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ABSTRACT 

 

 

Recent studies show that a negative shock in stock prices will generate more volatility than a 

positive shock of similar magnitude. The aim of this paper is to test the hypothesis under which 

the the conditional variance of stock returns is an asymmetric function of past information. 

This paper investigates the volatility of the Romanian Stock Market using daily observations 

from Bucharest Exchange Trading Composite® Index (BET-C) for the period from April 16, 

1998 (index launch date) through June 1, 2008 and for a subsample period. Preliminary 

analysis of the data shows significant departure from normality. Moreover, returns and squared 

residuals show a significant level of serial correlation which is related to the conditional 

heteroskedasticity due to the time varying volatility. These results suggest that ARCH and 

GARCH models can provide good approximation for capturing the characteristics of BET-C. 

The empirical analysis supports the hypothesis of asymmetric volatility; hence, good and bad 

news of the same magnitude have different impacts on the volatility level. In order to assess 

asymmetric volatility we use autoregressive conditional heteroskedasticity specifications 

known as TARCH and EGARCH. Our results show that the conditional variance is an 

asymmetric function of past innovations raising proportionately more during market declines, a 

phenomenon known as the leverage effect. 
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I. INTRODUCTION 

 

 

Two of the most common empirical findings in financial literature are that the distributions of 

high-frequency asset returns display tails heavier than those of normal distribution and that the 

squared returns are highly serially correlated. Furthermore, many empirical results indicate that 

the stock index return presented asymmetric volatility. The findings of Schwert (1990), Nelson 

(1991), Campbell and Hentschel (1992), Rabemananjara and Zakoian (1993), Engle and Ng 

(1993), Hentschel (1995), Bekaert and Wu (2000), Wu (2001), and Blair, Poon and Taylor 

(2002) provided the evidence. 

The purpose of my paper is to test whether volatility on the Romanian Stock Market is also 

asymmetric, in the sense that negative shocks on returns increase the next period‟s conditional 

volatility more than positive shocks of equal magnitude. 

In order to assess this stylized fact of financial market volatility, I have chosen the series of 

returns for the Bucharest Exchange Trading Composite Index (BET-C) for the period from 

April 16, 1998 (index launch date) through June 1, 2008 and a subsample period from 

November 1, 2004 through June 1, 2008. BET-C is the composite index of BVB market. It is a 

market capitalization weighted index. BET-C reflects the price movement of all the companies 

listed on the BVB regulated market, Ist and Iind Category, excepting the SIFs (Financial 

Investment Companies generated from the romanian privatisation process). The BET-C index 

is the most comprising index on the Romanian stock market, taking into account the stock 

price evolution of 55 listed companies
1
. 

Using the BET-C Index return series, in section IV, I compare the GARCH (1, 1) model with 

three other volatility models that allow for asymmetry in the impact of news on volatility.  

In addition, there is evidence that individual stock also exhibits asymmetric volatility. Black 

(1976) and Christie (1982) were among the first to document and explain a negative 

relationship between current individual stock return and future volatility in the US equity 

markets. The leverage effect is a phrase that describes the asymmetric response of volatility to 

shocks of differing signs. Black (1976) showed that if the price on day t fell then the volatility 

on day t + 1 would, on average, be higher than if the price rose by the same amount. Black's 

                                                 
1 The composition of the index as of July 2008 is available in Figure 1 in Appendix 
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explanation of this phenomenon stated that a price fall reduces the value of equity and hence 

increases the debt-to-equity ratio. This increase in leverage raises the riskiness of the firm and 

an increase in volatility is observed. Christie (1982) tested Black's explanation by looking at 

the relationship between the asymmetry in equity volatility and the debt-to-equity ratio of 

firms. 

Christie demonstrates that stock price changes and volatility are inversely related, i.e. the 

elasticity of volatility with respect to the value of equity is negative. He also finds that 

volatility is an increasing function of financial leverage suggesting that this may be the cause 

of the negative elasticity of volatility with respect to the value of equity. He found a strong 

relationship between the leverage effect and the debt-to-equity ratio, but claimed that the debt-

to-equity ratio did not fully explain the effect. 

If such asymmetries exist in individual stocks returns it is natural to expect that in a cross 

sectional analysis the size of the asymmetry will be positively related to the degree of financial 

leverage (i.e, the higher the leverage the more asymmetric the response of volatility to 

innovations). Otherwise the asymmetric impact of innovations on volatility has to be explained 

by factors other than the financial leverage. 

In Section IV of my paper, I find twelve individual stocks from the Romanian stock market 

that exhibit asymmetric volatility over the period starting June 1, 2004 to June 1 2008. For 

each of these companies I calculate four over-the-sample-period mean leverage ratios (two of 

them based on the book value of equity and the other two on the market value of equity), then 

employ the cross-section regression method of Koutmos and Saidi (1995) to determine whether 

the estimated degree of asymmetry, for each stock, is related to some measure of financial 

leverage. 

The rest of the paper is organized as follows: Section II presents a selection of relevant 

literature on the issues concerning aasymmetry in conditional variance and its determinants. 

Section III introduces the concepts and models used in the empirical analysis. Section IV 

describes the data, the actual implementation of the models and discusses the results, while 

Section V concludes. 
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II. LITERATURE REVIEW 

 

 

Recent empirical studies of national stock-index returns have noted several empirical 

regularities. First, daily stock returns have been found to present autocorrelations. The 

existence of an AR process has been attributed to nonsynchronous trading (Scholes and 

Williams, 1977; Lo and MacKinlay, 1990), time-varying short-term expected returns (Fama 

and French, 1988; Sentana and Wadhwani, 1992), and costs of price adjustment (Amihud and 

Mendelson, 1987; Damodaran, 1993; Koutmos, 1998). 

 

Second, in multi-country analysis, cross correlations of stock returns have been reported in 

studies by Hamao et al (1989), Koutmos and Booth (1995), Kim and Rogers (1995), and 

Chiang (1998). Their findings indicate that national stock returns are significantly correlated 

and that linkages among international stock markets have grown more interdependent over 

time. Third, following the approaches by Engle (1982), Bollerslev (1986), French et al (1987), 

Schwert (1989), Pagan and Schwert (1990), Baillie and DeGennaro (1990), the cumulative 

evidence indicates that stock volatility exhibits a clustering phenomenon, i.e. large changes 

tend to be followed by large changes and small changes tend to be followed by small changes. 

In their review of this market phenomenon, Bollerslev et al (1992) report that the GARCH(1,1) 

model appears to be sufficient to describe the volatility evolution of stock-return series. 

A drawback of standard ARCH-type models is that the estimated coefficients are assumed to 

be fixed throughout the sample period and fail to take into account the asymmetrical effect 

between positive and negative shocks to stock returns. This leads to the fourth regularity - an 

asymmetrical effect is found in studying stock-return series. It has been shown that a negative 

shock to stock returns will generate greater volatility than will a positive shock of equal 

magnitude. By extending the research methods proposed by Nelson (1991), Glosten et al 

(1993), Engle and Ng (1993) and Koutmos (1997, 1998, and 1999) find significant evidence to 

support the asymmetrical hypothesis of stock-index returns.  

More recently, Bekaert and Wu (2000) and Wu (2001) highlight the leverage effect and 

volatility feedback effect in explaining asymmetrical volatility in response to news and find 

supportive evidence in Nikkei 225 stocks.  
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Note that in the specification of the asymmetrical partial-adjustment price model (Amihud and 

Mendelson, 1987; Damodaran, 1993; Koutmous, 1998), where prices incorporate negative 

returns faster than positive returns, the news variable is implicitly embedded in the 

autoregressive process of the mean equation. These models are useful and appropriate if our 

interest is to focus on examining whether news of negative returns is incorporated into current 

prices faster than news reflecting positive returns.
 
On the other hand, Bekaert and Wu‟s model 

(2000) provides a unified framework to examine asymmetrical volatility in response to news at 

the firm level and the market level. 

The ability to forecast financial market volatility is important for portfolio selection and asset 

management as well as for the pricing of primary and derivative assets. While most researchers 

agree that volatility is predictable in many asset markets, they differ on how this volatility 

predictability should be modeled. In recent years the evidence for predictability has led to a 

variety of approaches, some of which are theoretically motivated, while others are simply 

empirical suggestions. The most interesting of these approaches are the "asymmetric" or 

"leverage" volatility models, in which good news and bad news have different predictability for 

future volatility. These models are motivated by the empirical work of Black (1976), Christie 

(1982), French, Schwert, and Stambaugh (1987), Nelson (1990), and Schwert (1990). Pagan 

and Schwert (1990) provide the first systematic comparison of volatility models. This paper 

builds on their results, focusing on the asymmetric effect of news on volatility.  

The importance of a correctly specified volatility model is clear from the range of applications 

requiring estimates of conditional volatilities. In the valuation of stocks, Merton (1980) shows 

that the expected market return is related to predictable stock market volatility. French, 

Schwert, and Stambaugh (1987) and Chou (1988) also find empirical evidence for this 

relationship. Schwert and Seguin (1990) and Ng, Engle, and Rothschild (1992) show that 

individual stock return volatility is driven by market volatility, with individual stock return 

premiums affected by the predictable market volatility. In the valuation of stock options, Hull 

and White (1987) suggest that stochastic stock return volatility might be the source of some 

documented pricing biases of the Black-Scholes option-pricing formula. Furthermore, the 

research of Day and Lewis (1992) shows that implied volatility from the Black-Scholes model 

cannot capture the entire predictable part of future volatility relative to some GARCH and 
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EGARCH models. Amin and Ng (1993) show that option valuation under predictable volatility 

is different from option valuation under unpredictable volatility.  

Finally, the predictability of volatility is important in designing optimal dynamic hedging 

strategies for options and futures (Baillie and Myers (1991) and Engle). The predictability of 

volatility might also affect the results of event studies (for example, Connolly (1989))  

There is a long tradition in finance [see, e.g., Cox and Ross (1976)] that models stock return 

volatility as negatively correlated with stock returns. Influential articles by Black (1976) and 

Christie (1982) further document and attempt to explain the asymmetric volatility property of 

individual stock returns in the United States. The explanation put forward in these articles is 

based on leverage. A drop in the value of the stock (negative return) increases financial 

leverage, which makes the stock riskier and increases its volatility. Although, to many, 

"leverage effects" have become synonymous with asymmetric volatility, the asymmetric nature 

of the volatility response to return shocks could simply reflect the existence of time-varying 

risk premiums [Pindyck (1984), French, Schwert, and Stambaugh, (1987), and Campbell and 

Hentschel (1992)]. If volatility is priced, an anticipated increase in volatility raises the required 

return on equity, leading to an immediate stock price decline. Hence the causality is different: 

the leverage hypothesis claims that return shocks lead to changes in condi-tional volatility, 

whereas the time-varying risk premium theory contends that return shocks are caused by 

changes in conditional volatility. Which effect is the main determinant of asymmetric volatility 

re-mains an open question. Studies focusing on the leverage hypothesis, such as Christie 

(1982) and Schwert (1989), typically conclude that it cannot account for the full volatility 

responses. Likewise, the time-varying risk premium theory enjoys only partial success. The 

volatility feedback story relies first of all on the well-documented fact that volatility is 

persistent. That is, a large realization of news, positive or negative, increases both current and 

future volatility. The second basic tenet of this theory is that there exists a positive 

intertemporal relation between expected return and conditional variance. The increased 

volatility then raises expected returns and lowers current stock prices, dampening volatility in 

the case of good news and increasing volatility in the case of bad news.  
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A survey of the existing literature on asymmetric volatility is offered by Bekaert and Wu 

(2000)
1
 : 

Study Volatility measure 
Presence of 

asymmetry 
Explanation 

Black (1976) Gross volatility Stocks, portfolios Leverage hypothesis 

Christie (1982) Gross volatility Stocks, portfolios Leverage hypothesis 

French, Schwert and 

Stambaugh (1987) 

Conditional volatility Index Time-varying risk 

premium theory 

Schwert (1990) Conditional volatility Index Leverage hypothesis 

Nelson (1991) Conditional volatility Index Unspecified 

Campbell and Hentschel 

(1992) 

Conditional volatility Index Time-varying risk 

premium theory 

Cheung and Ng (1992) Conditional volatility Stocks Unspecified 

Engle and Ng (1993) Conditional volatility Index (Japan Topix) Unspecified 

Glosten, Jagannathan and 

Runkle (1993) 

Conditional volatility Index Unspecified 

Bae and Karolyi (1994) Conditional volatility Index Unspecified 

Braun, Nelson and Sunier 

(1995) 

Conditional volatility Index and stocks Unspecified 

Duffee (1995) Gross volatility Stocks Leverage hypothesis 

Ng (1996) Conditional volatility Index Unspecified 

Bekaert and Harvey (1997) Conditional volatility Index (Emerging 

Markets) 

Unspecified 

 

In recent year, Cheung and Ng (1992), Duffee (1995), Koutmos and Saidi (1995), Kitazawa 

(2000), and Blair, Poon and Taylor (2002) have also confirmed that the volatility of individual 

stock exhibits asymmetry. In studying 30 DJIA companies, Koutmos and Saidi (1995) showed 

that all stock returns exhibit asymmetric volatility in the sense that negative innovations 

increase volatility more than positive innovations of an equal magnitude with one exception. 

                                                 
1
 This table lists a sample of studies on the relationship between returns and conditional volatility. Conditional 

volatility studies typically use GARCH models to measure volatility; “gross volatility” typically refers to the 

standard deviation of daily returns computed over the course of a month. The “unspecified” label in the 

explanation column means that asymmetry was modeled but the researchers did not specify the exact cause of the 

asymmetry.  
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On the average, a negative innovation increases volatility 2.13 times more than a positive 

innovation. Yoshttsugu Kitazawa (2000) estimated the leverage effect using the EGARCH 

model for panel data with a large number of stock issues and a small number of daily 

observations focusing on the Tokyo Stock Exchange. They indicated that the leverage effect is 

significant in the span from June 22 to 29 in 1998. Blair, Poon and Taylor (2002) estimated the 

leverage effect of the S&P100 index and all its constituent stocks from an extension of the 

asymmetric volatility of GJR model. They indicated that the index and the majority of stocks 

have a greater volatility response to negative returns than to positive returns and the asymmetry 

is high for the index than for most stocks. 

 

III. METHODOLOGY 

 

1. Models of Predictable Volatility (the GARCH  model, the EGARCH model and the 

TGARCH model) 

The first part of my analysis relies on the GARCH model developed by Bollerslev (1986), the 

Exponential GARCH model introduced by Nelson(1991) and the GJR Threshold GARCH 

model introduced by Glosten, Jagannathan, and Runkle (1993). 

Following Engle and Ng(1993), I also fit to my series of returns a partially non-parametric 

ARCH model.  

Let Yt be the rate of return of a particular stock or the market portfolio from time t - 1 to time t.  

Also, let Ft- 1 be the past information set containing the realized values of all relevant variables 

up to time t - 1. Since investors know the information in Ft-1 when they make their investment 

decision at time t - 1, the relevant expected return and volatility to the investors are the 

conditional expected value of Yt, given Ft-1 , and the conditional variance of Yt, given Ft-1. We 

denote these by mt and ht respectively.  

That is,                                

                                                 mt = E(yt / Ft - 1) and 

                                                ht = Var(yt / Ft - 1).  

Given these definitions, the unexpected return at time t (the shock) is εt = yt-mt.  

Engle (1982) suggests that the conditional variance ht can be modeled as a function of the 

lagged εt 's. That is, the predictable volatility is dependent on past news. The most detailed 
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model he develops is the pth order autoregressive conditional heteroskedasticity model, the 

ARCH(p):  

p

i

itith
1

2
 

where α1,..., αp, and ω to are constant parameters.  

The effect of a return shock i periods ago (i < p) on current volatility is governed by the 

parameter αi. We would expect that αi < αj for i > j. That is, the older the shock, the less effect 

it has on current volatility. In an ARCH(p) model, an old shock which arrived at the market 

more than p periods ago has no effect at all on current volatility.  

Bollerslev (1986) generalizes the ARCH(p) model to the GARCH(p, q) model, such that : 

 

q

i

iti

p

i

itit hh
11

2
 

where α1,..., αp, β1,......, βp, and ω to are constant parameters.  

 

The GARCH model is an infinite order ARCH model. Empirically, the family of GARCH 

models has been very successful. Of these models, the GARCH (1, 1) is preferred in most 

cases (survey by Bollerslev et al. (1992)).  

The (1,1) in GARCH (1,1) indicates that ht is based on the most recent observations of εt
2
, and 

the most recent estimate of the variance rate. The more general GARCH (p,q) model calculates 

ht from the most recent p observations on εt
2 

and the most recent q estimates of the variance 

rate. In the GARCH(1, 1) model, the effect of a return shock on current volatility declines 

geometrically over time. Setting ω = γ*VL, where VL is the long-run average variance rate and , 

γ is the weight we apply to it, the GARCH(1,1) model can be written as: 

 

                                              ht = γ* VL +  α* εt -1
2 
+ β*ht-1,  

 

Once ω, α and β have been estimated, we can calculate γ as (1- α – β).  The long-term variance 

VL can then be calculated as ω/ γ. For a stable GARCH(1,1) process, we require α + β < 1. 

Otherwise the weight applied to the long-term variance is negative. The ARCH (or α ) effect 
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indicates the short run persistence of shocks, while the GARCH (or β ) effect indicates the 

contribution of shocks to long run persistence (namely, α + β ). 

Substituting γ = 1 – α – β in the above equation, the variance rate estimated at the end of day n-

1 for day n is : 

1

2

1)1( ttLt hVh  

)()( 1

2

1 LtLtLt VhVVh  

On day (n+k) in the future, we have : 

)()( 1

2

1 LktLktLkt VhVVh  

The expected value of εn+k-1
2
 is hn+k-1. Hence : 

)()()( 1 LktLkt VhEVhE  

, where E denotes the expected value. Using this equation repeatedly yields : 

)()()( Lt

k

Lkt VhVhE  

This equation forecasts the volatility on day (n+k) using the information available at the end of 

day n-1. When α + β <1, the final term in the equation becomes progressively smaller as k 

increases. Our forecast of the future variance rate tends towards VL as we look further and 

further ahead. This analysis emphasizes the point that we must have α + β <1 for a stable 

GARCH(1,1) process. When α + β >1, the weight given to the long-term variance is negative 

and the process is “mean fleeing” rather than “mean reverting”. 

Despite the apparent success of these simple parameterizations, the ARCH and GARCH 

models cannot capture some important features of the data. The most interesting feature not 

addressed by these models is the leverage or asymmetric effect.  

A return ri,t displays asymmetric volatility if : 

var [ri, t+1 / It, ε i, t < 0] - ζ
2

i,t > var [ri, t+1 / It, ε i, t >0] - ζ
2

i,t 

, where ri,t   is the return of the stock of firm i,  and : 

ri, t + 1 = E(ri, t + 1 / It) + εi, t +1 

ζ
2

i,t+1   = var(ri, t+1 / It) 

In other words, negative unanticipated returns result in an upward revision of the conditional 

volatility, whereas positive unanticipated returns result in a smaller upward or even a 

downward revision of the conditional volatility. 
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This effect suggests that a symmetry constraint on the conditional variance function in past εt 's 

is inappropriate.  

Many volatility models have been proposed to incorporate the leverage effect. The two most 

widely used are the EGARCH (Nelson (1991)) and the GJR (Glosten, Jagannathan and Runkle 

(1993)) models. The conditional variances in both models depend upon both the signs and 

magnitudes of the returns, and hence are asymmetric in their response to positive and negative 

returns. 

Nelson proposed the EGARCH model to overcome some weaknesses of the GARCH mode in 

handling financial time series. The EGARCH model, unlike the linear GARCH models, uses 

logged conditional variance to relax the positiveness constraint of model coefficients and easily 

interprets the persistence of shocks as conditional variance. Therefore, it has been extensively 

cited in literature as the asymmetric GARCH model. 

Exponential GARCH (p,q) : 

r

k kt

kt
k

q

j

p

i it

it

i

jtjt
hh

hh
11 1

)log()log(         

, where r is the asymmetric level. 

Exponential GARCH (1,1) : 

/2)log()log(
1

1

1

1
1

t

t

t

t
tt

hh
hh  

, where ω, β, γ, and α are constant parameters.  

Nelson's original specification for the log conditional variance is a restricted version of: 

 

q

j

p

i

r

k kt

kt
k

it

it

it

it
ijtjt

hh
E

h
hh

1 1 1

)log()log(  

 

, which differs slightly from the specification above.  Estimating this model will yield identical 

estimates except for the intercept term ω , which will differ in a manner that depends upon the 

distributional assumption and the asymmetry order p . For example, in a p =1 model with a 

normal distribution, the difference will be α1* /2 . 
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The EGARCH (1,1) model is asymmetric because the level of εt - 1/ 1th  is included with a 

coefficient γ. Since this coefficient is typically negative, positive return shocks generate less 

volatility then negative return shocks, all else being equal.  

The EGARCH model differs from the standard GARCH model in three main respects:  

1. The EGARCH model allows good news and bad news to have a different impact on 

volatility, while the standard GARCH model does not  

2. The EGARCH model allows big news to have a greater impact on volatility than the 

standard GARCH model.  

3. The EGARCH model imposes no constraints on the parameters to ensure non-negativity of 

the conditional variance. 

 

GJR (Threshold) GARCH : 

 

2

11

2

11 ttttt Shh , where 1tS  if 0t , 0tS  otherwise 

The variable S
-
t−1 is a dummy variable equal to one if εt−1 > 0, and equal to zero otherwise, so 

in this case there are two types of shocks. There is a squared return and there is a variable that 

is the squared return when returns are negative, and zero otherwise. On average, this is half as 

big as the variance, so it must be doubled implying that the weights are half as big.  

In this model, good news, εt−1 > 0, and bad news , εt−1 < 0, have different effects on the 

conditional variance; good news has an impact of α, while bad news has an impact of α + γ . If 

γ > 0, bad news increases volatility, and we say that there is a leverage effect. If , γ  0, the 

news impact is asymmetric. 

The ease of interpretation and application has also made the GJR(p,q) model very popular 

among financial practitioners. The GARCH model is a special case of the TARCH model 

where the threshold term is set to zero. 

A comparison between the GARCH(1, 1) model and the EGARCH(1, 1) suggests an 

interesting metric by which to analyze the effect of news on conditional heteroskedasticity. 

Holding constant the information dated t – 2 and earlier, we can examine the implied relation 

between εt -1 and ht. Engle calls this curve, with all lagged conditional variances evaluated at 

the level of the unconditional variance of the stock return, the news impact curve because it 
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relates past return shocks to current volatility. This curve measures how new information is 

incorporated into volatility estimates. In the GARCH model, this curve is a quadratic function 

centered on εt -1 = 0. That is, positive and negative return shocks of the same magnitude 

produce the same amount of volatility. Also, larger return shocks forecast more volatility at a 

rate proportional to the square of the size of the return shock. If a negative return shock causes 

more volatility than a positive return shock of the same size, the GARCH model underpredicts 

the amount of volatility following bad news and overpredicts the amount of volatility following 

good news. Furthermore, if large return shocks cause more volatility than a quadratic function 

allows, then the standard GARCH model underpredicts volatility after a large return shock and 

overpredicts volatility after a small return shock.  

 

For the EGARCH, it has its minimum at εt -1 = 0, and is exponentially increasing in both 

directions but with different parameters.  

The news impact curve of the GJR model of Glosten, Jagannathan, and Runkle (1990) is 

centered at εt -1 = 0, but has different slopes for its positive and negative sides.  

2. A Partially Non-Parametric ARCH Model 

 

An alternative approach to estimating the news impact curve is to implement a nonparametric 

procedure which allows the data to reveal the curve directly. Several approaches are available 

in the literature, including notably, Pagan and Schwert (1990) and Gourieroux and Monfort 

(1992). Gourieroux and Monfort essentially specify a histogram for the response of volatility to 

lags of the news which they estimate by maximum likelihood. In their most successful model 

however, they introduce a GARCH term to capture the long memory aspects.  

 

Partially Non-parametric ARCH : 

We divide the range of { εt } into m intervals with break points ηi. Let m
-
 be the number of 

intervals in the range where εt -1 is negative. Also, let m+ be the number of intervals in the 

range where εt -1 is positive, so that m = m
+  

+  m
-
.  We denote these boundaries by the numbers 

{ η-m,………, η-1, η0, η1,……………. ηm}.  These intervals need not be equal size, nor do we need 

the same number on each side of η0. For convenience and the ability to test symmetry, we 

select η0 = 0. If we define  
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                                       Pit =1, if εt > ηi 

                                            = 0, otherwise, and  

                                       Nit =1, if εt < η-i  

                                             = 0 otherwise,  

then a piecewise linear specification of the heteroskedasticity function is :  

 

m

i

m

i

ititiitititt NPhh
0 0

11111 )()(  

 

This functional form, which is really a linear spline with knots at the ηi's, is guaranteed to be 

continuous. Between 0 and η1 the slope is θ0 while between η1 and η2 it is θ0 + θ1, and so forth. 

Above ηm, the slope is the sum of all the θ 's. If the partial sums at each point are of the same 

sign, the shape of the curve is monotonic. To obtain better resolution with larger samples, we 

increase m. This is an example of the method of sieves approach to nonparametric estimation. 

A larger value of m can be interpreted as a smaller bandwidth, which will give lower bias and 

higher variance to each point on the curve. 

3. Individual Stocks Cross Sectional Regression 

 

In the second part of this paper, I investigate whether the absolute size of the asymmetry for 

each of the individual stocks in the selected 12 sample is linked to the financial leverage. I 

adopt the EGARCH (1,1) specification to test for asymmetric volatility in individual stock 

returns. Given the data for the returns Rt , estimates for the parameter vector θ = (ω , β , γ, α), 

for each stock are obtained by maximizing the log-likelihood of the returns over the sample 

period. The general specification for the mean equation is : 

Rt = α1 + β1*Rt-1 + εt 

The term β1*Rt-1 is used to account for any autocorrelation that may arise due to 

nonsynchronous trading . I also augment the mean equation with a number of AR terms in the 

cases where they appear to be significant. While some authors argue that there is no need for 

more than one AR term, we find that in some cases higher-order AR terms are also significant. 

Then, following Koutmos and Saidi (1995) I estimate the following cross section regression : 
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|γi| = a1 + a2*(D/E)i + a3*(A)i + ui                                                 for i =1,………….,n 

 

,where n is number of stocks,  |γi| is the absolute value of the degree of asymmetry discussed 

earlier, (D/E)i is some measure of financial leverage, (A)i is asset size, ui is an error term and a1, 

a2 and a3 are coefficients to be estimated. The variable (A)i is used to account for 

heteroskedasticity in ui due to firm size. A positive and statistically significant a2 coefficient 

implies that variations in the asymmetric response of volatility to shocks can be attributed to 

variations in the debt to equity ratio across firms. 

I now turn to the description of the data used and the analysis of the empirical findings. 

 

IV Empirical Data and Results 

 

1.Preliminary data analysis 

 

The empirical part of this paper deals with the daily return rates of the Bucharest Exchange 

Trading Composite Index (BET-C) for the period starting from April 16, 1998 (index launch 

date) through June 15, 2008 (2533 obs.) and a subsample period from November 1, 2004  

through June 1, 2008 (895 obs.). The data were obtained from the Bucharest Stock Exchange 

website and the databases of two brokerage companies. The series of the daily stock index has 

been adjusted for dividends and splits. 

Daily returns for the index were calculated as the percent logarithmic difference in the daily 

stock index, i.e., Rt  = 100*(ln Pt - ln Pt-1). The series of continuously compounded index 

returns obtained this way is stationary (the null of a unit root is clearly rejected) for both data 

samples, as we can see from the ADF test statistics presented in Table 1 and 2. A graphic 

representation of the two series of  data is given in Figures 1 and 2. 

My first analysis of the whole range of data available on the index since its launch date proved 

unsatisfactory in terms of detecting presence of asymmetric volatility. This proved to be 

because of the beginning period of the index.  A quick view of Figure 2 indicates that the 

period from 1998 to 2004 was atypicall from the point of view of even an emerging market. 

The index had very low fluctuations for most of this period, staying mainly in the range of 500 
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points, then rose slowly towards its launch level of 1000 points. Nevertheless, the standard 

deviation of the return series was 1.544 (see descriptive statistics Table 3), higher even than the 

standard deviation of the return series sample between 2004-2008 (which is 1.485, as we can 

see in the descriptive statistics Table 4) , period in which the index level fluctuated between a 

minimum of 2.400 points and a maximum of 7.400 points. 

Since our focus is on the conditional variance, rather than the conditional mean, I concentrate 

on the unpredictable part of the stock returns, as obtained through a procedure similar to the 

one in Engle and Ng (1993). The procedure involves an autoregressive regression which 

removes the predictable part of the return series. Engle and Ng regress their series yt of daily 

returns of the Japanese Topix Index on a constant and yt-1,…..yt-6. 

 

Autocorrelations are correlations calculated between the value of a random variable today and 

its value some days in the past. Predictability may show up as significant autocorrelations in 

returns and volatility clustering will show up as significant autocorrelations in squared or 

absolute returns.  

From studying the correlogram of the BET-C daily return series, we see that autocorrelation 

definitely exists, and there is a significant spike at lag 7. (Table 5). The autocorrelation in index 

return has been attributed to nonsynchronous trading. An explanation for this phenomenon is 

offered, for example, in Lo and McKinley (1990). Supposing that the returns to stocks i and j 

are temporally independent, but i trades less frequently than j, if news affecting the aggregate 

stock market arrives near the close of the market on one day, it is more likely that j's end-of-

day price will reflect this information than i‟s simply because i may not trade after the news 

arrives . Of course, i will respond to this information eventually but the fact that it responds 

with a lag induces spurious cross-autocorrelation between the closing prices of  i and j. As a 

result, a portfolio consisting of securities i and j will exhibit serial dependence even though the 

underlying data-generating process was assumed to be temporally independent 

So, to resume with our analysis, denoting by yt the rate of return of the BET-C index from day 

t-1 to day t,  in order to get the unpredictable part of the return series I regressed yt on a 

constant and  yt-1,…..yt-7 : 

yt = c + α1* yt-1+……………+ α7* yt-7 + εt. 
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The results from this mean adjustment regression are available in Table 6 and the correlogram 

of the residuals obtained from this regression is available in Table 7.  

From the Ljung-Box test statistic for twelfth-order serial correlation for the levels, we find no 

significant serial correlation left in the stock returns series after our adjustment procedure. The 

coefficients of skewness and kurtosis both indicate that the unpredictable stock returns, the  ε's, 

have a distribution which is skewed to the left and flat tailed. 

 

 RESID01 

 Mean -7.59E-17 

 Median  0.019033 

 Maximum  6.450684 

 Minimum -9.288250 

 Std. Dev.  1.462429 

 Skewness -0.493660 

 Kurtosis  6.814458 

 

Furthermore, the Ljung-box test statistic for twelfth-order serial correlations in the squares 

strongly suggests the presence of time-varying volatility (see Table 8). 

 

2. The  GARCH model, the EGARCH model and the TGARCH model. 

 

Using the unpredictable stock index returns series as the data series, we estimate the standard 

GARCH(1, 1) model, as well as two other parametric models which are capable of capturing 

the leverage and size effects : the Exponential-GARCH(1, 1) and the Threshold GARCH (1,1). 

In comparing five models that allow for asymmetric impacts of shocks on volatility, Engle and 

Ng(1993) find these latter two to have the best parameterisation.  

In this paper, I fit the above mentioned models model for all data series by maximizing the log-

likelihood function for the model, assuming that εt is conditionally normally distributed. The 

rationale for assuming conditional normality is predominantly ease of computation. However, 

as shown by Bollerslev and Wooldridge (1992), quasi-maximum likelihood estimators using 

conditional normality of the error terms yield consistent and asymptotically normal parameter 

estimates as long as the conditional means and variances are correctly specified, even when the 

errors are not conditionally normal. All my inference is based on robust standard errors from 
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the maximum likelihood estimation, employing the procedures described in Bollerslev and 

Wooldridge (1992). All the models are implemented using the EViews econometric software. 

First we fit the EGARCH(1,1) model to the period of daily index return observations starting 

April 16, 1998. The result, presented in Table 9, is indicative of the fact that an asymmetric 

effect is not statistically significant (the coefficient γ corresponding to the εt-1/ 1ht  term 

isn‟t statistically significant when computing with robust standard errors or asymptotically 

standard errors), so there is no need to further estimate the TGARCH model. The probable 

explanation for the result I have obtained was presented in the first part of this section, and the 

conclusion may be that a GARCH specification is better suited for this data series. The 

estimation output from a GARCH(1,1)
1
 model is : 

 

ht = 0.3592 + 0.3827 * εt-1
2
 + 0.4754 * ht-1 

 

As we can see α + β = 0.8581 < 1, so the process is stable, the weight applied to the long-run 

average variance rate γ = 0.1419 and the level of the long-run variance rate is VL = 2.5313. 

This corresponds to a volatility of 0.0159 or 1.59% per day. 

We now move on modelling the conditional volatility of the sample series of daily BET-C 

index returns, from November 1, 2004  through June 1, 2008.  

As mentioned preaviously, the model specification I use for the mean equation is : 

                                           Yt = c + Yt-1 +………….Yt-7 + εt , 

εt = ηt * ht , 

where ηt  is a sequence of normally, independently and identically distributed random variables 

with zero mean and unit variance. (ηt  ~ N(0,1)). 

The estimation output(see Table 10) from the GARCH(1,1) model is : 

 

ht = 0.3603 + 0.2945 * εt-1
2
 + 0.5597 * ht-1 

                                                 
1
 A GARCH(1,1) specification for this first series of data yielded higher log likelihood when 

compared to a GARCH(2,2) model. The (1,2) and (2,1) specifications were also estimated, but 

the results were unsatisfactory. 
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                                                                          (0.000)    (0.000)              (0.000) 

 

Again we have a stable process, α + β = 0.8581 < 1, and a long-run volatility rate of 1,57% per 

day. The estimated parameter for εt-1
2
 in this equation is lower compared to the one obtained 

when we have fit the GARCH model to the longer series of daily returns, meaning that less 

weight in the next period‟s estimation of volatility is attributed to contemporaneous shocks on 

returns, and more weight is given to the most recent estimation of conditional standard 

variance. 

The EGARCH (1,1) model and TGARCH(1,1) model are estimated with both asymptotic 

standard errors and robust standard errors.  

The estimation results in Table 11 - 14 indicate that the parameters corresponding to the         

εt-1/ 1ht   term in the EGARCH is significant and negative using both standard and robust 

standard errors. The parameter corresponding to the St-1
2
 εt-1

2  
term in the GJR is significant and 

positive using both standard and robust standard errors. All these results are consistent with the 

hypothesis that negative return shocks cause higher volatility than positive return shocks. We 

can also see that the standard GARCH(1, 1) has a lower log-likelihood than both of these 

leverage or asymmetric models. The GJR and the EGARCH yield similar log-likelihood.  

EGARCH : 

/24272.01181.0)log(8285.02229.0)log(
1

1

1

1
1

t

t

t

t
tt

hh
hh  

TGARCH : 

2

11

2

11 2286.015988.05729.03585.0 ttttt Shh  

In this latter model estimation, the asymmetric effect, γ = 0.2286 , measures the contribution of 

shocks to both short run persistence, α + 2 , and long run persistence α + β + 2 . The weights 

now computed on the long-run average, the previous forecast, the symmetric news, and the 

negative news are (0.0002, 0.5729, 0.1598, 0.1143) respectively. Since α + β + 2  < 1, the 

weight applied to the long-run variance rate is not negative and the process is stable. Clearly the 

asymmetry is important since the last term would be zero otherwise. In fact, negative returns in 

this model have more than two times the effect of positive returns on future variances. 
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The level of significance I obtain for the coefficients of the model terms governing asymmetry 

is highly significant with asymptotic standard errors (1% level of significance), and significant 

with robust standard errors (5% level of significance for the EGARCH and slightly over 5% for 

TGARCH
1
). 

Robust t-ratios are designed to be insensitive to departures from normality, especially extreme 

observations. The effects of significant spikes in volatility on asymptotic t-ratios and robust t-

ratios are dramatically different (McAleer and Ng (2002)). Each spike in volatility increases 

the asymptotic t-ratios but decreases the robust t-ratios, with the magnitudes of the shifts being 

far greater for the asymptotic t-ratios. The conclusion I draw is that there is asymmetric 

volatility in the daily BET-C return series for the last 4 years, with the note that it is probably 

partly determined by the presence of extreme observations. As we could see earlier in this 

paper, the kurtosis of the unpredictable stock returns series is quite high at 6.81 and that is 

strong evidence that the extremes are more substantial than would be expected from a normal 

random variable.  

In diagnostic checks, the Ljung-Box test statistic for 15
th

 order serial correlations in the 

squared normalized residuals is not significant for neither GARCH, EGARCH or TGARCH 

model specification. From this point of view we can say that all three models appear to have 

done a good job in explaining the data and largely removing autocorrelation. However, the 

Ljung-Box test does not have much power in detecting misspecifications related to the leverage 

or asymmetric effects. In order to compare the models from this point of view, I used 

diagnostic tests as suggested by Engle and Ng : the Sign Bias Test, the Negative Size Bias 

Test, and the Positive Size Bias Test. These tests examine whether we can predict the squared 

normalized residual by some variables observed in the past which are not included in the 

volatility model being used. If these variables can predict the squared normalized residual, then 

the variance model is misspecified. The sign bias test considers the variable St-1
-
 a dummy 

                                                 
1 Asymmetric effects in the data are captured by γ , with γ > 0 . Since theory suggests that the 

coefficient on St-1
2 εt-1

2 cannot be negative, then a one-sided test will reject the zero null hypothesis 

at the 5% level. 
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variable that takes a value of one when εt- 1
1
 is negative and zero otherwise. This test examines 

the impact of positive and negative return shocks on volatility not predicted by the model under 

consideration. The negative size bias test utilizes the variable St-1
-
* εt- 1. It focuses on the 

different effects that large and small negative return shocks have on volatility which is not 

predicted by the volatility model. The positive size bias test utilizes the variable St-1+* εt- 1 , 

where St-1+ = 1 - St-1
-
. It focuses on the different impacts that large and small positive return 

shocks may have on volatility, which are not explained by the volatility model. 

To conduct these tests jointly, we can consider the regression : 

 

ttttttt eSbSbSbav 11311211

2
 

 

where, vt  =  εt  / th  is the normalized residual, a , b1, b2, and b3 are constant coefficients and et  

is an i.i.d. error term . The joint test is the LM test for adding the three variables in the variance 

equation under the maintained specification. The test statistic is equal to T times the R-squared 

from this regression. If the volatility model being used is correct, then b1 = b2= b3 = 0 and et is 

i.i.d.  

The joint diagnostic test result for the EGARCH(1,1) model we have fitted earlier  is : 

                     vt
2
 = 1.035   -   0.084* St-1

- 
 -  0.0234* St-1

-
* εt- 1 – 0.0104* St-1

+
* εt- 1 + et 

                             (0.00)        (0.67)             (0.78)                       (0.91) 

For the TGARCH(1,1) : 

                     vt
2
 = 1.039   -   0.044* St-1

- 
 -  0.0006* St-1

-
* εt- 1 – 0.033* St-1

+
* εt- 1 + et 

                             (0.00)        (0.83)             (0.99)                       (0.72) 

For the GARCH (1,1) : 

                     vt
2
 = 1.060   -   0.059* St-1

- 
 -  0.0578* St-1

-
* εt- 1 – 0.125* St-1

+
* εt- 1 + et 

                             (0.00)        (0.66)             (0.56)                       (0.18), 

robust p-values in parantheses. 

                                                 
2
 εt-1 being in turn the series of standardized residuals from the GARCH, EGARCH and 

TGARCH models 
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These results are also available in Table 15 in Annexes together with a joint test statistic 

calculated as T*R2, which asymptotically follows a χ2 distribution with 3 degrees of freedom 

under the null hypothesis of no asymmetric effects (b1 = b2 = b3 = 0). 

Although the joint diagnostic test for all three predictable conditional volatility models indicate 

that the squared normalized residual cannot be predicted by some variables observed in the 

past which are not included in the volatility model, the generally lower probabilities (and 

especially much lower rejection probability of b3=0) in the joint test for the GARCH model 

indicates that the asymmetric volatility models are better suited to our data series and that the 

GARCH may leave room for Positive Sign Bias. 

Indeed computing the Positive Sign Bias Test alone for the GARCH(1,1) model, in the 

following form : 

vt
2
 = a + b3 * St-1

+
 * εt-1,  

yields  

 

To conclude, at the 5% level of significance, the GARCH(1,1) estimated for the daily returns 

series of the BET-C index allows the size of positive shocks to influence volatility more than 

the size of negative shocks. Such a bias is not encountered when fitting EGARCH or 

TGARCH  models to the data series. 

Summary Statistics of the Conditional Variance Estimates 

                         Mean         Std. Dev          Min.             Max.              Skewness            Kurtosis 

2

t     
1
                2.1362        5.1541         1.10e-07         86.271               7.87                    98.76 

th GARCH       2.2557        2.3068          0.7961           29.79                 5.35                    44.54 

th EGARCH     2.1782        2.0970          0.5918           36.34                 7.24                    93.33 

th TGARCH     2.2649        2.5588          0.7538           38.95                 6.47                    67.60 

 

                                                 
1 

2

t  is the squared unpredictable return obtained from the adjustment regression in Part 1 of this section. 
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As we can see the conditional variance produced by the EGARCH and TGARCH have the 

highest variation over time . The unconditional variance of the conditional variance (the 

kurtosis) is lower than the unconditional variance of  the squared residual for all three models, 

a sign that ht  is correctly specified in all cases. Nevertheless the EGARCH and TGARCH 

models seem to capture the characteristics of the squared returns time series best. 

 

3. The Partially Non-Parametric ARCH Model. 

 

I now turn to the partially non-parametric model introduced by Engle and Ng (1993) and 

presented earlier in the methodology describing section. I attempt to further explain the 

volatility process of the BET-C index for the period November 1, 2004  through June 1, 2008 

using this method. 

Non-parametric models differ from parametric models in that the model structure is not 

specified a priori but is instead determined from data. The term nonparametric is not meant to 

imply that such models completely lack parameters but that the number and nature of the 

parameters are flexible and not fixed in advance. Nonparametric methods are often referred to 

as distribution free methods as they do not rely on assumptions that the data are drawn from a 

given probability distribution. 

As I have preaviously mentioned in Section II, I will work with the unpredictable part of the 

return series, εt , as obtained through an AR(7) mean adjustment regression. The { εt } series is 

divided into m intervals with break points ηi. Since the purpose of my study is to investigate the 

impact that return shocks of different signs and magnitudes have on the next period‟s BET-C 

index‟s conditional volatility I study the order statistics of the data series in order to choose the 

ηis . Nevertheless, for purposes of symmetry and ability to compare negative with positive 

return shocks, we will choose η0 = 0
1
 and the same number of equally spaced intervals on each 

side of  η0. 

My series of unpredictable returns has its maximum at 0.0645 (that is 6.45% per day - highest 

return over the sample period) and its minimum at -0.0928 (that is -9.28%). The standard 

deviation of the series is 0.01462 or 1.462% per day. Based on these order statistics and 

                                                 
1 Also the median value of the series (0.00019) is quite close to 0, so we would roughly have the same number of 

observations on each side of η0 
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following Engle and Ng, I choose ηi = i * ζ for i = 0, 1,2,3,4 , where ζ is the 

unconditional standard deviation of εt . Hence the equation to be estimated for the partially 

nonparametric ARCH model is : 

ht = ω + β * ht-1 +  
4

0i

θi * Pit-1 * (εt-1 – i * ζ) + 
4

0i

δi * Nit-1 * (εt-1 + i * ζ) ,  

where Pit-1 is a dummy variable that takes the value of 1 if  εt-1 > i*ζ and the value of 0 

otherwise, and Nit-1 is a dummy variable that takes the value of 1 if εt-1 < -i*ζ and a value of 0 

otherwise. 

The result of the estimation is (p-values in parenthesis below coefficient estimate) : 

               ht = 0.0000355 + 0.5779 * ht-1  

                    + 0.00048 * P0t-1 * εt-1                                   - 0.00379* N0t-1 * εt-1      

                       (0.6809)                                                        (0.0068) 

                     + 0.01534 * P1t-1 * (εt-1 – ζ)                          - 0.01846* N1t-1 * (εt-1 + ζ) 

                        (0.0052)                                                         (0.0003) 

                     –  0.0307 * P2t-1 * (εt-1 – 2*ζ)                        - 0.0309* N2t-1 * (εt-1 + 2*ζ) 

                         (0.1391)                                                        (0.3136) 

                     + 0.0993 * P3t-1 * (εt-1 – 3*ζ)                          + 0.1408 * N3t-1 * (εt-1 + 3*ζ) 

                         (0.4421)                                                         (0.0653) 

                      - 0.22008 * P4t-1 * (εt-1 – 4*ζ)                        -0.1191 * N4t-1 * (εt-1 + 4*ζ) 

                         (0.6831)                                                         (0.1654) 

As we can see from this estimation output, if we compare the values of the coefficients 

corresponding to the terms Pit-1 * (εt-1 – i * ζ) to their counterparts Nit-1 * (εt-1 + i * ζ), it is 

primarily the negative shocks that impact upon volatility, as negative εt-1 „s  cause more 

volatility than positive εt-1 „s of equal absolute size. Moreover, only the coefficients for positive 

shocks greater than the unconditional standard deviation of the series, ζ, seem to inflict 

statistically significant upon volatility, whereas negative shocks of magnitudes both under and 

over ζ modify the next period‟s conditional volatility estimate. This finding suggests an 

asymmetric effect. The negative coefficients of the positive shocks for i=2,4 and the positive 

coefficient of the negative shock for i=3 are  somehow surprising, but they may be driven only 

by a few outliers, since very few values of the series of data lie beyond the 2 standard 

deviations border as shown in the histogram figure below. 
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Thus the nonparametric estimation results indicate that the true slope of the news impact curve  

as defined in methodology section of this paper is probably steeper on the negative side. 

 

3. A cross sectional analysis of the dependence between the degree of asmmetry and the 

leverage ratio 

 

For this part of my paper the purpose was to investigate the presence of asymmetric volatility 

at the level of returns of individual stocks listed on the Bucharest Stock Exchange and, if a 

sufficient large sample would be found, to then employ the cross-section regression method of 

Koutmos and Saidi (1995) to determine whether the estimated degree of asymmetry, for each 

stock, is related to some measure of financial leverage. This investigation was motivated 

furthermore by the argument of Blair, Poon and Taylor (2000). They state that if asymmetry is 

absent or a weak effect in the stocks and, furthermore, if the leverage effect cannot explain the 

asymmetry at the level of individual stocks, than leverage cannot explain the asymmetry in the 

index, because the leverage level of the index is an aggregate of the leverage levels of 

individual firms
1
. 

The dividend and splits adjusted daily returns were obtained from the BSE website and cover 

the period from June 1, 2004 to June 1 2008. 

In studying the daily stock returns for more than 30 companies that are comprised in the BET-

C index and for which daily trading volumes have been somewhat significant for the last years, 

                                                 
1 Bekaert and Wu(2000) provide comparisons of volatility asymmetry between the Nikkei 225 index and a few 

portofolios of Japanese stocks, based upon multivariate ARCH models. 
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I discovered only eleven for which estimates for the parameter γ governing asymmetry in an 

EGARCH(1,1) specification was statistically significant. Among these there are two banks 

(BRD and TLV), four industrial companies (ALR, ART, ARS,TBM), two pharmaceutical 

companies (BIO and SCD), two oil industry related companies (PEI and RRC) and one real-

estate developer, IMP. In order to enlarge the sample and to get more statistical relevance from 

a cross-sectional regression on this data, I searched outside the index for a few other companies 

that have been trading more intensively for the last years.There was just one add-on to the 

sample, namely DUCL. So the final sample is made up of twelve companies. Although the 

standard period for which I analyze the daily returns is June 1, 2004 to June 1 2008 for most of 

the companies in the sample and is made roughly of 1010 observations for each individual 

company, for three of the companies the period is extended backwards up to 2002 due to 

significant periods of time in which their price didn‟t fluctuate due to temporary trading 

interruptions and which affected significantly a possible asymmetric conditional volatility 

response to shocks. These companies are ALR and DUCL.  

As I mentioned earlier the regression takes the following form : 

|γi| = a1 + a2*(D/E)i + a3*(A)i + ui      ,    for i =1,………….,n 

,where n is number of stocks,  |γi| is the absolute value of the degree of asymmetry discussed 

earlier, (D/E)i is some measure of financial leverage, (A)i is asset size, ui is an error term and a1, 

a2 and a3 are coefficients to be estimated. 

I actually estimate four measures of financial leverage, two of them based on the book value of 

equity (sum of common stock, capital surplus, retained earnings) and the other two based on 

the market value of equity (calculated as end-of-the period‟s price of common stock multiplied 

by the end-of-the-period‟s shares of common stock outstanding, where one period represents 

six months). The length of the period was determined by the availability of biannual financial 

statements for the analyzed period. Accordingly, the leverage ratios are : 

LR1 = long term debt / book value of equity 

LR2 = (long term debt+short term debt) / book value of equity 

LR3 = long term debt /  market value of equity 

LR4 = (long term debt+short term debt) / market value of equity. 

So there are four regressions to be estimated. I approximate the size of each company by the 

logarithm of its total assets, denoted (Ai). 
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Again, since my focus is on the conditional variance, rather than the conditional mean, I 

concentrate on the unpredictable part of the stock returns series for each stock as obtained 

through an AR(p) autoregressive regression. The general specification for the mean equation is 

Rt = α1 + β1*Rt-1 + εt 

I also augment the mean equation with a number of AR terms in the cases where they appear to 

be significant. The exact AR specification is indented after the symbol of each stock in the 

following table. The parameter vectors θi = (ωi, βi , γi, αi) resulting from fitting an EGARCH 

(1,1) model to the series of unpredictable returns for each stock are as follows :  

 ω β γ α 

BRDAR(1) -0.1419 0.8128 -0.0777 0.6179 

TLVAR(3) -0.1865 0.9600 - 0.0826 0.4183 

ALRAR(1) -0.0393 0.8696 -0.1251 0.6476 

ARTAR(0) 0.1172 0.8756 -0.1599 0.0097 

TBMAR(5) -0.1008 0.9129 -0.0967 0.1905 

BIOAR(1) -0.0682 0.9819 -0.0345 0.0997 

SCDAR(1) -0.0202 0.9405 -0.1317 0.0769 

PEIAR(5) -0.0440 0.9342 -0.0936 0.1040 

RRCAR(0) 0.0123 0.9868 -0.0580 0.0182 

IMPAR(0) 0.1157 0.5236 -0.0803 0.2719 

ARSAR(6) 0.1601 0.8186 -0.0809 0.5780 

DUCLAR(3) 0.3927 0.8390 -0.0503 0.2713 

The results from the estimated regressions are as follows : 
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The cross section analysis reveals that, until now, differences in the degree of asymmetry 

cannot be attributed to differences in the degree of leverage in support of Christie‟s(1982) and 

Black‟s(1976) earlier findings. In his research for the 30 companies making up the 

DowJonesIndustrialAverage Index, Koutmos (1995) finds a significant positive relationship 

between the degree of asymmetric volatility and the degree of leverage in only one of the 

regressions, which uses a leverage measure based on the book-value of equity, with an adjusted 

R
2
 of roughly 16%. 

Since the companies in the sample I used are probably the most liquid and most frequently 

traded from the BET-C index, it can be said that the leverage effect hypothesis was tested 

under the most favorable circumstances. Further research may test if time-varying risk 

premiums can explain the asymmetry. 
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V. Concluding Remarks 

 

The asymmetric response of conditional variance to shocks of differing signs and sizes is a 

stylized fact of volatility which we meet in international well developed stock markets both at 

the market index level and at individual stock return level. Recent studies, which find evidence  

of asymmetric volatility in emerging stock markets, have also been performed.  

In studying the evolution of the most comprising index on the Romanian Stock Market, the 

BET-C Index, I find proof of asymmetric response of the conditional variance of the index to 

negative and positive shocks, for the latter part of  its history, November 1, 2004 through June 

1, 2008. I attribute this finding to significant changes in terms of stock market development 

from the preavious period of April 16, 1998 (index launch date) through to December 2003, as 

testing for asymmetric volatility for the whole historical period of the BET-C index proves 

unsatisfactory in terms of detecting asymmetry 

In testing for asymmetric volatility, I employ econometric models like the EGARCH, the 

TGARCH and a partially nonparametric ARCH model as introduced by Engle and Ng (2003). 

These models seem to capture the characteristics of the unpredictable part of the index return 

series, as obtained through an AR(7) regression, better than a symmetric GARCH(1,1) 

specification, for the November 1, 2004 through June 1, 2008 period. On average, I find that 

negative shocks raise the next period‟s conditional return variance by more than two times than 

positive shocks. Using robust t-ratios as introduced by Bollerslev and Woolridge, I find 

significance for the coefficients of the terms governing asymmetry in the EGARCH and 

TGARCH models at the 5% level of significance, whilst using asymptotic t-ratios significance 

is obtained at the 1% level. This may be proof that in part the asymmetry is determined by 

significant spikes in volatility as shown by McAleer and Ng. The nonparametric approach 

which allows the data series to unveil the news impact curve directly also shows that it is 

primarily negative shocks that raise the next period‟s conditional variance. 

In the last part of my paper I test if variations in the degree of financial leverage among a 

sample of twelve individual stocks from the BET-C index that exhibit asymmetric volatility 

can explain the variations in the degree of asymmetry. I find no proof of such a dependency so 

future research should concentrate on the time-varying risk premium theory. 
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Figure 1. BET-C Index Composition as of July 2008 
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Figure 2. BET-C Index Level and Return Evolution April 16, 1998 - June 15, 2008 
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Figure 3 - BET-C Index Level and Return Evolution November 1, 2004 - June 15, 2008 
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Table 1                
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Table 2 

 

 

Table 3 – Descriptive Statistics for the daily index return series Dec. 22 1998 – Dec. 22 2003 

 

 RD 

 Mean  0.009580 

 Median  0.009770 

 Maximum  7.641450 

 Minimum -9.873283 

 Std. Dev.  1.544575 

 Skewness -0.381960 

 Kurtosis  9.118908 
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Table 4 - Descriptive Statistics for the daily index return series Nov. 1 2004 – Jun. 1 2008 

 

 RD 

 Mean  0.082190 

 Median  0.105760 

 Maximum  6.109019 

 Minimum -10.28757 

 Std. Dev.  1.485044 

 Skewness -0.679235 

 Kurtosis  7.702725 
 

Table 5 – Correlogram of daily index returns Nov. 1 2004 – Jun. 1 2008 
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Table 6 – Mean Adjustment Regression for daily index returns Nov. 1 2004 – Jun. 1 2008 

 

Table 7 – Correlogram of residuals (unpredictable returns series)   
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Table 8 – Correlogram of squared residuals (unpredictable returns series) 
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Table 9 – EGARCH(1,1) estimation output for April 16, 1998 - June 15, 2008 

 
 

Table 10 – GARCH(1,1) estimation output for Nov. 1 2004 – Jun. 1 2008 
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Table 11 - EGARCH(1,1) estimation output (asymptotic standard errors) for Nov. 1 2004 – Jun. 1 

2008 

 
 

Table 12 - EGARCH(1,1) estimation output (robust standard errors) for Nov. 1 2004 – Jun. 1 2008 
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Table 13 – TGARCH (1,1)  estimation output (asymptotic standard errors) for Nov. 1 2004 – Jun. 1 

2008 

 
 

Table 14 – TGARCH (1,1)  estimation output (robust standard errors) for Nov. 1 2004 – Jun. 1 2008 
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Table 15  - Joint Diagnostic Test Estimation Output 
 
GARCH(1,1)…………………………………………………………………..             

 

 
 
EGARCH(1,1)………………………………………………………………… 

 

 
TARCH(1,1)…………………………………………………………………... 

 

 
 

 

 

 

 

 

 

 

 

 

 



 46 

Table 16 – Partial Nonparametric ARCH estimation output 
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