876 0.2311 0.2823 -14309.8 
mu -12.3 0.4892 -13.35 -12.25 -11.48 
phi 0.9859 0.005951 0.9728 0.9855 0.9985 
psi 4.457 2.267 0.3141 4.372 8.825 
rho -0.1729 0.08952 -0.3394 -0.1727 -0.00407 

USD/RON 

eta 0.1421 0.01759 0.1102 0.1414 0.1769 -15244.4 

 
 
 


