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Abstract 

 
This paper presents a methodology for measuring the risk of a portfolio composed of 

assets with heteroscedastic return series. In order to obtain good estimates for Value-at-Risk 

and Expected Shortfall, the model tries to capture as realistically as possible the data 

generating process for each return series and also the dependence structure that exists at the 

portfolio level. For this purpose, the individual return series are modelled using GARCH 

methods with semi-parametric innovations and the dependence structure is defined with the 

help of a Student t copula. The model built with these techniques is then used for the 

simulation of a portfolio return distribution that allows the estimation of the risk measures. 

This methodology is applied to a portfolio of five Romanian stocks and the accuracy of the 

risk measures is then tested using a backtesting procedure. 
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A. Introduction 
 

The financial institutions with significant amounts of trading activity proved to be very 

vulnerable to extreme market movements and, in time, the measurement of market risk 

became a primary concern for regulators and also for internal risk control. 

For example, U.S. banks and bank holding companies with an important trading 

portfolio are subject to market risk requirements. They have been required to hold capital 

against their defined market risk exposures, and, the necessary capital is a function of banks' 

own risk estimates. 

In this context, Value-at-risk (VaR) has emerged as one of the most used risk measure 

in the financial industry, mostly because of its simplicity and intuitive interpretation. Value at 

Risk measures the worst loss to be expected of a portfolio over a given time horizon at a given 

confidence level.  

Although a clear definition of VaR may be given, this measure of risk doesn’t have a 

unique method of estimation because its accuracy highly depends on the ability to identify the 

true portfolio loss distribution. Simple models of estimation, like Historical Simulation or 

Variance-Covariance failed to give accurate high confidence level estimates but are used 

often because of their low computing power demands. More complex models based on Monte 

Carlo simulation have the advantage of flexibility in modelling the loss distribution and the 

potential of being more accurate but they are difficult to compute for very complex portfolios 

with a high number of risk factors. 

Although VaR offers a simple and intuitive way of evaluating market risk, Artzner et 

al. (1997, 1998) have criticized it as a measure of risk for two main reasons. First they proved 

that VaR is not necessarily subadditive1 and secondly, this measure gives only an upper limit 

on the losses given a confidence level, but it tells nothing about the potential size of the loss if 

this upper limit is exceeded. In order to solve these two issues, they propose the use of the so-

called expected shortfall or tail conditional expectation instead of VaR. Expected shortfall 

measures the expected loss given that the loss exceeds VaR; in mathematical terms it can be 

written as E [L | L > VaR].  

                                                 
1 This property represents the benefits of diversification for a portfolio, the risk derived from the portfolio (x + y) is lower 
than (or equal to) the risk derived from the sum of the risk of the individual securities x , y  
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This paper aims at computing accurate estimates for both measures of risk by using a flexible 

modelling technique in order to build the loss distribution of the portfolio. The first stage of 

this process represents the modelling of the return series for each individual stock.  

One possible solution for this issue is based on non-parametric methods (empirical 

methods), that make no assumptions concerning the nature of the empirical distribution 

function. However, these techniques have several drawbacks, for example they cannot be used 

to estimate out of sample quantiles and the kernel based estimators usually perform poorly in 

the smoothing of tails (Silverman, 1986).  

Another possible option would be the use of parametric methods for describing the 

entire distribution of the series. Empirical evidences have shown that the distributions of 

financial returns series exhibit fat tails and sometimes negative skews (Zangari 1996). For this 

reason, the normal distribution, in spite of its popularity, it is not considered a good choice as 

its symmetry and exponentially decaying tail doesn’t seem to be supported by data. An 

alternative to the normal distribution may be considered the Student-t distribution as it 

displays polynomial decay in the tails and thus having heavier tails than the normal one. 

Hence, it may be able to capture the observed excess kurtosis although it maintains the 

hypothesis of symmetry.  

A third possibility would be the use of extreme value parametric methods for 

describing the tails of the distribution and parametric (ex. gaussian, student-t) or non-

parametric methods (ex. kernel smoothing) for the interior of the distribution. These types of 

tools permit a high flexibility because the parameters for each tail can be estimated separately 

and thus, both the excess kurtosis and the skewness of the financial series can be incorporated 

into the model.  

The methodology used in this paper takes advantage of the flexibility provided by the 

third method in order to capture the data generating process for each financial series. More 

specifically it uses extreme value theory for the estimation of the tail parameters and a kernel 

smoothing technique for building the interior of the distribution.  

Once the tools used for the construction of the returns series distribution are defined, 

the next step consists of choosing the distribution that should be analyzed. In the context of 

market risk management, the analysis of both the conditional and unconditional returns 

distribution provides useful information. However, the conditional returns distribution takes 

into account the current volatility background and forms the basis for short term risk 

evaluation, thus being the main interest of market risk management.  
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The analysis of unconditional tails provides additional information about risk and can 

be used for the estimation of the magnitude of a rare adverse event that can lead to an 

important loss. This kind of information may be used for stress testing scenarios and long –

term risk estimation. 

Because short-term risk evaluation is a primary concern of market risk management, 

the analysis of the conditional return distribution is the main focus of this paper and it is based 

on the assumption that returns follow a stationary time series process with stochastic volatility 

structure. This premise is supported by empirical evidence regarding the presence of 

stochastic volatility in the financial time series (Frey, 1997) and implies that returns are not 

necessarily independent over time.  

The specific methodology used for describing volatility dynamics is based on the 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) methods and has an 

additional advantage of providing an iid innovations series that can be directly modelled by 

using a semi-parametric distribution with tails described by extreme value theory. 

The estimation of the GARCH models for each returns series and the construction of 

the semi-parametric distributions based on the innovations represents the first stage of the 

portfolio risk evaluation. At the second stage of the process the dependence structure between 

assets is defined with the help of copula methods.  

A joint distribution function for risk factors contains a description of the marginal 

distribution for each individual factor and also a description of their dependence structure. 

The copula methods provide a mechanism for isolating the dependence structure of the 

portfolio from the individual margins of the assets and as a consequence it provides flexibility 

in modelling the portfolio as a whole. 

The composition of the portfolio has to be taken into consideration in order to choose 

a specific copula for modelling. There is empirical evidence that equity markets tend to be 

more correlated in volatile times (Longin, 2000) and this implies that the dependence 

structure should allow for high tail dependence among assets. 

Unfortunately the Gaussian dependence structure, relying only on the notion of 

correlation, doesn’t allow for extreme co-movements regardless of potentially large 

magnitudes in correlation between the underlying individual assets. 

Because of these drawbacks, the dependence structure used in this paper is based on 

the Student-t copula that relies on the notion of correlation but, in addition it is also 

characterized by a parameter (Degrees of Freedom – DoF) that controls the tail dependence 

(extreme co-movements) of marginal distributions. 
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The final stage of the risk evaluation process is based on the parameters estimated in 

the previous stages and consists of the simulation of a portfolio conditional returns 

distribution that can be used for Value-at-Risk and Expected Shortfall estimation.  

In the following sections of this paper, the methodology of the risk evaluation process 

is presented in detail and the results of each intermediary stage are displayed. The final part of 

this analysis presents an evaluation of the methodology by using a backtesting procedure in 

order to test the accuracy of the risk measures. 

 
 

B. Literature Review 
 

The modelling of financial return distributions using extreme value theory is applied 

and tested in several research papers, both from a general market risk perspective and from a 

more specific financial sector perspective. 

Danielsson and De Vries (1997b) propose a semi-parametric method for VaR 

estimation, where the unconditional return distribution is described by a combination of non-

parametric historical simulation and extreme value theory. The authors build their model 

based on the assumption that extreme returns occur infrequently, and do not appear to be 

related to a particular level of volatility or exhibit time dependence. As a consequence they 

propose the unconditional loss distribution as a base for Value-at-Risk estimation. However, 

the research conducted by McNeil and Frey (2000) in their 2000 article ‘Estimation of Tail-

Related Risk Measures for Heteroskedastic Financial Time Series: an Extreme Value 

Approach’ contradicts the assumption of Danielsson and De Vries  regarding the superiority 

of the VaR estimates obtained from the unconditional distribution and prove that a conditional 

approach against the current volatility background is better suited for VaR estimation. 

Kaj Nystrom and Jimmy Skoglund, agreed on this matter in their 2001 article on 

univariate Extreme Value Theory, GARCH and Measures of risk and believe that in order to 

measure portfolio risks it is important to correctly identify a model for the risk factors.  

Although they both combine GARCH models to estimate the current volatility and the 

Extreme Value Theory for estimating the tail of the innovation distribution of the GARCH 

model, Nystrom and Skoglund introduce the assumption of asymmetry. This concept is 

important in the context of the GARCH model as it no longer assumes that negative and 

positive shocks have the same impact on volatility.  
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One important similarity between the two articles is given by the assumption of a 

Student’s t distribution for the innovation series. Although the Student-t distribution continues 

to assume the symmetry hypothesis, it also makes it possible to capture the observed kurtosis. 

This is an important part of the model, as Nystrom ang Skoglund emphasize, because the 

distributions of the financial series are often characterized by excess kurtosis and negative 

skewness. So by using the normal distribution approximation, the risk of high quantiles is 

severely underestimated and it is for this reason that the authors chose an alternative to this 

distribution in the form of a Student-t distribution. 

After having looked at empirical evidence, Nystrom and Skoglund came to the 

conclusion that, in the case of daily risk measurement, while the normal model indeed tends to 

underestimate the lower tail and overestimate the upper one, the t distribution also has its 

flaws, in the sense that it actually tends to overestimate both tails. 

In relation to the distribution of residuals, McNeil and Frey, while agreeing in favour 

of a t distribution instead of a normal one, they believe GPD-approximation to be a much 

better model for when the tails are asymmetric. If the tails of the distribution of residuals were 

symmetric then the t distribution, they argue, is a good alternative. 

Embrechts et al (1999) in their article “Extreme Value Theory as a Risk Measurement 

Tool” pronounced themselves in favour of using a parametric estimation technique which is 

based on a limit result for the excess distribution over high threshold, a technique also 

preferred by McNeil and Frey. This is a technique which will be explained in greater detail 

later in the methodology of this paper. 
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C. Methodology 
 

I. GARCH models 
 

In a generalized autoregressive conditional heteroscedasticity (GARCH) model, 

returns are assumed to be generated by a stochastic process with time-varying volatility. This 

implies that the conditional distributions change over time in an autocorrelated way and the 

conditional variance is an autoregressive process  

The GARCH model was introduced by Bollerslev (1986) and it consists of two 

equations, the conditional mean equation that explains how the expected value of the return 

changes over time and the conditional variance equation that describes the evolution of the 

conditional variance of the unexpected return process. 

An ARMA(m,n) model describes how the return changes over time (the conditional 

mean equation): 
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In this model it is assumed that εt is independent and identically distributed with mean 

zero and variance σ2. GARCH extends the ARMA model by assuming that εt = ztσ t, where zt 

is independent and identically distributed with mean zero and unit variance and ztσt are 

stochastically independent.  

The dynamics of σt
2, the conditional variance at time t, is described by the second 

equation of GARCH model, and the representation of this equation for GARCH(p,q) is: 
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The coefficients of the GARCH model must respect some constraints in order to avoid 

the possibility that the volatility becomes negative or the process non-stationary. 
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In some equity markets it can be observed that volatility is higher if the market is 

falling than if the market is rising. The volatility response to a large negative return is often 

greater than it is to a large positive return of the same magnitude. One possible reason for this 

effect may be explained by the debt/equity ratio. When the equity price falls the debt remains 

constant in the short term, so the debt/equity ratio increases, the company becomes more 

highly leveraged and so the future of the firm becomes more uncertain. 

The asymmetry in volatility clustering caused by the leverage effect can be captured 

with asymmetric GARCH models like GJR-GARCH, introduced by Glosten, Jagannathan and 

Runkle (1993). 
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In estimating the return series with GARCH models it is commonly assumed that the 

innovation series (zt) has a standard normal distribution. This premise relies on the fact that 

the excess kurtosis of the return distribution can be partially captured by the GARCH model. 

However, it is possible that some of the excess kurtosis to remain unexplained and as a 
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consequence the assumption of normality for the innovations might not be valid (McNeil, 

2000). Bollerslev (1986) proposed the use of the t-distribution for the innovation series in 

order to better explain the excess kurtosis of the financial series. 

 

II. Extreme Value Theory (EVT) models 
 

Extreme Value Theory (EVT) was conceived as the probabilistic theory for studying 

rare events (i.e. realizations from the tails of a distribution) and it is mainly used for the 

parametric modelling of the tails of a distribution. Because EVT needs information only about 

extreme events in order to model the tails, it is not necessary to make a particular assumption 

about the shape of the entire distribution in order to use the theory. Furthermore, because EVT 

is a parametric technique it can be used to estimate out of sample quantiles by extrapolation. 

The EVT uses two approaches in order to study the extreme events. The first method 

(block maxima) is used to describe the distribution of minimum or maximum realizations of a 

process. In order to apply this method the data sample is divided into blocks and the 

maximum value from each block is considered an extreme event. These values are then 

extracted from the sample data and modelled separately by fitting them to a Generalized 

Extreme Value (GEV) distribution. 

The second method (peak-over-threshold) is used for modelling the distribution of 

exceedances over a particular threshold. In order to identify the extreme values, this method 

sets a threshold over which all realizations of the process are considered extreme. After 

setting this critical value, the observations of the sample data that are larger than the threshold 

are extracted and the exceedances are computed (exceedance = extreme value – threshold). 

Finally, in order to describe the extreme events, the exceedances are fitted to a Generalized 

Pareto Distribution. 

Both EVT methods have a parameter that is used for identifying the extreme values of 

the process that is analyzed. This parameter has to be fixed before the extreme data can be 

fitted to a certain distribution. In the case of block maxima methods this parameter is the size 

of the block and in the case of peak-over-threshold methods the value of the threshold has this 

role. 
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1. Limiting distributions of the maxima. 
 

The extreme value theory is applied in order to describe the limiting distributions of 

the sample maxima. This concept is similar to the central limit theorem that sets the normal 

distribution as the limiting distribution of sample averages. The EVT describes this family of 

limiting distributions under a single parameterization known as the generalized extreme value 

(GEV) distribution. 

If rt, t = 1, 2, . . . , n, is an uncorrelated sample of returns with the distribution function 

F(x) = P{rt ≤ x}, which has variance σ2 and mean μ 2, we denote the sample maxima3 of rt by 

M1 = r1, M2 = max(r1, r2),…, Mn = max(r1, ..., rn), where n ≥ 2. Let R denote the real line, if 

there exists a sequence cn > 0,  and some non-degenerate distribution function H such 

that  
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2 We assume for convenience that μ = 0 and σ2 = 1. 
3 The sample maxima is min(r1, ..., rn) = −max(−r1, ...,−rn). 
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The Fisher and Tippett (1928) theorem suggests that the limiting distribution of the 

maxima belongs to one of the three distributions above, regardless of the original distribution 

of the observed data. 

If we consider ξ= 1/α (von Mises, 1936) and Jenkinson, 1955), Fréchet, Weibull and 

Gumbel distributions can be expressed as a unified model with a single parameter. This 

representation is known as the generalized extreme value distribution (GEV): 
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where ξ= 1/α is a shape parameter and α is the tail index. 

The class of distributions of F(x) where the Fisher-Tippett theorem holds is quite 

large. One of the conditions (Falk, Hüssler, and Reiss 1994) is that F(x) has to be in the 

domain of attraction of the Frechet distribution (ξ > 0), which in general is true for the 

financial time series. Gnedenko (1943) shows that if the tail of F(x) decays like a power 

function (heavy-tailed distributions like Pareto, Cauchy, Student-t), then it is in the domain of 

attraction of the Fréchet distribution. 

 

2. Limiting distribution of exceedances over a threshold 
 

The limiting distribution of exceedances over a threshold is a member of the family of 

extreme value distributions. In order to estimate the parameters of this limiting distribution, 

first we have to identify the extreme values of the sample data. If we take a sample of 

observations, rt, t = 1, 2, . . . , n with a distribution function F(x) = Pr{rt ≤ x} and we set a 

high-threshold u, then the exceedances over this threshold occur when rt > u for any t in t = 1, 

2, . . . , n. An excess over u is defined by y = ri − u (peak-over-threshold method). 

For a high threshold u, the probability distribution of excess values of r over threshold 

u is defined as: 
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Given that r exceeds the threshold u, this represents the probability that the value of r 

exceeds the threshold u by at most an amount y. This conditional probability may be written 

as: 
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Because r > u and x = y + u , we can also write the following expression: 
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The theorem of Balkema and de Haan (1974) and Pickands (1975) shows that for 

sufficiently high threshold u, the distribution function of the excess may be approximated by 

the Generalized Pareto Distribution (GPD) 

The GPD can be defined as: 
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where ξ= 1/α is a shape parameter and α is the tail index, σ is the scale parameter, and υ is 

the location parameter.  

When υ = 0 and σ = 1, the representation is known as the standard GPD. The 

relationship between the limiting distribution of exceedances (standard GPD) and the limiting 

distributions of the sample maxima (GEV) is: 
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When ξ > 0, GDP takes the form of the ordinary Pareto distribution which is a heavy-

tail distribution, and as a consequence it is very useful for the analysis of financial series. If ξ 

>0, E[Xk] is infinite for k ≥ 1/ξ and in order to have a financial series with finite variance, ξ 

must be less than 0.5. When ξ = 0, the GPD corresponds to the thin-tailed distributions and for 

ξ < 0 it corresponds to finite-tailed distributions. 

For ξ > −0.5 the GPD model can be estimated with the maximum-likelihood method 

because in this case maximum-likelihood regularity conditions are fulfilled and the 

maximum-likelihood estimates are asymptotically normally distributed (Hosking and Wallis 

1987). 

One important aspect when applying EVT is the choice of the threshold value. This 

value must be set low enough in order to have a sufficient number of exceedances for 

computing accurate estimates of the tail parameters with the ML method. At the same time 

the threshold must be set high enough in order to have the GPD as the limiting distribution of 

the exceedances. Unfortunately there is no natural estimator of the threshold and thus, its 

value must be set more or less arbitrarily. In practice, instead of assuming that the tail of the 

underlying distribution begins at the threshold u, we can choose a fraction k/n of the sample 

data which is considered to be the tail of the distribution, hence implicitly choosing also the 

threshold value. 

McNeil and Frey (2000) and Nyström and Skoglund (2001) conducted Monte-Carlo 

experiments in order to evaluate the properties of the ML estimator for various distributions 

and sample sizes. The results show that the ML estimator is almost invariant to the threshold 

value if k is set between 5-13% of the sample data.  

 
 

III. Copula models 
 

The essential idea behind the copula approach is that a joint distribution can be 

decomposed into marginal distributions and a dependence structure represented by a function 

called copula. Using a copula, marginal distributions that are estimated separately can be 

combined in a joint risk distribution that preserves the original characteristics of the 

marginals. 
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A real advantage of using copula functions for the description of dependence 

structures consists in the ability to combine different types of marginal distributions 

(parametric or non-parametric) into a joint risk distribution. At the same time, the joint 

distributions created using copulas can have a dependence structure described by more than a 

simple correlation matrix (e.g. the t-copula has an additional tail dependence parameter - 

degrees of freedom). 

 

Definition (Copula) A function  is a n-dimensional copula if it satisfies the 

following properties: 

]1,0[]1,0[: →nC

a) For all iii uuCu =∈ )1...,1,,1,...,1(],1,0[  
 
b) For all  if at least one u0)...,(,]1,0[ 1 =∈ n

n
i uuCu i = 0 

 
c) C is grounded and n-increasing 
 

Sklar’s theorem: Given a d-dimensional distribution function G with continuous marginal 

cumulative distributions F1, . . . , Fd, then there exists a unique n-dimensional copula 

 such that for : ]1,0[]1,0[: →dC nx ℜ∈

))(),....,((),....,( 111 nnn xFxFCxxG =   (c1) 

Moreover, if F1, F2,…,Fn are continuous, then C is unique.  

Sklar’s Theorem is a fundamental result concerning copula functions and basically it 

states that any joint distribution can be written in terms of a copula and marginal distribution 

functions.  

If F is a univariate distribution function then the generalized inverse of F is defined as 

})(:inf{)(1 txFRxtF ≥∈=−  

for all  and using the convention ]1,0[∈t ∞=}inf{φ  
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Corollary Let G be an n-dimensional distribution function with continuous marginals F1, . . . , 

Fd and an n-dimensional copula C. Then for any , nu ]1,0[∈

))(),...,((),...,( 1
1

1
11 nnn uFuFGuuC −−=   (c2) 

Note: without the continuity assumption, this relation may not hold (Nelsen 1999).  

The copula links the quantiles of the two distributions rather than the original 

variables, so one of the key properties of a copula is that the dependence structure is 

unaffected by a monotonically increasing transformation of the variables. 

Theorem (copula invariance) Consider n continuous random variables (X1, . . . , Xn) with 

copula C. If g1, . . . , gn : R → R are strictly increasing on the range of X1, . . . , Xn, then 

(g1(X1), . . . , gn(Xn)) also have C as their copula. 

Remark By applying Sklar’s theorem and by exploiting the relation between the distribution 

and the density function, we can easily derive the multivariate copula density 

c(F1(x1),….,Fn(xn)) associated with a copula function C(F1(x1),….,Fn(xn)) 
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where we define: 
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           (c4) 
Definition (Normal-copula) Let R be a symmetric, positive definite matrix with diag(R) = 1 

and let ΦR denote the standard multivariate normal distribution with correlation matrix R4. 

Then the Multivariate Gaussian Copula is defined as: 

( ) ( ) ( ) ( )( )nRn uuuRuuuC 1
2

1
1

1
2,1 ,.....,,;,...., −−− ΦΦΦΦ=  

           (c5) 

                                                 
4  Given a random vector X = (X1,....,Xn)’ we define the standardized normal joint density function f(x) with 
corrwlation matrix R, as follows: 
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where Φ-1(u) denotes the inverse of the normal cumulative distribution function. The 

associated multinormal copula density is obtained by applying equation (c4): 
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and hence, fixing ui = Φ(xi), and denoting with ζ = (Φ-1(u1),…., Φ-1(un))’ the vector of the 

gaussian univariate inverse distribution functions, we have 

( ) ( ) ⎥⎦
⎤

⎢⎣
⎡ −′−= − ςς IR

R
Ruuuc n

1

2
121 2

1exp1;,....,,  

           (c6) 

Definition  (Student t-copula) Let R be a symmetric, positive definite matrix with diag(R) = 

1 and let TR,v denote the standard multivariate Student’s t distribution with correlation matrix 

R and v degrees of freedom 5. Then the multivariate Student’s t copula is defined as follows: 

( ) ( ) ( ) ( )( )nRn utututTRuuuC 1
2

1
1

1
.2,1 ,....,,,;,...., −−−= ννννν  

                 (c7) 

where t v
 -1(u) denotes the inverse of the Student’s t cumulative distribution function. The 

associated Student’s t copula density is obtained by applying equation (4) 

                                                 
5 Given a random vector X=(X1,....,Xn)’ with a joint standardized multinormal distribution with correlation 
matrix R and a χv

2 – distributed random variable S, independent from X, we define the standardized multivariate 
Student’s t joint density function with correlation matrix R and v degrees of freedom, as the joint distribution 

function of the random vector � EMBED Equation.3  )
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-1 -1where ζ = (t (uv 1),…., t (u ))’. v n

 

IV. Measures of risk 
 

The market risk represents the uncertainty of observing an event in the future that 

could lead to an important portfolio loss. In this context, a measure of risk is a function that 

takes as an argument the distribution that characterizes the risk factor and returns a scalar 

value that describes the potential risk implied. The key aspect of measuring risk resides in the 

ability to correctly identify the distributions of the risk factors. 

Even thought the correspondence between the distribution of the risk factor and a 

scalar could be expressed in different ways, only a part of all these potential functions are 

appropriate indicators of risk. Artzner et al. (1997, 1998) proposed the theory of coherent risk 

that captures the desired properties of a risk measure. 

If x is a set of real-valued random variables (e.g. the loss distribution of an equity) and 

the function ω is a real-valued risk measure, then ω should respect the following properties in 

order to be considered coherent: 

 

Positive homogeneity. 

This property basically states that if we increase the quantity of a certain equity in our 

portfolio we should also have a linear increase in the risk involved and not a diversification 

effect. 

ω(λx) = λω(x). 
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Subadditivity. 

This property represents the advantages of portfolio diversification. The risk of a 

portfolio (x + y) should be lower than (or equal to) the sum of the risk of the individual 

securities (x,y) 

ω(x + y) ≤ ω(x) + ω(y). 
 

Monotonicity. 

This property implies that a higher risk should be considered for a higher return. 

x ≤ y → ω(x) ≤ ω(y). 
 

Translational invariance. 

This property states that the inclusion of n units of a risk-free asset with returns r in the 

portfolio should lower the risk of the portfolio.  

ω(x + nr) = ω(x) − n. 
 

Value-at-Risk 

Value at Risk measures the worst loss to be expected of a portfolio over a given time 

horizon at a given confidence level. If we mark losses with a positive sign and gains with a 

negative sign we can estimate Value at Risk by taking the relevant quantile qα of the 

conditional distribution. 

VaR  = qα α

Although VaR offers a simple and intuitive way of evaluating risk Artzner et al. (1997, 

1998) have criticized it as a measure of risk for two main reasons. Firstly they showed that 

VaR is not necessarily subadditive and as a consequence it is not a coherent measure of risk 

and secondly, this measure gives only an upper limit on the losses given a confidence level, 

but it tells nothing about the potential size of the loss if this upper limit is exceeded. 
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Expected Shortfall 

The Expected Shortfall (ES) of an asset or a portfolio is the average loss given that 

VaR has been exceeded.  

)](|[)( αα tttt VaRrrEES >=  
where rt  is the return at time t 

Although ES is a coherent measure of risk, its accuracy also depends on the ability to 

identify the true loss distribution of the portfolio. 

 

 

D. Application  
 

I. Data 
 

The risk evaluation techniques described earlier in the paper are applied to a portfolio 

of five Romanian equities traded on the Bucharest Stock Exchange (symbols: SIF1, SIF2, 

SIF3, SIF4, SIF5). These particular stocks were selected due to their high market liquidity, a 

long time series with very few missing values and high volatility periods that can help 

evaluate the accuracy of the model with backtesting procedures. The companies are part of the 

financial sector and their primary activity is the investment in Romanian firms.  

The price series covers the period 04/01/2001 – 05/06/2007, has a total of 1564 

observations and is adjusted for corporate events. The missing data was replaced by the 

previous value of the series (or the next value if data at the beginning of the series is missing).  

The original series of prices was transformed into return series with the help of the 

logarithmic formula:  

rt = log(pt/p )� t−1
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II. Estimation and results 
 

1. GARCH models 
 

Before the estimation of the GARCH model, an analysis of the data is made in order to 

verify if the returns are autocorrelated and the volatility clustering effect is present in the 

series6. The analysis can be made both visually by studying the plot of the autocorrelation 

functions (Appendix I, Figure 1 and Figure 2) and statistically by using a Ljung-Box test for 

randomness (Appendix I, Table 1). 

From the visual analysis we can conclude that the series SIF1, SIF2 and SIF4 have a 

strong first order autocorrelation and the series SIF3 and SIF5 display a weak at most of 

autocorrelation, or even a non-existent degree of autocorelation. At the same time the visual 

analysis of the squared returns suggests that a strong autocorrelation is present in all five 

series. 

The results of the Ljung-Box test confirm the outcome of the visual analysis. For the 

return series, the null hypothesis of the test (where data is random) is rejected at a 5% 

significance level for all series except SIF3. Similar results are obtained for the squared 

returns series where the null hypothesis of the test is rejected at a 5% significance level for all 

equities. 

These results confirm the assumptions that the return series are autocorelated and have 

a time-varying volatility, thus a GARCH model should be appropriate for explaining the data 

generating process of each series. 

In order to find the best GARCH model for each series, a GJR-GARCH model is 

estimated at first and the coefficients that are not statistically significant are removed, then the 

model is estimate again in a simpler form. In addition to the verification of significance for 

each coefficient, the Akaike criterion is also used for model selection. The coefficients are 

estimated with the maximum – likelihood method and an assumption of t-distributed 

innovations. 

The initial model has the following form: 

ttt rcr εφ ++= −1  
2

11
2

1
2

1
2

−−−− +++= ttttt LSgnAGk εεσσ  

                                                 
6 The volatility clustering effect can be detected by calculating the degree of autocorrelation for the squared 
returns. 
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The results of the initial estimation (Appendix I, Table 2) show that the coefficient of 

leverage is not significant or has a wrong sign for all the five series. This implies that the 

volatility of the series is influenced in an equal way by a negative or positive return of the 

same magnitude and the assumption that a negative return has a higher impact doesn’t seem to 

be supported by the data. 

Because the results do not support the assumption of a leverage effect, this parameter 

is removed and the model becomes a GARCH(1,1). In addition, the coefficient for the AR(1) 

parameter is not significant for all the series, thus this parameter is also removed where it is 

found to be irrelevant. 

The results of the final estimation (Appendix I, Table 3) show that the coefficients are 

all significant at a 5% with the exception of the coefficient of the AR(1) parameter of the SIF2 

series which is significant only at a 10% level.  

In order to evaluate the outcomes of the GARCH modelling, the residuals are first 

standardized and then the Ljung-Box test is applied to the standardized residuals. 

 = z σThe assumption of the GARCH model is that εt t  t, where zt (standardized 

residuals) is independent and follows a Student’s t - distribution. The zt series is obtained by 

dividing the residuals(ε )t   at the conditional standard deviation (σ ) t .

The Ljung-Box Test applied to the standardized residual (Appendix I, Table 4) shows 

that the null hypothesis cannot be rejected at a 5% significance level for SIF1, SIF3, SIF4 and 

at 1% significance level for SIF2 and SIF5. In the case of the squared standardised residuals 

the results are even more relevant, the null hypothesis being accepted at a 5% significance 

level for all five series. 

These results prove that the GARCH models accurately describe the time series and 

that the standardized residuals fulfil the independence criteria that is necessary in order to use 

the extreme value theory. 

 

2. Extreme Value Theory (EVT) models 
 

Even thought the estimation of the GARCH model with the assumption of t-distributed 

innovations (standardized residuals) can explain a large degree of the excess kurtosis found in 

the return series, it still cannot capture its asymmetry because the distribution is presumed to 

be symmetric. At the same time, the correct parameterization of the innovation series is very 

important because it is later used for the simulation of the portfolio loss distribution. 
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In order to better describe the innovation series resulted from the GARCH models, 

extreme value theory is used to estimate each tail of the distribution and a kernel smoothing 

method is used for the interior. 

The tail parameters can be estimated using one of the methods described by the 

extreme value theory. However, for this study, the peak-over-threshold method is used mainly 

because it needs a smaller data sample compared to the block-maxima method.  

In order to identify the tails of the innovation series we sort the values of the series in 

ascending order and we consider the first 10% of the values to be the lower tail and the last 

10% of the values to be the upper tail. By using this method the threshold value is implicitly 

determined for the lower and upper tail. The 10% fraction of the distribution is selected by 

taking into consideration the simulations performed by McNeil and Frey (2000) and Nyström 

and Skoglund (2001) that showed that the ML estimator is almost invariant to the threshold 

value if the tail is considered between 5-13% of the sample data. 

The parameters of the GPD distribution that are estimated using the maximum-

likelihood method are displayed in (Appendix II, Table 1.). By studying the results it can be 

observed that the coefficient that gives the heaviness of the tail (tail index) is statistically 

different for the upper compared with the lower tail, thus confirming the assumption of an 

asymmetric distribution of innovations. Furthermore the coefficients of the tail index for the 

lower tails are all statistically different from zero, thus giving an indication that the lower tails 

are ”heavier” then the tails of a normal distribution. 

The estimated value of the tail index for the upper tail is not statistically different from 

zero for neither of the series, thus we can draw the conclusion that the shape of these tails 

resembles the tail of a normal distribution.  

By comparing the shape of the tails estimated using the extreme value method with the 

shape of a Student’s t-distribution that has the same degrees of freedom as the parameter 

estimated in the GARCH model (Appendix II, Figure 1 a,b ), it can be observed that the 

extreme value method describes much better the distributions of the innovations. 

In order to have a complete semi-parametrical distribution for each series of 

innovations, a pseudo CDF (cumulative distribution function) and ICDF (inverse cumulative 

distribution function) are built. The pseudo CDF function receives a value, it identifies where 

the value is situated in the estimated semi-parametrical distribution (in one of the tails or in 

the centre) by comparing it with the thresholds and based on this information it computes a 

corresponding cumulated probability. The pseudo ICDF function is built on the same 

principle, the cumulative probability that is given as an input is mapped to one area of the 
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semi-parametrical distribution and a corresponding quantile is computed and returned based 

on that information. With the help of these pseudo functions a representation of each semi-

parametric distribution can be build (Appendix II, Figure 1, c). 

 
 

3. Copula models 
 

Once the model for each time series is defined, the dependence structure of the 

portfolio can be estimated by linking together the semi-parametrical distributions with copula 

methods. The Student’s t copula is selected for this task because in addition to a correlation 

matrix it is also characterized by the degrees of freedom parameter, which defines the amount 

of tail dependence between the series. 

The copula is calibrated by using the Canonical Maximum Likelihood (CML) method 

because this method allows an estimation of the copula parameters without making any 

assumption about the marginal distributions. The CML method7 can be implemented in two 

stages.  
TFirst we transform the initial data set X = (X1t,…, Xnt)t=1  into uniform variates using 

the marginal distribution function, that is, for t=1,….T , let ut = (ut
1,….., ut ) = [F (Xn 1 1t),…., 

F (Xn nt)]. In this case, for equity i, X  represents the innovation series and Fi i represents the 

pseudo-cumulative distribution. 
Secondly we estimate the vector of copula parameters α, via the following relation: 

∑
=

Λ

…=
T

t
c

1

t
n

t
1CML );u ..,,u(lnmaxarg αα

α
 

where c is the copula density function, in this case the density of the Student’s t copula. 
 

The actual estimation of the copula parameters is done in two steps; the first step 

maximizes the log-likelihood function with respect to the linear correlation matrix, given a 

fixed value for the degrees of freedom. The second step uses the results from the first 

optimization in order to maximize the function with respect to the degrees of freedom, thus 

maximizing the log-likelihood over all parameters. The function that is maximized in the 

second step is called the profile log-likelihood function for the degrees of freedom. 

The estimated correlation matrix (Appendix III, Table1) shows a positive correlation 

between all five series, while the relative small value of the degrees of freedom parameter 

(Appendix III, Table2) confirms the presence of a strong tail dependence. The standard error 
                                                 
7 See Mashal and Zeevi, p 25. for more details. 
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of the degrees of freedom parameter (0.328318) was obtained using a simple bootstrap 

method. 

 

4. Portfolio simulation 
 

Once the models for the marginal distributions and the dependence structure are 

estimated, we can simulate the conditional loss distribution of the portfolio for the next period 

and compute the risk measures of interest. 

The first stage of the simulation process represents the generation of dependent series 

by using the dependence structure given by the t-copula, that is, for each series, for a horizon 

of h days, n trials are generated from a multivariate Student’s t distribution that has the same 

correlation matrix and degrees of freedom parameters as those estimated with the t-copula. 

The result of this step is a collection of (no of equities x horizon) distributions that 

have the same dependence structure as the original data. However these distributions were 

generated using a multivariate Student’s t distribution, so they must be transformed in order to 

follow the semi-parametrical distributions used by the GARCH model.  

The transformation of each distribution is done in two steps, first the distribution is 

shaped into a uniform variate, by using the cumulative distribution function of the Student’s t 

distribution, and secondly these uniform variates are converted into the semi-parametrical 

distributions by using the pseudo-inverse cumulative distribution function of the 

corresponding semi-parametrical distribution. A visual example of a simulation for two 

correlated series can be found in (Appendix IV, Figure 1). 

At the second stage of the simulation process, the semi-parametric distributions are 

given as an input to the GARCH model that reintroduces the volatility into the series and 

gives as an output conditional series of returns.  

At this stage we have a conditional distribution of returns for each equity in the 

portfolio and for each day of the horizon (h). These conditional distributions can be cumulated 

in order to build the loss distribution of the entire portfolio for a horizon of up to h days. 

5. Measures of risk 
 

If we mark losses with a positive sign and gains with a negative sign we can estimate 

Value at Risk by taking the relevant quantile qα of the conditional distribution. 

VaR  = qα α
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Also, Expected Shortfall is estimated by using the following formula: 

])[/()()|(
][

)( nanXVaRXXEES
n

ni
in −=>= ∑

= α
 

where n represents the number of trials. 

Both measures of risk are applied to the individual conditional distributions and the 

conditional portfolio loss distribution (computed with an equal weight for each asset) and the 

results are displayed in (Appendix IV, Table 1-4). The estimated risk is comparable between 

the equities, SIF3 displaying the highest level of risk while SIF5 the lowest. Furthermore, the 

high correlation between the assets reduces the benefit of diversification to a minimum, thus 

making the risk of the portfolio comparable to any of the individual equities.  

 

6. Backtesting 
 

In order to evaluate the accuracy of the methodology used for the estimation of risk, a 

backtest is applied for each individual return series and also for the portfolio. The test implies 

the estimation of Value-at-Risk for a number of days for which we already know the actual 

returns. By comparing the estimated Value-at-Risk with the actual returns we can observe if 

the confidence levels of the risk measure are indeed respected.  

The tests are performed with a 1 day horizon, for the last 500 days of the series and 

with a fixed data sample of 1000 observations. For each day the methodology is applied from 

the beginning and all the parameters are reestimated. 

Plots of these tests can be seen in (Appendix IV, Figure 2) and the number of 

violations for each series is displayed in (Appendix IV, Table 5). The backtesting results are 

not very clear, firstly because the evaluation at 90% and 95% confidence levels gave mixed 

results and secondly because the accuracy of the risk measure at 99% confidence level cannot 

be test properly due to the small number of back-testing days (500). 

For the individual series, the results at a 90% confidence level show that the risk is 

being slightly underestimated for two of the series (SIF1, SIF2) and slightly overestimated for 

the other three (SIF3, SIF4, SIF5). The situation is different at a 95% confidence level, where 

we can see a higher underestimation of the risk for the majority of the series. At a 99% 

confidence level the risk appears to be overestimated for the majority of the series, perhaps 

due to the lack of sufficient observations leading up to unclear conclusions. 
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At the portfolio level, the results show an underestimation of the risk at all three 

confidence levels, although the degree of underestimation is rather small for the 90% and 99% 

levels and more significant for the 95% level.  

 

E. Conclusions. 
 

This paper aims at computing accurate estimates for the risk of a portfolio by 

constructing its conditional loss distribution with a flexible methodology that separates the 

description of the marginal distributions from the dependence structure. The return series for 

each of the equities was modelled using GARCH methods in order to explain the 

autocorrelation and time-varying volatility. Then, the innovation series resulted from the 

GARCH model is described as a semi-parametrical distribution with GPD tails and a kernel-

smoothed interior that captures the asymmetry and excess-kurtosis often found in these series. 

The link between the semi-parametrical distributions is then explained by a Student’s t copula 

that gives the dependence structure of the entire portfolio. 

The estimated parameters of the marginal distributions and the dependence structure 

serve as a base for the simulation of a conditional portfolio distribution and implicitly for the 

estimation of the risk measures. 

By analyzing the intermediary results of this methodology the following conclusions 

can be drawn: 

- the GARCH models explain very well the autocorrelation found in the return series 

and the volatility clustering effect  

- the distributions of the innovations are asymmetric with heavy lower tails and thin 

upper tails 

- the GPD description for the tails of the innovation series is more accurate 

compared to the description given by the t-distribution estimated by the GARCH 

models. 

- the backtesting results for Value-at-Risk are not conclusive but give an indication 

of a possible underestimation of the risk at 95% confidence level  

Further research can be done in two main directions; first this methodology could be 

applied for portfolios with different risk factors in order to evaluate its accuracy for a larger 

collection of assets. Secondly the methodology can be improved by using better measures of 

risk or more flexible tools for describing the data generating process for the returns of the 

portfolio. This implies for example, the estimation of the GARCH models without any 
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assumption about the distribution of the innovations, the use of different copulas that might 

describe better the dependence structure of the assets or the use of spectral measures of risk 

that take into account the risk aversion of the risk manager. 

 29



F. References 
 
1. Alexander, C. (2001), „Market Models: A guide to Financial Data Analysis” 
 
2. Artzner, Ph., F. Delbaen, J.-M. Eber, and D. Heath (1998), „Coherent Measures Of Risk”, 
Universite Louis Pasteur, EidgenÄossische Technische Hochschule, Societe Generale, 
Carnegie Mellon University, Pittsburgh 
 
3. Bao, Y., T.H. Lee, and B. Saltoglu (2004), „Evaluating Predictive Performance of Value-
at-Risk Models in Emerging Markets: A Reality Check”, UT San Antonio, UC Riverside, 
Marmara University 
 
4. Bouyé, E., V. Durrleman, A. Nikeghbali, G. Riboulet, and T. Roncalli (2000), „Copulas for 
Finance: A Reading Guide and Some Applications”, Financial Econometrics Research Centre 
City University Business School London 
 
5. Clemente, A. and C. Romano (2004a), „Measuring and optimizing portofolio credit risk: A 
Copula-Based Approach”, Working Paper n.1 - Centro Interdipartimentale sul Diritto e 
l’Economia dei Mercati  
 
 (2003b) „Measuring portofolio value-at- risk by a Copula-Evt based approach” 
 
 6. Cotter, J. and K. Dowd (2005), "Extreme Spectral Risk Measures: An Application to 
Futures Clearinghouse Margin”, University College Dublin, Nottingham University Business 
School 
 
7. Danielsson, J. And C. G. de Vries (1997), „Value-at-Risk and Extreme Returns”, 
London School of Economics and Institute of Economic Studies at University of Iceland, 
Tinbergen Institute and Erasmus University 
 
8. Demarta, S. and A. J. McNeil (2004), „The t Copula and Related Copulas”, Department of 
Mathematics Federal Institute of Technology ETH Zentrum 
 
9. Dias, A. and P. Embrechts, „Dynamic copula models for multivariate high-frequency data 
in Finance”, Warwick Business School, - Finance Group, Department of Mathematics, ETH 
Zurich 
 
 10. Diebold, F. X. , T. Schuermann, and J. D. Stroughair (1998), „Pitfalls and Opportunities 
in the Use of Extreme Value Theory in Risk Management”, The Wharton Financial 
Institutions Center 
 
11. García, A. and R. Gençay (2006), „Risk-Cost Frontier and Collateral Valuation in 
Securities Settlement Systems for Extreme Market Events”, Bank of Canada Working Paper 
2006-17 
 
12. Hotta, L.K. , E.C. Lucas, and H.P. Palaro, „Estimation of VaR Using Copula and Extreme 
Value Theory”, State University of Campinas, Department of Statistics, Campinas SP, Brazil. 
ESAMC, Campinas SP 
 

 30



 31

 13. Joe, H. and J. J. Xu , „The Estimation Method of Inference Functions for Margins for 
Multivariate Models”, Department of Statistics, University of British Columbia 
 
14. Longin, F. M. (2000), „From value at risk to stress testing: The extreme value approach”, 
Journal of Banking & Finance 24, 1097-1130 
 
15. Mashal, R. and A. Zeevi (2002), „Beyond Correlation: Extreme Co-movements Between 
Financial Assets”, Columbia University 
 
16. McNeil, A.J. (1996a), „Estimating the Tails of Loss Severity Distributions using Extreme 
Value Theory”, Departement Mathematik ETH Zentrum 
 
17. (1998b), „Calculating Quantile Risk Measures for Financial Return Series using Extreme 
Value Theory”, Departement Mathematik ETH Zentrum��
 
18. McNeil, A.J. and R.Frey (2000), „Estimation of Tail-Related Risk Measures for 
Heteroscedastic Financial Time Series: an Extreme Value Approach”, Departement 
Mathematik ETH Zentrum 
�
19. McNeil, A.J. and T. Saladin (1997), „The Peaks over Thresholds Method for Estimating 
High Quantiles of Loss Distributions”, Departement Mathematik ETH Zentrum 
 
20. Nyström, K. and J. Skoglund (2002a), „A Framework for Scenariobased Risk 
Management”, Swedbank, Group Financial Risk Control 
 
21. (2002b), „Univariate Extreme Value Theory, GARCH and Measures of Risk”, Swedbank, 
Group Financial Risk Control 
 
22. Rosenberg, J. V. and T. Schuermann (2005), „A General Approach to Integrated Risk 
Management with Skewed, Fat-tailed Risks”, Federal Reserve Bank of New York 



Appendix I – GARCH 
 

Figure 1. Correlograms for the return series 
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Figure 2. Correlograms for the squared return series 
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Table 1.Ljung-Box test results for the return series and the squared return series. 

 
 

Table 2. Results for the first estimation of the GARCH models (GJR-GARCH). 
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Table 3. Results for the final estimation of the GARCH models. 
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Table 4. Ljung-Box test results for the standardized residuals and squared residuals. 
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Appendix II – EVT 

 
Table 1. Estimated GPD parameters for the tails of the standardized residuals distributions. 

 
SIF1 

Tail Tail Index Std Error T-Stat Sigma Std Error T-Stat 
Lower 0.2022 0.088745 2.2785 0.52983 0.062743 8.4444
Upper 0.012265 0.094734 0.12947 0.68873 0.085424 8.0625

       
       

SIF2 
Tail Tail Index Std Error T-Stat Sigma Std Error T-Stat 

Lower 0.21153 0.089722 2.3576 0.5177 0.061633 8.3997
Upper -8.11E+00 05  0.084005 -0.00097 0.67981 0.078891 8.6171

       
       

SIF3 
Tail Tail Index Std Error T-Stat Sigma Std Error T-Stat 

Lower 0.13105 0.093611 1.4 0.52577 0.064529 8.1478
Upper 0.11445 0.079746 1.4352 0.65982 0.074316 8.8786

       
       

SIF4 
Tail Tail Index Std Error T-Stat Sigma Std Error T-Stat 

Lower 0.30175 0.10018 3.012 0.44784 0.056405 7.9397
Upper 0.10545 0.096637 1.0912 0.59198 0.074122 7.9865

       
       

SIF5 
Tail Tail Index Std Error T-Stat Sigma Std Error T-Stat 

Lower 0.44799 0.12018 3.7278 0.39466 0.055205 7.149
Upper 0.076981 0.088776 0.86714 0.61118 0.072967 8.3761

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 1. a) CDF for the lower tail of the standardized residuals distribution: GPD vs. Student’s t vs empirical  
b) CDF for the upper tail of the standardized residuals distribution: GPD vs. Student’s t vs empirical 

b) Semi-parametric CDF with GPD tails and kernel smoothed interior 
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Appendix III – Copula 
 

Table 1. Estimated correlation matrix 
 

Correlation Matrix 
  SIF1 SIF2 SIF3 SIF4 SIF5 

1 0.7118 0.6822 0.6673 0.6994 SIF1 
0.7118 1 0.6615 0.6693 0.7701 SIF2 
0.6822 0.6615 1 0.6469 0.6408 SIF3 
0.6673 0.6693 0.6469 1 0.6798 SIF4 
0.6994 0.7701 0.6408 0.6798 1 SIF5 

 
 

Table 2. Estimated degrees of freedom and the equivalent standard error. 
 

DoF Std Error 
0.3283185.425141

 
 

Figure 1. The negative log-likelihood function of the t-copula 
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Appendix IV – Simulation and measures of risk 
 

Figure 1. a) Simulated semi-parametric series, SIF3 vs SIF5 under the assumption of independence  
(b) Simulated semi-parametric series, SIF3 vs SIF5 with the dependence structure given by the t-copula 

 

(a)  
 

(b)  
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Table 1. Estimated Value-at-Risk and Expected Shortfall for a 1-day horizon – individual series 
 

SIF1 
VaR ES 

90% 95% 99% 90% 95% 99% 
-1.86% -2.58% -5.40% -3.22% -4.30% -7.78% 
      

SIF2 
VaR ES 

90% 95% 99% 90% 95% 99% 
-2.02% -2.86% -5.68% -3.55% -4.73% -8.58% 

      
SIF3 

VaR ES 
90% 95% 99% 90% 95% 99% 

-2.50% -3.49% -6.39% -4.11% -5.37% -8.63% 
      

SIF4 
VaR ES 

90% 95% 99% 90% 95% 99% 
-2.40% -3.09% -6.08% -3.80% -4.92% -8.33% 

      
SIF5 

VaR ES 
90% 95% 99% 90% 95% 99% 

-1.83% -2.41% -4.31% -2.94% -3.78% -6.65% 
 

Table 2. Estimated Value-at-Risk and Expected Shortfall for a 10-day horizon – individual series 
 

SIF1 
VaR ES 

90% 95% 99% 90% 95% 99% 
-5.57% -8.51% -15.75% -10.36% -13.87% -24.54% 

      
SIF2 

VaR ES 
90% 95% 99% 90% 95% 99% 

-6.85% -9.98% -16.88% -11.47% -14.75% -23.91% 
      

SIF3 
VaR ES 

90% 95% 99% 90% 95% 99% 
-6.80% -10.12% -18.72% -12.19% -16.08% -27.26% 

      
SIF4 

VaR ES 
90% 95% 99% 90% 95% 99% 

-6.23% -9.52% -16.99% -11.07% -14.37% -22.77% 
      

SIF5 
VaR ES 

90% 95% 99% 90% 95% 99% 
-5.75% -8.69% -20.48% -12.24% -17.45% -37.68% 
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Table 3. Estimated Value-at-Risk and Expected Shortfall for a 1-day horizon – portfolio 
 

PORTFOLIO 
VaR ES 

90% 95% 99% 90% 95% 99% 
-1.81% -2.52% -4.87% -3.03% -3.93% -6.40% 

 
 

Table 4. Estimated Value-at-Risk and Expected Shortfall for a 1-day horizon – portfolio 
 

PORTFOLIO 
VaR ES 

90% 95% 99% 90% 95% 99% 
-5.03% -7.54% -15.74% -9.58% -13.03% -24.14% 

 
 

Table 5.Backtesting results –actual vs expected number of exceedances for Value-at-Risk  
 

Backtesting Results 
  VaR - 90% VaR - 95% VaR - 99% 

Expected 50 25 5 
SIF1 56 29 4 
SIF2 55 32 2 
SIF3 47 28 3 
SIF4 46 32 6 
SIF5 45 24 4 

Portfolio 51 32 6 
 



Figure 2. A display of the backtesting results for the individual series and for the portfolio. The exceedances are marked with red.  
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