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1. Abstract 
 

This paper empirically analyzes and compares two methods of calibration for the Libor 

Market Models, developed by Brace, Gatarek and Musiela (1997) using data on EUR 

swaptions and historical EUR yield curves.  

The first method of calibration proposed by Dariusz Gatarek is the separated approach, 

which gives good results but is computationally intensive. The second method of 

calibration – proposed by Ricardo Rebonato and Peter Jackel - uses an approximation for 

the instantaneous volatility and correlation functions of European swaptions in a forward 

rate based Brace-Gatarek-Musiela framework which enables us to calculate prices for 

swaptions without the need for Monte Carlo simulations. The method generates 

appropriate results in a fraction of a second. 

To this end we show that using an approximation for the volatility and correlation 

function can lead to an accurate calibration by optimizing the parameters of the two 

volatility and correlation functions. 
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2. Introduction and Literature Review 
 

The relatively brief history of the evolution of the pricing of interest – rate derivatives 

can be divided into four distinct periods as described by Rebonato [8]: 

• The early days - The first period corresponds to the use of Black and Scholes 

(1973), Black (1976) and Merton (1973) approaches. They all have the same log-

normal distributional assumption for the underlying variable (bond prices, 

forward rates, forward swap rates, bond yields). Criticism came because of the 

pull-to-par phenomenon (for a coupon or a discount bond the volatility is not 

constant – as argued in the three approaches - since the price has to converge to 

par at maturity). The solution was to consider a non-traded quantity as the 

underlying log-normal variable. However the Black-Scholes reasoning behind the 

self-financing dynamic strategy that reproduces the payoff of the option could not 

easily be adapted. 

The correct solution would have been to use the Black model instead of the 

Black-Scholes, with the forward price and the volatility of the forward as inputs. 

However, the Black formula does not include a correlation between prices of 

different assets. 

Despite being theoretically not justifiable, the approach was widely used for a 

long period as it allowed the trader to think in terms of volatility. 

•  The first yield curve models – Vasicek (1977) and Cox, Ingersoll and Ross 

(CIR) made the assumption that the dynamics of the whole yield curve would be 

driven by instantaneous short rate. The evolution was assumed to be described by 

a stochastic differential equation made up of deterministic mean-reverting 

component, and a stochastic part (proportional with the short rate itself or with the 

square root of the short rate). 

Despite the fact that the practical success of these models was limited, their 

influence was enormous, as all the models that were developed up until the HJM 

approach were part of the same, short-rate-based research programs. 
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The vast econometric research showed that the stochastic evolution of the yield 

curve is explained to a very large extent by its first principal component – the 

short rate being a reasonable proxy for this first component. 

•  The Second-Generation Yield-Curve Models – Black, Derman and Toy 

(1990), Hull and White (1990), extended Vasicek and extended CIR models. The 

most important feature of this class of models was the addition of a purely 

deterministic (time-dependent) term to the mean-reverting component in the drift 

of the short rate. Therefore, given an arbitrary yield market curve, the second-

generation yield curve models could always augment the mean-reverting drift 

with a deterministic “correction term” capable of reproducing the market prices. 

The explanatory mandate of these models were transferred from accounting of the 

shape of the yield curve to assessing the reasonableness of the market term 

structure of volatilities. The class of market professionals that were still 

unsatisfied with the second-generation class of models were exotic traders 

(Bermudan swaptions, knock-out caps, inverse floaters, digitals) that requested a 

model able to price at least the required option hedges for each individual trade in 

line with the plain vanilla market. 

• The Modern Pricing Approach – Heath-Jarrow-Morton (HJM). The HJM 

working paper began to be circulated as early as 1987, yet implementations 

started to appear around 1993-1994. This delay was encountered due to the 

relatively new language – set theory, measure theory, advanced stochastic 

calculus, linear partial differential equations – and to the non-Markovian structure 

of the log-normal forward rate process – therefore for the implementation the 

Monte Carlo method was required. 

The HJM model was originally cast in terms of instantaneous  forward rates, wcih 

had no obvious equivalent in traded market instruments Furthermore, in the 

continuous –time limit and log-normal forward rates, their process explodes with 

positive probability. But, as soon as the process is discretized and the forward 

rates become of finite-tenor, the log-normal explosion disappears (Libor Market 

Model). 
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Due to various implementations of this model, there is no general agreement in 

the financial community on how to call this set of approaches: “BGM” (Brace, 

Gatarek and Musiela) model and “Jamishdian approach” are often used, but 

“pricing in a forward measure” or “the LIBOR Market Model” are terms also 

frequently encountered. 

The calibration was seen to be an issue in the beginning, even if today it is 

agreed that one of the greatest advantage of the LIBOR-market model is that it can be 

made to reproduce the market prices of plain vanilla options. Any discrete time 

implementation of the HJM model is fully and uniquely specified by the instantaneous 

volatilities and instantaneous correlations among the discrete forward rates. 

Unfortunately, each of the possible choices for the instantaneous volatility functions 

would in general, give rise to different prices for exotic products. Furthermore, if this 

fitting was injudiciously carried out, it could produce implausible evolutions for such 

quantities as the term structure of volatilities or the swaption matrix. 

 It is essential to point out that the LIBOR market model as it is today, is much 

more than a set of equations  for the no-arbitrage evolution of forward or swap rates: it 

includes a very rich body of calibration procedures and of approximate but very accurate 

numerical techniques for the evolution of forward rates that have turned the approach into 

the most popular pricing tool for complex interest-rate derivatives. Once the modern 

approach is properly implemented and calibrated, very complex computational tasks can 

be out with ease and in real trading time. 

Until relatively recently, the calibration to market quantities of any interes-rate 

option model was one of the most arduous parts of its implementation. Users of early 

short-rate-based models (such as the Black-Derman and Toy (1990), the Hull and White 

or the Black-Karasinsky (1991)) are too well aware of the difficulties one encounters 

when attempting to calibrate the model parameters so as to reproduce the prices of caps 

or swaptions. Also the more recent Heath-Jarrow-Morton (HJM) approach is, in its more 

general form, hardly more user-friendly when it comes to calibration of the model to 

market data. The common features of all these models was the fact that, explicitly or 

implicitly, within these traditional frameworks the stochastic behavior was specified of 
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unobservable financial quantities, such as, for instance, the instantaneous forward rates, 

the instantaneous short rate or its variance.  

The calibration of a model to a set of market quantities therefore required 

transforming, via the black box provided by the model itself, the dynamics of these 

unobservable quantities into the dynamics of observable quantities. 

The recently introduced Brace-Gatarek-Musiela (BGM) approach, germane to the 

HJM  model, has radically changed this picture: now directly observable market 

quantities, such as discrete (LIBOR) forward rates or swap rates, are evolved. Given the 

availability from the market of the volatilities of caplets and European swaptions, 

calibration to either set of variables has become, at least for one-factor implementations, 

virtually immediate. 

 

Implementation of the LMM basically consists of three parts, namely: 

• Calibration. The calibration part adjusts the parameters of the LMM as to 

minimize the difference between LMM internal model values and actual 

prevailing market values. The user has to specify to which values should be 

calibrated. The calibration part requires market data.  

• Pricer. The pricer part needs the time zero LIBOR forward rates, the parameters 

provided by the calibration part and it requires information from the derivative. 

The pricer part is either an analytic formula or a Monte Carlo (MC) simulation. 

• Derivative-returns the derivative-payoff given a certain market scenario specified 

by the pricer part. 
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3.Description of the LIBOR Market Model 
 

Overview 

The LIBOR Market Model (LMM) is an interest rate model based on evolving LIBOR 

market forward rates.  In contrast to models that evolve the instantaneous short rate 

(Hull-White, Black-Karasinski models) or instantaneous forward rates (Heath-Jarrow-

Morton model), which are not directly observable in the market, the objects modeled 

using LMM are market-observable quantities (LIBOR forward rates).  This makes LMM 

popular with market practitioners.  Another feature that makes the LMM popular is that it 

is consistent with the market standard approach for pricing caps using Black’s formula. 

 

This chapter will begin exploring the LIBOR market model (LMM). It will start 

by describing the dynamics of the forward rates and determining the arbitrage free drift 

function. 

The spot and forward rates for two forward rate structures with different tenor lengths 

and two of the corresponding zero coupon bonds. 

 

 

 

 

 

 

 

 

 

The forward rates are defined as: 
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where Z(t; ti) is the price process of the zero-coupon discount bond that pays 1 at time ti 

and τi is the tenor of the forward rate that resets at time ti. 

 

Forward rate dynamics in the LMM 

 

The following notation will be used: 

• fi(t) - Forward rate observed at time t for the period ti  ti+1 with the compounding 

period τi = ti+1-ti. 

• dWk(t) - The k:th standard Brownian motion at time t. 

• σik(t) - The instantaneous volatility function of the i:th forward rate for the k:th 

Brownian motion at time t 

• µi - The drift parameter. Can depend on both time and on the forward rates 

themselves.  

 

The forward rate dynamics is described by the m-dimensional diffusion equation: 

 

 

where the Brownian motions, dWk(t); k = 1,………m are modelled as orthogonal i.e. the 

correlation between them is zero. The σik(t) s can be linked with the total volatility of the 

i:th forward rate. In order to do, when pricing swaptions and caplets, distinguish between 

the time-dependent instantaneous volatility for the forward rate resetting at time ti, σi(t) 

and its implied “average”  volatility given by the Black formula: 

 

 

In the above expression for the forward rate dynamics, σik(t) is denoted as the volatility 

contribution to the ith forward rate given by the kth Brownian motion. Using the standard 

formula for calculating the variance of the forward rate it is straightforward to show that 

the total instantaneous volatility of the forward rate σi(t) and the σik(t) are related by: 
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Dividing and multiplying each loading, σik(t), with the instantaneous volatility of the ith 

forward rate and using equation above gives: 

 

 

 

 

 

 

 

 

 

where 

 

This formulation is very useful since it decomposes the orthogonal shocks of the forward 

rates into two distinct components. The first component, σi(t)  only depends on the total 

volatility of the ith forward rate. Also note that by definition: 

 

 

which implies that this component will not affect the caplet pricing at all and might 

instead be used to contain the models information about the correlation structure between 

the forward rates.  
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4. Calibrating the LIBOR MARKET MODEL 
 
The calibration is the computation of the parameters of the LIBOR market model, σi, i = 

1…….N, so as to match as closely as possible model derived prices/values to market 

observed prices/values of actively traded securities. 

Typically, a calibration procedure in a computer implemented LMM can take a few 

seconds up to fifteen minutes. 

 

The wider meaning of calibration (Rebonato, 2002) 

The meaning of the word ‘calibration’ has a much wider scope than that of just 

choosing the parameters of the model in such a way that today’s prices of the plain-

vanilla instruments (caplets and swaps) are correctly recovered. This goal is important 

but limited, and only insures that the time-0 delta and vega hedging costs predicted by the 

model are the same as the ones provided in the market. The trader, however, will in 

general have to readjust the option hedges in his portfolio throughout the life of the deal. 

As long as the trader manages to recalibrate the model day after day to the future market 

prices, these re-hedging trades will always take place at the prices implied by the model 

at that point in time and at that state of the world. 

It is important to point out that the common, and in practice unavoidable, 

procedure of recalibrating every day the model to the current market prices is essential. 

The practical success of a hedging strategy largely depends on the ability to choose, for a 

given model, a calibration, such that the parameters of the model have to be adjusted as 

little as possible throughout the life of the deal. This, in particular, will occur if the future 

realization of the term structure of volatilities and of the swaption matrix will be similar 

to the corresponding model-implied quantities. 
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4.1. The Separated approach with Optimization [4] 

 
The Separated Approach provides a direct way of calibrating the model to the full set of 

swaptions.  

We start our separated approach calibration by creating a matrix of Swaption Volatilities 

as below: 

  σ1,2
swpt σ1,3

swpt σ1,4
swpt …………………..σ1,m+1

swpt 

  σ2,3
swpt σ2,3

swpt σ2,4
swpt …………………..σ2,m+2

swpt 

 σ3,4
swpt σ3,5

swpt σ3,6
swpt …………………..σ3,m+3

swpt 

      ΣSWPT =  ……………………………………………………. 

  ……………………………………………………. 

 σm,m+1
swptσm,m+2

swptσm,m+3
swpt ……………σm,M

swpt 

 

where we have: 

m=10, M=20  

σ1,2
swpt = σswpt(t, T1,T2) is the markwt swaption volatility for  a swaption maturing 

at T1 with underlying swap period T1 : T2 

We can define the dependency of the components of ΣSWPT on market swaption volatility 

symbols in the following way: 

  σn,N
MKT = ΣSWPT (n,N-n) 

Let us define the covariance matrix of Forward LIBOR rates in the following way: 

 

  φ1,1
i φ 1,2

i φ 1,3
i ………………….. φ 1,m

i 

  φ 2,1
i φ 2,2

i φ 2,3
i ………………….. φ 2,m

i 

 φ 3,1
i φ 3,2

i φ 3,3
i ………………….. φ 3,m

i 

     ΦI =  ……………………………………………………. 

  ……………………………………………………. 

 φ m,1
i       φ m,2

i       φ m,3
i ………………….. φ m,M

i 

 

where: 
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φk,l
i =  ∫ 0

Ti  σinst(t,Tl-1,Tl) * σinst(t,Tk-1,Tk) dt for i<k and i<l 

and  

σinst(t,Tl-1,Tl) is the stochastic instantaneous volatility of LIBOR rates Ll(t,Tl-1,Tl) 

We assume that: 

φk,l
i =  φk,l * Λi 

Λi = δ0,k ; k=1,…..m 

 

  φ1,1 φ 1,2
 φ 1,3

 ………………….. φ 1,m 

  φ 2,1 φ 2,2
 φ 2,3

 ………………….. φ 2,m 

 φ 3,1 φ 3,2
 φ 3,3

 ………………….. φ 3,m 

     Φ   =  ……………………………………………………. 

  ……………………………………………………. 

 φ m,1
       φ m,2

       φ m,3
 ………………….. φ m,M 

 

Parameters on diagonal can be calculated using the formulae: 

 

 φk,l = [δ0,k * σswpt (t, Tk, Tk+1)2]/ Λk 

Computing Ri,j
k (t) used for determining the non-diagonal elements of matrix Φ. 

We define:   

      B(0,Tk-1) - B(0,Tk) 

Ri,j
k (t) =  

       B(0,Ti) - B(0,Tj) 

where B are discount factors for the input LIBOR rates : 

 

B =  B(0,T1) 

 B(0,T2) 

 …… 

 B(0,TM) 

 

Computing Φ: 
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We determine the non-diagonal parameters of our matrix Φ by using the following 

formulae: 

        δk*σk,N
2 - Λk (Σl=k+1

NΣi=k+1
N*Rk,N

i (0)*φi-1,l-1* Rk,N
l (0)-2* Rk,N

k+1(0)*φk,N-1* Rk,N
N (0) 

φk,N-1 =  

   2*Λk* Rk,N
k+1 (0)* Rk,N

N (0)    

for k=1,…..m   and N=k+2,…………… 

 

Computing modified matrix Φ: 

Because it exists the risk for matrix Φ to have negative eigenvalues which might lead to 

some significant mispricing of European Swaptions we compute a modified matrix ΦPCA, 

by removing the eigenvectors associated with negative eigenvalues. 

Step 1: 

We create a new matrix constructed by multiplying eigenvectors by correspondent square 

root of positive eigenvalues. 

Step 2: 

We multiply the matrix created in Step 1 by its transposition. In effect we obtain the 

modified matrix  ΦPCA. 

 

Computing matrix of theoretical swaptions: 

This matrix will contain theoretical swaption volatilities approximated via principal 

component modification of the initial covariance matrix. 

φk,l
PCA i = Λi * φk,l

PCA 

 and 

    σkN
2 ~  Σl=k+1

N Σi=k+1
N*Rk,N

i (0)*φi-1,l-1
PCA * Rk,N

l (0) 

We define the root mean squared error between theoretical and market swaption 

volatilities as: 

RMSE = Σi,j=1
10 (σi,j

THEO - σi,j
MKT)2  

Afterward, we add an optimization algorithm, setting as a target function the root mean 

squared error for the differences between theoretical and market volatilities. By this we 

determine the parameter vector Lambda that is obtained when we minimize RMSE 

function: 
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4.2. Approximate Solutions for Calibration  [6] [8] 

 
 

The main theory in this chapter is taken from the very rich text of Rebonato which 

provides a deep and thorough treatment of the whole calibration procedure.  

 

The instantaneous volatility function 

The calibration procedure intents to assure that the models instantaneous volatility 

function resembles the Black implied volatilities as good as possible. 

In Rebonato several both parametric and non parametric functions for the instantaneous 

volatility function, σi(t) are discussed.  

σinst could be a deterministic function of: 

• Calendar time: σinst(t) 

• Specific feature of the forward rate itself, known exactly at time t for any τ>t, 

such as its maturity: σinst(T) 

• Specific features of the foreard rate itself, whose future values are known at time t 

only in a statistical sense – the instantaneous volatility at time τ>t, could be made 

to depend for instance on the  realization of the forward rate itself at time τ :  

σinst(τ ,T, f τ) 

• The full history of the yield curve and/or of its stochastic drivers (jumps, 

diffusions) up to time t, as described, for instance, by the natural filtration Ft, 

generated by the evolution of this stochastic processes: σinst(F t) 

• The future realizations of the stochastic process, such as, for instance, Wiener 

processes, other than those driving the forward rates – in other terms, the 

instantaneous volatility could itself be a  difussion, a jump process 

 Conditions for the volatility functions: 

• Because we need to compute well-defined covariance elements, the volatility 

function must be square-integrable – the instantaneous volatility function should 

either belong to L2 (the class of Lebesque-square integrable functions) or be 

square-integrable in the Riemann sense; 
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• The term-structure of volatilities  (and/or of the swaption matrix should evolve in 

a time homogenous manner). If the instantaneous correlation is not a function of 

calendar time, a set of instantaneous-volatilities that produces a time- 

homogenous evolution of the term structure of  volatilities  will also give rise to  

similarly time-stationary swaption matrix; 

• It should have a reasonably flexible functional form, so as to be able to reproduce 

either a humped or a monotonically decreasing instantaneous volatility; 

• Its parameters should lend themselves to a reasonably transparent econometric 

interpretation, so as to allow a “sanity check” almost by inspection; 

• It should afford easy analytical integration of its square, thereby greatly 

facilitating the evaluation of the necessary variance (and covariance) elements. 

The functional form: 

(A) 

fulfills this criteria to an acceptable degree 

Putting kj = 1 this form is clearly time-homogenous and displays, for suitable 

choices of the parameter set, a nicely humped term structure of volatility. However, the 

kjs allow a possibility for a perfect calibration in some cases and is therefore very useful. 

In order to preserve time-homogenousity it is, however, important to assure that the kis 

are as close as possible to 1. 

In order to preserve the short and long time behavior and the humped form of the 

termstructure of volatilities one may not choose the parameters a, b, c and d completely 

free. 

For the interpretation of the function as a well behaved instantaneous volatility, the 

following conditions must be satisfied: 

• a + d > 0 

• d > 0 

• c > 0. 

Furthermore, when τ = tj -t tends to zero instantaneous and average volatilities tend to 

coincide and therefore the quantity a + d should at least approximately assume values 

given by the shortest maturities implied volatilities. On the other hand, when τ tends to 

large values d  has to be connected with the very-long-maturity volatilities. 
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• a + d   Short maturities implied volatilities. 

• d         Very-long maturities implied volatilies. 

Considering the first derivative of the time-homogeneous part of equation  for the 

instantaneous volatility function with respect to τ: (b-ca-cb τ/e-cr) gives some final 

information: 

• (b -ca)/cb -  The location of the extremum (the top of the hump).Should be > 0 

and not too large 

• b > 0 - Constraint for the extremum to be a maximum. 

 

The instantaneous correlation function 

This section will provide information about how to choose the model implied correlation 

between the forward rates. In general, this correlation function can be assigned a 

functional dependence on calendar times and on the maturities of the two forward rates: 

ρij = ρ (t, Ti, Tj). 

In order for the covariance element                                           to be well defined, once 

suitably square-integrable volatility functions have been chosen, it is enough to assign 

that the correlation function to be integrable over any interval [Tk ,Tk+1.]  

However, the task of modeling instantaneous volatilities is considerably more complex 

for several reasons: 

• the price of no plain-vanilla instrument depends purely on the correlation function 

and no other quantity; 

• the correlation function always appears together with the opaque instanaeous 

colatility functions. Since these are in general time-dependent, this joint-

occurrence makes the estimation of the correlation function from swaption prices 

even more difficult. Therefore it is difficult to disentangle the effects of the two 

contributions 

If we assume that: 

• the correlation function is time-homogenous, and 

• it only depends on the relative distance in years between the two forward rates in 

question (Ti-Tj)  
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the form of the correlation function is: 

ρij = ρ (|Ti-Tj |) 

It follows that  :  ρ (|T3-T1 |) = ρ (|T3-T2 |) * ρ (|T2-T1 |) 

In other terms, the logarithm of ρ  must be a linear function. There must therefore exist 

some β >=0 such that: 

(B)      ρij = ρ (|Ti-Tj |) = e - β |Ti-Tj | 

If there is a need to price some heavy correlation-dependent derivatives the form above 

might not be good enough and more advanced market correlation providing functions 

have to be considered. Any feature more complex than that embodied by the equation 

above must come from either: 

• movements of fi uncorrelated with movements of fj but correlated with 

movements of fk 

• a dependence of ρ other than on |Ti-Tj | 

 

Given the parametrisation of the instantaneous volatility σj(t) of the forward rate fj and 

the correlation function given above, the indefinite integral of the covariance becomes: 

 

 

(C) 
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Approximate solutions for calibration 

 

In a forward-rate based BGM/J approach, once the time-dependent instantaneous 

volatilities and correlations of the forward rates have been specified, their stochastic 

evolution is completely determined.  

Since swap rates are linear combinations (with stochastic weights) of forward 

rates, it follows that their dynamics are also fully determined once the volatilities and 

correlations of the forward rates have been specified. Some (very rare) complex 

derivatives depend exclusively on the volatility of either set of state variables (forward or 

swap rates).  

In practical applications it is therefore extremely important to ascertain the implications 

for the dynamics of the swap rates, given a particular choice of dynamics for the forward 

rates and vice versa. Unfortunately, as shown later on, the correct evaluation of the 

swaption prices implied by a choice of forward rate volatilities and correlations is a 

conceptually straightforward, but computationally rather intensive exercise. The 

approximations presented below allow the estimation of a full swaption volatility matrix 

in a fraction of a second. 

The no-arbitrage evolution of the forward rates is specified by the choice of a 

particular functional form for the forward-rate instantaneous volatilities and for the 

forward-rate/forward-rate correlation function (as described in the previous section).  

The task at this point is to obtain the corresponding swap-rate instantaneous 

volatilities. Let σN*M(t) denote the relative instantaneous volatility at time t of a swap rate 

SRN*M expiring N years from today and maturing M years thereafter. This swap rate can 

be viewed as depending on the forward rates of that part of the yield curve in an 

approximately linear way: 

(1)  

 

with the weights wi given by: 

 (2)  
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• Pi+1 -zero coupon bond maturing at the payment time of the i-th forward rate fi 

• τ i - the associated accrual factor  

such that: 

(3)  

 

• n is the number of forward rates in the swap as illustrated schematically below: 

 

 

 

 

 

 

• t1 := N and tn+1 := N +M.  

 

A straightforward application of Itˆo’s lemma gives: 

 

(4)  

 

 

• σj(t) is the time-t instantaneous volatility of log-normal forward rate fj  

• ρjk(t) is the instantaneous correlation between forward rate fj and fk. 

 

Expression (4) shows that the instantaneous volatility at time t > 0 of a swap rate 

is a stochastic quantity, depending as it does on the coefficients w, and on the future 

realization of the forward rates underlying the swap rate f.  

Insofar as the weights w are concerned, which are functions of discount factors, 

one might be tempted to claim that their volatility should be very low compared to that of 

the swap or forward rates, and, as such, negligible. The same argument, however, 

certainly cannot be made about the forward rates themselves that enter equation (4). One 

therefore reaches the conclusion that, starting from a purely deterministic function of 

time for the instantaneous volatilities of the forward rates, one arrives at a rather 
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complex, and stochastic, expression for the instantaneous volatility of the corresponding 

swap rate.  

Therefore, in order to obtain the price of a European swaption corresponding to a 

given choice of forward-rate instantaneous volatilities, one is faced with a 

computationally rather cumbersome task: to begin with, in order to obtain the total Black 

volatility of a given European swaption to expiry, in fact, one first has to integrate its 

swap-rate instantaneous volatility: 

 (5)  

 

with t1 being the time horizon of expiry of the option in N years from today as defined 

before. 

By equation (4) one can conclude that, starting from a purely deterministic 

volatility for the (logarithm of) the forward rates, the instantaneous volatility of the 

corresponding swap rate is a stochastic quantity, and that the quantity is a path-dependent 

integral that cannot be equated to the (path-independent) real number 

Calculating the value of several European swaptions, or, perhaps, of the whole 

swaption matrix, therefore becomes a very burdensome task, the more so if the 

coefficients of the forward-rate instantaneous volatilities are not given a priori but are to 

be optimised via a numerical search procedure so as to produce, say, the best possible fit 

to the swaption market. 

Some very simple but useful approximations are however possible. In order to gain some 

insight into the structure of equation (4), one can begin by regarding it as a weighted 

average of the products ρjk(t)σj(t) σk(t) with doubly-indexed coefficients ζjk(t) given by: 

(6)  

 

 

to convert equation (4) to: 

 (7)   
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Approximating the ζjk(t): 

 

For a given point in time, and for a given realization of the forward rates, these 

coefficients are, in general, far from constant or deterministic. Their stochastic evolution 

is fully determined by the evolution of the forward rates.  

We distinguish two important cases:  

Case 1: refers to (proportionally) parallel moves in the yield curve.  

Each individual weight is only mildly dependent on the stochastic realization of 

the forward rate at time t. Intuitively this can be understood by observing that a 

given forward rate occurs both in the numerator and in the denominator of 

equation (6). So the effects on the coefficients of a (reasonably small) identical 

proportional change in the forward rates to a large extent cancel out.  

Case 2: occurs when the yield curve experiences more complex changes.   

For more complex changes in the shape of the yield curve, the individual 

coefficients remain less and less constant with increasing order of the principal 

component. In the less benign case of tilts and bends in the forward curve, the 

difference between the coefficients calculated with the initial values of the 

forward rates and after the yield curve move will in general be significant. 

However, in these cases one observes that the average of each individual weight 

corresponding to a positive and negative move of the same magnitude is still 

remarkably constant.  

Note that the second statement has wider applicability (it does not require that the 

forward curve should only move in parallel), but yields weaker results, only 

referring as it does to the average of the instantaneous volatility. Note also that 

the average of the weights over symmetric shocks becomes less and less equal to 

the original weights as the complexity of the deformation increases; on the other 

hand we know that relatively few principal components can describe the yield 

curve dynamics to a high degree of accuracy. 

Therefore, the negative impact of a progressively poorer approximation becomes 

correspondingly smaller and smaller. 
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Conclusions 

1. To the extent that the movements in the forward curve are dominated by a first 

(parallel) principal component, the coefficients ζ are only very mildly dependent 

on the path realizations. 

2. Even if higher principal components are allowed to shock the forward curve, the 

expectation of the future swap rate instantaneous volatility is very close to the 

value obtainable by using today’s values for the coefficients ζ and the forward 

rates f. 

1. Even if higher principal components are allowed to shock the forward curve, the 

expectation of the average Black volatility is very close to the value obtainable 

by integrating the swap rate instantaneous volatilities calculated using 

today’s values for the coefficients ζ and the forward rates f. 

 

It is well known, on the other hand, that the price of an at-the-money plain-vanilla option, 

such as a European swaption, is to a very good approximation a linear function of its 

implied Black volatility. This conclusion, by itself, would not be sufficient to authorize 

the trader to quote as the price for the European swaption the (approximate) average over 

the price distribution. The dispersion of the swaption prices around their average is 

however very small. If one therefore assumes that swaptions and forward rates can have 

simultaneously deterministic volatilities, and makes use of the results in about the likely 

impact of the joint log-normal assumption, it is possible to engage in a trading strategy 

that will produce, by expiry, imperfect but very good replication. 

 

Therefore the expression: 

 (8)  

 

 

should yield a useful approximation to the instantaneous volatility of the swap rate, and, 

ultimately, to the European swaption price.  
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It is essential to note that the above equation differs subtly but fundamentally from 

equation (7) in that the coefficients ζ are no longer stochastic quantities, but are evaluated 

using today’s known values for the forward rates and discount factors.  

By virtue of the previous results on the average of the ζ coefficients, a robust 

approximation for the equivalent implied Black volatility of a European swaption can be 

derived since the risk-neutral price of an option is given by the expectation, i.e. the 

average over the risk-neutral measure. The expression for the average Black volatility 

then becomes 

 (9)  

 

 

 

Equation (9) should be very useful in the context of calibration of FRA-based BGM/J 

models to market given European swaption volatilities. It enables us to calculate prices 

for the whole swaption matrix without having to carry out a single Monte Carlo 

simulation and thus to solve the highly cumbersome problem of calibration with great 

ease. 

As shown in the result section, the quality of this approximation is very good. In those 

situations (noticeably non-flat yield curves) where it begins to prove unsatisfactory, it can 

be easily improved upon by a natural extension, which is presented in the next section. 

 

Refining the approximation 

 

The application of Itˆo’s lemma to equation (1) actually gives equation (4) only if one 

assumes that the weights w are independent of the forward rates f. More correctly, Itˆo’s 

lemma gives: 

 (10)  
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where in the Wiener processes Wi are correlated:   

 (11) 

 

Given the definition 

 (12) 

 

of co-terminal floating-leg values and 

 (13) 

 

for the co-terminal fixed-leg annuities, we obtain after some algebraic manipulations 

 (14) 

 

This enables us to calculate the following improved formula for the coefficients ζ : 

 (15)  

 

 

We call the second term inside the square brackets of equation (15) the shape correction. 

Rewriting this corrective term as: 

(16) 

 

 

highlights that it is a weighted average over inhomogeneities of the yield curve. In fact, 

for a flat yield curve, all of the terms (fl - fm) are identically zero and the righ-hand-side 

of equation (15) is identical to that of equation (6). 
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 5. Data 
The data for this study consists of daily yield curves for a trading period  20-Jun-2007 – 

20-Jun-2008 across 40 maturities between 1 month and 50 years. Every series contains 

254 observations. The data was obtained from Reuters 3000Xtra. This data serves for a 

basis for the volatility function estimation. The time series are obtained from different 

portions of the yield curve and from different quoted instruments: 

• LIBOR cash deposit rates at the very short end:  1M, 2M, 3M (1month, 2 months, 

3 months) 

• Future contracts for intermediate maturities:  H, M, U, Z (March, June, 

September, December) 

• Equilibrium (par) swap rates for expiries between two years and the end of the 

LIBOR curve: 2S 50S (2 years – 50 years) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Historical yield curve dynamics 20-Jun-2007  20-Jun-2008 
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The correlation matrix obtained for the forward rate curves derived from the initial yield 

curve is presented in Figure 2 below: 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  

Correlation of forward rates  

 

The market volatility matrix used for comparison in the calibration methods consists of 

Black implied volatilities of ATM European swaptions. The data was obtained from 

Reuters 3000Xtra, being provided by ICAP Brokers. 

 

 

 

 

 

 

 

 

 

Figure 3: 

Market swaption matrix 
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Figure 4: 10Y swaption volatilities as of July 4th, 2008 – Source: Bloomberg 

 

As the first calibration procedure is computationally intensive, I reduced the data to a 10 

maturities yield curve (from 1 year to 10 years) and  a (10,10) matrix for swaption quoted 

Black volatilities. In order to ensure comparability between the two calibration methods I 

used the same set of data for the second calibration tool. 

 

The calibration routines are created in Matlab. 

 

5.1. Results - The Separated approach with Optimization 

 
The steps for the calibration algorithm: 

1. Input the initial data for the calibration: 

• Matrix of market swaption volatilities 

• Vector of dates and discount factors obtained for the current yield curve 

2. Define the variance-covariance matrix of the forward of LIBOR Rates.  

3. Transform the obtained matrices to ensure positivity of the matrices.  For this I 

utilize the Principal Component Analysis (described in Appendix). For that case 

we implement a sub-algorithm for reducing the VCV matrix by removing 

eigenvectors associated with negative eigenvalues. 
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4. Add an optimization algorithm. The target function is the root mean squared error 

for the difference between the theoretical and market swaption volatilities.  

5. Minimize that function under several restrictions for VCV and obtain the 

specification of parameters Λi used in the calibration 

Code in Matlab used for the calibration as well as calibration results can be found in 

Appendix. 

If we analyse the eigenvalues and eigenvectors, we can see that we have obtained only 

two negative eigenvalues and of very small absolute value. However, their explanatory 

power is very low. In the table below is the value of the eigenvalue with the explanatory 

power in the model: 

 

 

 

 

 

 

            

Table 1. Explanatory  

Power of Eigenvalues 

 

The first four biggest eigenvalues have much bigger values than other eigenvalues. The 

eigenvectors associated with the first four biggest eigenvectors are presented below: 

 

 

 

 

 

Figure 5.  Eigenvectors  

associated with first  

four biggest values  

for optimized Λi 
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-0.077352 -0.043544311 -0.043544311
-0.037983 -0.02138204 -0.06492635
0.0076164 0.004287554 -0.060638796
0.060573 0.034098789 -0.026540007
0.084643 0.047648685 0.021108678
0.11274 0.063465529 0.084574206
0.24182 0.136129449 0.220703656
0.28975 0.163111025 0.38381468
0.46193 0.260037534 0.643852215
0.63266 0.356147785 1
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 Although the eigenvectors do not have the typical humps presented in many books, these 

values generate very small differences between the theoretical and market swaption 

volatilities. 

The biggest differences are denoted for 4 to 5 year length underlying swaps. The other 

differences for the volatilities in other maturities are not significant. This suggests that 

this type of calibration may be widely used in practice for valuation of various interest 

rate derivatives. 

 

 

 

 

 

 

 

 

 

 

Figure 6. Algebraic difference between theoretical and market swaption volatilities 

 

We have below a graphical representation of the optimized parameters Λi: 

 

 

 

 

 

 

 

 

 

 

    Figure 7. Parameters Λi  obtained through optimization 
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The RSME (root mean squared error for differences between theoretical and market 

swaption volatilities) for 100 iterations is 0.47053.  

If we increase the number of iterations in the optimization function, RSME has a much 

smaller value 0.013019, therefore the results obtained by means of calibration using the 

separated approach are much more accurate. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Parameters obtained for Λi through optimization with 1000 iterations as 

opposed to 100 iterations. (RSME100 = 0.47053; RSME1000 = 0.013019) 

Theoretical volatilities 100 iterations            Theoretical volatilities 1000 iterations 

RSME100 = 0.47053      RSME1000 = 0.013019 

 

 

 

 

 

 

 

 

 

 

Figure 9. Theoretical volatilities computed from optimization with 100/1000 iterations 
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Algebraic difference between theoretical        Algebraic difference between theoretical 

and market swaption volatilities     and market swaption volatilities                    

100 iterations        1000 iterations 

RSME100 = 0.47053      RSME1000 = 0.013019 

 

 

 

 

 

 

 

 

 

 

Figure 9. Algebraic difference between theoretical and market swaption volatilities 

computed from optimization with 100/1000 iterations 

 

Therefore, in order to obtain a smaller RSME we need to increase the number of 

iterations. 

 

In “LIBOR Market Model in Practice”, Gatarek, Bachert and Maksymiuk show that the 

results obtained by means of optimization give a much better RSME levels than by 

choosing an arbitrary function for Λi such as: 

• Λi = eδi 

• Λi = (eδi)1/2 

• Λi = δi – ln (δi) 

• Λi = [δi – ln (δi)]1/2 

• Λi = 1 
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5.2 Results - Approximate Solutions for Calibration   
         
Empirical Results on European Swaptions 

It is indeed plausible that the instantaneous volatility of a swap rate might be evaluated 

with sufficient precision by calculating the stochastic coefficients ζ using the initial yield 

curve. The ultimate proof of the validity of the procedure, however, is obtained by 

checking actual European swaption prices.  

The following test was therefore carried out. 

• The instantaneous volatility function described in equation (A) was used, with 

parameters chosen as to ensure a realistic and approximately time homogeneous 

behaviour for the evolution of the term structure of volatilities: a =5%, b = 0.5, c 

= 1.5, and d = 15%. In particular, the values of the vector k defined by equation 

(A) were set to unity, thereby ensuring a time-homogeneous evolution of the term 

structure of volatilities; 

• The correlation amongst the forward rates was assumed to be given by equation 

(B) with β= 0.1; 

• Given this parametrised form for the forward-rate instantaneous volatility, the 

instantaneous volatility of a given swap was integrated out to the expiry of the 

chosen European swaption. (C). The value of this integral could therefore be 

evaluated analytically and gave the required approximate implied volatility for the 

chosen European swaption; 

• With this implied volatility the corresponding approximate Black price was 

obtained; 

• Given the initial yield curve and the chosen instantaneous volatility function for 

the forward rates, the European swaption prices were computed. For this 

evaluation, the same correlation function was used in the estimation of the 

approximate price; 

Code in Matlab used for the calibration as well as calibration results can be found in 

Appendix. 

The results are shown below.   
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If we compare the Black volatility estimated by using this calibration technique 

(approximate functions proposed by Rebonato for the instantaneous volatility and 

instantaneous correlation and the approximative coefficients ζ -using the initial yield 

curve) with the market Black quoted volatilities, we can see that the biggest differences 

are denoted for swaptions with long implied volatilities. Swaptions starting in 4 years as 

well as long end starting swaptions have theoretical implied Black volatilities higher than 

the market quoted swaptions. 

 Therefore, as parameters for the evolution of the term structure of volatilities were 

chosen to be: a =5%, b = 0.5, c = 1.5, and d = 15%, we can conclude that that the very-

long maturities implied volatilities might not be accurately specified “d”. 
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Figure 10. Black volatility computed with Rebonato’s approximate functions vs. market 

volatility 
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Figure 11. Algebraic difference between theoretical and market swaption volatilities 

computed from Rebonato’s approximation 

 

RSME (the squared mean root between theoretical and market volatilities) is 0.34032. 

The error is comparable with the one obtained from the previous calibration, however 

theoretical Black volatilities are differently distributed, the main difference coming from 

the long-end starting swaptions. 

 In Figure 12, you can observe the prices for the swaptions determined by using 

the approximate functions for  volatility and correlation proposed by Rebonato. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12:  Theoretical swaption prices  
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After computing the whole swaption matrix for the initially chosen parameters: a = -0.05; 

b = 0.5; c = 1.5; d = 0.15; I checked the impact of a change in parameters on a swaption 

price and on the theoretically quantified Black volatility. The exercise was done for the 

swaption with the underlying swap starting one year from today and maturing one year 

after (1,2 swaption). 

The choice of parameters can be found below (Figure 13) 
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By changing the initially chosen parameters: a, b, c, d from the instantaneous 

volatility function proposed by Rebonato, I obtained a theoretical Black volatility for the 

1.2 swaption which is almost the same as the one quoted in the market. Parameter “a” has 

the greatest impact on the quantified  volatility. Moreover, I increased the value of “d” 

(gives the very-long maturities implied volatilities), and the value of “c” (gives the 

sensitivity of the instantaneous volatility to the changes in the relative distance in years 

between two forward rates). 

Therefore, we can conclude that the second method of calibration gives better 

results if we optimize the parameters used as inputs for the instanataneou volatility and 

correlation function {a, b, c, d, β} . 
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6. Concluding Remarks 
  

 

The goal of this paper was to compare two methods of calibration for the LIBOR 

Market Model: the separated approach with optimization (Gaterek) and the calibration 

using the approximate solution proposed by Rebonato&Jackel. 

 As far as the separated approach is concerned, it is based on the assumption that 

φkl
i = Λi * φkl, where φkl is an element of the covariance matrix. The calibration using the 

separated approach with optimization minimizes the root mean squared error for the 

differences between theoretical and market swaption volatilities. Therefore the Lambda 

parameters are computed, in order to minimize the error.  The conclusion drawn is that 

the method is accurate and provides good results for the error but is computationally 

intensive. If we increase the number of iterations in order to obtain a smaller error, even 

if the results do improve significantly, the computation also becomes quite lengthy. 

As for the second technique of calibration, using the approximate solutions 

proposed by Rebonato&Jackel, suffices to price European swaptions with a remarkable 

degree of accuracy. The mechanism responsible for this surprisingly good match using an 

approximate equivalent volatility was explained in the theoretical part. The error between 

theoretical and market prices for swaptions is similar to the error obtained from the first 

calibration technique (with 100 iterations). However, this error can be further minimized 

by optimizing the input parameters of the instantaneous volatility and correlation 

function. The issue of how the parameters of the forward rate instantaneous volatility 

function should be chosen is assumed to have been separately resolved to the trader’s 

liking. The trader could be interested in obtaining the best fit to the overall swaption 

matrix while pricing the caplets exactly. In order to achieve this task, one can first 

optimize iteratively over the parameters so as to find the set of {a, b, c, d, β} that best 

accounts for the swaption matrix. 
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By using the approximation for ζ the trader can tell in a quick and accurate way 

how well the swaption matrix is reproduced by the chosen functional form for the 

forward-rate instantaneous volatilities and correlations. A full swaption matrix can 

therefore be obtained in under a second. 

The main conclusion is that both methods of calibration offer significant results. 

The techniques can be improved in order to minimize the error of calibration as follows: 

• the separated approach with optimization (Gaterek)  - increase the number 

of iteration  with the disadvantage of a long lasting computation 

• the calibration using the approximate solution proposed by 

Rebonato&Jackel – optimize the value of the input parameters {a, b, c, d, 

β} of the instantaneous volatility and correlation functions in order to 

better fit the quoted swaption volatility matrix. 
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APPENDIX 

1. Results of computations - Calibration in the 

separated approach with optimization 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lambda
1.8945
2.9466
2.2588
4.3705
1.7558
3.709

3.6618
3.4925
2.9476
16.478

L (vector of eigenvalues)
-0.077352
-0.037983
0.0076164
0.060573
0.084643
0.11274
0.24182
0.28975
0.46193
0.63266

Matrix of eigenvectors
-0.0005025 -0.0006838 0.02485 0.44598 -0.034679 0.88069 0.14807 0.0359 -0.019707 0.0079537
-0.0019767 -0.0013833 -0.1083 -0.79336 0.01709 0.31697 0.47905 0.13612 -0.094556 0.033454
0.0027443 -0.0034131 0.33769 0.34393 0.0044404 -0.32397 0.7441 0.24696 -0.20873 0.066659
-0.020578 0.014617 -0.84251 0.19429 -0.035967 -0.10362 0.057411 0.17026 -0.42471 0.1646
-0.026676 0.051016 0.403 -0.12388 -0.14549 0.083271 -0.38549 0.20986 -0.7297 0.25637

0.27543 -0.40154 0.030252 0.0085615 0.6168 0.021125 0.058734 -0.47642 -0.19328 0.33651
-0.48266 0.5032 0.0098406 0.0006262 -0.11348 -0.0097982 0.13193 -0.51429 0.026167 0.46709
0.49602 -0.21389 -0.011927 -0.012291 -0.60716 -0.020975 0.034935 -0.03921 0.23719 0.52898

-0.46337 -0.30857 0.014613 0.0028677 0.24829 0.010416 -0.12262 0.50889 0.33786 0.48984
0.47883 0.66465 0.0029016 0.0078838 0.3904 0.014056 -0.076786 0.30691 0.16067 0.22444

RSME (Root Mean squared error between theoretical and market swaption volatilities)
0.47503
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VCV (matrix of covariances)
0.10549 0.029568 0.0086234 0.0034274 0.0017377 0.0011244 0.0008598 0.0007246 0.0006519 0.0006088

0.029568 0.11527 0.07809 0.023001 0.0093028 0.0048098 0.003143 0.0023735 0.0019713 0.0017358
0.0086234 0.07809 0.19437 0.076062 0.022192 0.008909 0.0046347 0.0030371 0.0023022 0.0019081
0.0034274 0.023001 0.076062 0.11863 0.17021 0.048717 0.019325 0.010037 0.0066259 0.0050401
0.0017377 0.0093028 0.022192 0.17021 0.34082 0.07926 0.022729 0.0089789 0.0046458 0.0030389
0.0011244 0.0048098 0.008909 0.048717 0.07926 0.17577 0.18199 0.051763 0.02029 0.010337

0.00085983 0.003143 0.0046347 0.019325 0.022729 0.18199 0.19266 0.1946 0.055296 0.021491
0.00072457 0.0023735 0.0030371 0.010037 0.0089789 0.051763 0.1946 0.21425 0.19662 0.055505
0.00065187 0.0019713 0.0023022 0.0066259 0.0046458 0.02029 0.055296 0.19662 0.26821 0.17534
0.00060881 0.0017358 0.0019081 0.0050401 0.0030389 0.010337 0.021491 0.055505 0.17534 0.050924

VCV-M (matrix of modified covariances)
0.10549 0.029568 0.0086234 0.0034278 0.0017374 0.0011241 0.0008655 0.0007109 0.0006779 0.0005729

0.029568 0.11527 0.07809 0.023003 0.0093042 0.0047888 0.0031904 0.0023089 0.0020583 0.0016276
0.0086234 0.07809 0.19437 0.076056 0.022179 0.0090196 0.004467 0.0031701 0.0022438 0.0019236
0.0034278 0.023003 0.076056 0.11867 0.17028 0.048056 0.020373 0.0091282 0.0071922 0.0046469
0.0017374 0.0093042 0.022179 0.17028 0.34097 0.077914 0.0247 0.0075409 0.005004 0.0033388
0.0011241 0.0047888 0.0090196 0.048056 0.077914 0.18776 0.16403 0.065593 0.015124 0.010401

0.00086552 0.0031904 0.004467 0.020373 0.0247 0.16403 0.22029 0.172 0.066698 0.016318
0.00071085 0.0023089 0.0031701 0.0091282 0.0075409 0.065593 0.172 0.23502 0.18134 0.068477
0.0006779 0.0020583 0.0022438 0.0071922 0.005004 0.015124 0.066698 0.18134 0.28844 0.15038

0.00057294 0.0016276 0.0019236 0.0046469 0.0033388 0.010401 0.016318 0.068477 0.15038 0.085439

Sig-theo (Theoretical swaption volatilities)
0.45015 0.36624 0.36472 0.33614 0.34875 0.32953 0.32092 0.31473 0.30977 0.29848
0.41495 0.4139 0.36014 0.36947 0.33969 0.32532 0.31505 0.30697 0.29284
0.3852 0.29983 0.3141 0.27888 0.26273 0.25148 0.24281 0.22922
0.3627 0.46749 0.3908 0.36024 0.33978 0.32446 0.3024

0.34853 0.24806 0.22558 0.21119 0.20015 0.18405
0.34312 0.33945 0.31707 0.2969 0.26755
0.34189 0.32552 0.30508 0.26751
0.32263 0.31292 0.26473
0.30957 0.2382
0.37791

Sig (market swaption volatilities)
0.45015 0.35627 0.2887 0.24184 0.21346 0.20411 0.20632 0.21522 0.22867 0.24539
0.41495 0.3282 0.26669 0.22478 0.20061 0.19324 0.19517 0.20272 0.21415
0.3852 0.30195 0.24389 0.20515 0.18411 0.17849 0.18108 0.18874

0.36264 0.28121 0.22529 0.18872 0.16993 0.16566 0.16898
0.34845 0.27074 0.21726 0.18214 0.16384 0.15943
0.33199 0.25764 0.20625 0.17227 0.15407
0.31972 0.24824 0.19853 0.16535
0.30805 0.23903 0.19076
0.29852 0.23166
0.29176
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2. Results of computations - Calibration by means of 

Approximate solutions according to Rebonato and 

Jackel 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Black volatility theoretical
0 0.22574 0.21901 0.20204 0.18793 0.17727 0.16903 0.16244 0.15697
0 0 0.31875 0.2955 0.27135 0.25317 0.23975 0.2295 0.22129
0 0 0 0.36591 0.3386 0.31321 0.29443 0.28065 0.27003
0 0 0 0 0.39915 0.37117 0.34603 0.32759 0.31393
0 0 0 0 0 0.42738 0.39953 0.37504 0.35699
0 0 0 0 0 0 0.45319 0.42569 0.40175
0 0 0 0 0 0 0 0.47743 0.45018
0 0 0 0 0 0 0 0 0.50046
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Black volatility market
0 0.35627 0.2887 0.24184 0.21346 0.20411 0.20632 0.21522 0.22867
0 0 0.26669 0.22478 0.20061 0.19324 0.19517 0.20272 0.21415
0 0 0 0.20515 0.18411 0.17849 0.18108 0.18874 0.19987
0 0 0 0 0.16993 0.16566 0.16898 0.177 0.18823
0 0 0 0 0 0.15943 0.1623 0.16968 0.18014
0 0 0 0 0 0 0.1523 0.15945 0.1696
0 0 0 0 0 0 0 0.15117 0.16086
0 0 0 0 0 0 0 0 0.1524
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

RSME 0.34032

Algaebraic Differences
0 -0.13053 -0.06969 -0.039801 -0.025523 -0.026842 -0.037291 -0.052779 -0.071701
0 0 0.05206 0.070727 0.070739 0.059927 0.044586 0.02678 0.0071394
0 0 0 0.16076 0.1545 0.13472 0.11335 0.091917 0.070166
0 0 0 0 0.22922 0.20551 0.17706 0.15059 0.1257
0 0 0 0 0 0.26795 0.23723 0.20536 0.17685
0 0 0 0 0 0 0.30089 0.26624 0.23214
0 0 0 0 0 0 0 0.32627 0.28932
0 0 0 0 0 0 0 0 0.34806
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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Swaption Price Matrix
0 0.39678 0.73559 0.97891 1.1757 1.3492 1.5082 1.655 1.7911
0 0 0.5091 0.91035 1.2183 1.4795 1.7153 1.9323 2.1334
0 0 0 0.54143 0.97719 1.3275 1.6334 1.9118 2.169
0 0 0 0 0.5598 1.0215 1.4048 1.7436 2.0537
0 0 0 0 0 0.57514 1.0589 1.467 1.8312
0 0 0 0 0 0 0.58958 1.0894 1.5168
0 0 0 0 0 0 0 0.5989 1.111
0 0 0 0 0 0 0 0 0.60545
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
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3. Matlab Routine for Calibration in the separated 

approach with optimization 

 
%Step1: The Matrix of Parameters [R] 
%Input: Vector of Discount Factors [B] 
%Output: Matrix of parameters [R] 
 
m=10; % Number of swaption maturities 
M=20; % Number of swaption maturities + number of swaption underlyings 
R=[]; % setting zeros  for matrix R as initial values 
for i=1:m 
for j=i+1:M-m+i 
 for k=i+1:j 
 R(i,j,k)=(B(k-1)-B(k))/(B(i)-B(j)); 
end 
end 
end 
 
%Step2: The matrix of covariances [VCV] as a function of parameters 
%Input: (1) Matrix of parameters [R] 
%     (2) Vector of Dates [T_num] 
%     (3) Matrix of market swaption volatilities [Sig] 
%     (4) Vector of initial parameters [Lambda] 
%Output: Matrix of covarinaces (VCV) as a function of parameters (Lambda) 
 
VCV=[]; % setting zeros for matrix VCV as initial values 
%Diagonal elements of matrix VCV 
for k=1:m 
 VCV(k,k)=yearfrac(Today,T_Num(k))*Sig(k,1)^2/Lambda(k); 
end 
s=1; 
for i=1:m 

for j=i+1:m  
Sum=0; 

for l=i+j-2*s+1:j+1 
for k=i+j-2*s+1:j+1 

SumTemp=R(i+j-2*s,j+1,k)*R(i+j-2*s,j+1,1)*VCV(k-1,l-1); 
Sum=Sum+SumTemp; 

end 
end 
VCV(i+j-2*s,j)=((yearfrac(Today,T_Num(i+j-2*s))*Sig(i+j-2*s,i+1)^2-Lambda(i+j-
2*s)*(Sum-2*R(i+j-2*s,j+1, i+j-2*s+1)*VCV(i+j-2*s,j)*R(i+j-
2*s,j+1,j+1)))/2*Lambda(i+j-2*s)*R(i+j-2*s,j+1, i+j-2*s+1)*R(i+j-2*s,j+1,j+1)); 
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VCV(j, i+j-2*s)=VCV(i+j-2*s,j); 
end 
s=s+1  
end 
 
%Step 3: The vector of EigenValues [L] and the parix of eigenvestors [E] as a 
%function of parameters [Lambda] 
%Input: Matrix of covariances [VCV] as a function of parameters [Lambda] 
%Output: (1) Vector of Eigenvalues [L] as a function of parameters [Lambda] 
      %(2) Matrix of eigenvectors [E] as a function of parameters [Lambda] 
 
[E,X]=eig(VCV); 
L=diag(X); 
 
%Step 4: The modified covariance matrix [VCV_M] as a function of parameters 
%lambda 
%Input: (1) Vector of Eigenvalues [L] as a function of parameters [Lambda] 
   %(2) Matrix of eigenvectors [E] as a function of parameters [Lambda] 
%Output: Modified covariance matrix [VCV_M] as a function of parameters [Lambda] 
 
% Step 4 contains a sub-algorithm for eliminating eigenvectors associated with negative 
%eigenvalues 
 
for i=1:m 
if L(i)<0 
 L_check(i)=1; 
else 
 L_check(i)=0; 
end 
end 
 
%Matrix [E_sqrL] constructed by multiplying eigenvectors by square root of  
%associated positive eigenvalues 
 
for i =1:m 
 if L_check(i)==0 
for j=1:m 
 E_sqrL(j,i)=E(j,i)*sqrt(L(i)); 
end 
else 
for j=1:m 
 E_sqrL(j,i)=0 
end 
end 
end 
VCV_M= E_sqrL* transpose(E_sqrL); % transposed 
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%Step 5: Calculation of theoretical swaption volatilities [Sig_theo] 

%Input: (1) Matrix of parameters [R] 
  %  (2): Matrix of modified covariance [VCV_M] 
%Output: Matrix of theoretical swaption volatilities [Sig_theo] 
 
 
 
Sig_theo=[]; 
for k=1:m 
for N=k+1:m+1 
Sum=0; 
for l=k+1:N 
for i=k+1:N 
SumTemp=R(k,N,i)*VCV_M(i-1,l-1)*R(k,N,l); 
Sum=Sum+SumTemp; 
end 
end 
Sig_theo(k,N-k)=sqrt(Sum*Lambda(k)/yearfrac(Today,T_Num(k))); 
end 
end 
 
%Step 6: RSME between theoretical and market swaption volatilities 

 
%Input: (1) Matrix of theoretical colatilities [Sig_theo] 
  % (2) Matrix of market swaption volatilities [Sig] 
%Output: RSME between th and market swaption volatilities 
 
RSME=0 
for i=1:m 
for j=1:m-i+1 
RSME_Temp=(Sig_theo(i,j)-Sig(i,j))^2; 
RSME=RSME+RSME_Temp; 
end 
end 
f=RSME;  
 
% function f will be used as a minimization function 
 
 
options=optimset('MaxIter',100) 
 
[Lambda,f]=fminsearch(@CalibrationObjectiveFunction_SeparatedOptim,Lambda
0,options); 
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4. Matlab Routine for Calibration by means of 

Approximate solutions according to Rebonato and 

Jackel 
 

Functions used: 

%Based on eq 2  
function ret= W0fn(i) 
 global P; 
 global tau; 
 global alpha; 
 global beta; 
 tmpsum=0; 
 for i=alpha:beta-1, 
  tmpsum=tmpsum+P(i+1)*tau; 
 end 
 ret=(P(i+1)*tau)/tmpsum; 
 
for i=alpha:beta-1 
W(i)= W0fn(i); 
end 
 
 
%based on eq 6 
function ret= eta0_approx(j,k) 
 global F; 
 global alpha; 
 global beta; 
 tmpsum=0; 
 for i=alpha:beta-1, 
  tmpsum=tmpsum + W0fn(i)*F(i); 
 end 
 ret= (W0fn(j)*F(j)*W0fn(k)*F(k)) / (tmpsum^2); 
 
 
%returns fair rate of swap 
function ret = GetSwapRate(F,alpha,beta) 
 global tau; 
 tmp_sum=0; 
 SR=1; 
 tmp=1; 
 for j=alpha:beta-1, 
  tmp=tmp*(1/(1+tau*F(j))); 



 47 
 

 end 
 SR=1-tmp; %numerator  
 for i=alpha:beta-1, 
  tmp=1; 
  for j=alpha:i, 
   tmp=tmp*(1/(1+tau*F(j)));    
  end 
  tmp_sum=tmp_sum + (tau*tmp); 
 end 
 SR=SR/tmp_sum; 
 ret=SR; 
 
 
%From analytical formula 
function ret= IndefinteIntegral(i,j,t) 
 global a; 
 global b; 
 global c; 
 global d; 
 global T; 
 vol_beta=0.1; 
 ti=T(i); 
 tj=T(j); 
 tmp=4*a*c^2*d*  (  exp(c*(t-tj))+exp(c*(t-ti))  ); 
 tmp=tmp+ 4*c^3*d^2*t; 
 tmp=tmp - 4*b*c*d*exp(c*(t-ti))  *  (c*(t-ti)-1); 
 tmp=tmp - 4*b*c*d*exp(c*(t-tj))  *  (c*(t-tj)-1); 
 tmp2=2*a^2*c^2; 
 tmp2=tmp2+ 2*a*b*c*(1+(ti+tj-2*t)); 
 tmp2=tmp2+ b^2*(1 + 2*c^2*(t-ti)*(t-tj) + c*(ti+tj-2*t)  ); 
 tmp=tmp+exp(c*(2*t-ti-tj))*tmp2; 
 ret=exp(-vol_beta*abs(ti-tj))   *     (1/(4*c^3))  * tmp; 
 
 
%based on eq 12 
function ret= Afn(i) 
 global P; 
 global F; 
 global tau; 
 global beta; 
 tmpsum=0; 
 for j=i:beta-1, 
  tmpsum=tmpsum+ P(j+1)*F(j)*tau; 
 end 
 ret=tmpsum; 
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%based on eq 13 
function ret= Bfn(i) 
 global P; 
 global tau; 
 global beta; 
 tmpsum=0; 
 for j=i:beta-1, 
  tmpsum=tmpsum+ P(j+1)*tau; 
 end 
 ret=tmpsum; 
 
 
%revised formula for etaij as mentioned in eq 15 
function ret= eta0(i,j) 
 global P; 
 global tau; 
 global F; 
 global alpha; 
 global beta; 
 tmp1= (P(i+1)*F(i)*tau)/ (Afn(alpha)); 
 tmp11= (Afn(alpha)*Bfn(i)-Afn(i)*Bfn(alpha))*F(i)*tau; 
 tmp11=tmp11/ (Afn(alpha)*Bfn(alpha)*(1+F(i)*tau)); 
 tmp1=tmp1 +tmp11; 
 tmp2= (P(j+1)*F(j)*tau)/ (Afn(alpha)); 
 tmp22= (Afn(alpha)*Bfn(j)-Afn(j)*Bfn(alpha))*F(j)*tau; 
 tmp22=tmp22/ (Afn(alpha)*Bfn(alpha)*(1+F(j)*tau)); 
 tmp2=tmp2 +tmp22; 
 ret=tmp1*tmp2; 
 
 
%black price  
function ret= Black(K,Forward,v) 
 d1=(log(Forward / K) + 0.5 * v * v) / v; 
 d2 = d1 - v; 
 Nd1=normal_cdf(d1); 
 Nd2=normal_cdf(d2); 
 ret=(Forward * Nd1 - K * Nd2); 
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Matlab routine: 

 

global tau; 
global P; 
global T; 
global F; 
global a; 
global b; 
global c; 
global d; 
global alpha; 
global beta; 
 
 
tau = 1; %indexing interval 
alpha=10; %start peg of swap 
beta=10; %end peg of swap 
 
a = -0.05; 
b = 0.5; 
c = 1.5; 
d = 0.15; 
 
P=B;  
%set to appropriate discount curve to use 
F=zeros(size(P,1)-1,1); %forward rate curve 
T=0:tau:10; 
for i=1:size(F), 
 F(i)=(P(i)/P(i+1)-1)/tau; 
end 
 
 
tmpsum=0; 
for j=alpha:beta-1, 
 for k=alpha:beta-1, 
  tmp=IndefinteIntegral(j,k,T(alpha))-IndefinteIntegral(j,k,0); 
  tmpsum=tmpsum+ eta0(j,k)*tmp;   %use eta0_approx for eq 6 
 end 
end 
 
black_volatity=tmpsum^0.5; 
tmpsum=0; 
for i=alpha:beta-1, 
 tmpsum=tmpsum+tau*P(i+1); 
end 
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SR=GetSwapRate(F,alpha,beta); %fair value of swap 
K=SR; %swaption is ATM 
 
swaption_price=tmpsum*Black(K,K,black_volatity)*100; 
tmpblack=Black(K,K,black_volatity); 
tmpstr=sprintf('swap start=%f   \nswap end=%f      \nswaption 
price=%f',T(alpha),T(beta),swaption_price); 
disp(tmpstr); 
 
Black_Vol_Matrix =[0 black_volatity_1_2 black_volatity_1_3 black_volatity_1_4 
black_volatity_1_5 black_volatity_1_6 black_volatity_1_7 black_volatity_1_8 
black_volatity_1_9 0; 0 0 black_volatity_2_3 black_volatity_2_4 black_volatity_2_5 
black_volatity_2_6 black_volatity_2_7 black_volatity_2_8 black_volatity_2_9 0; 0 0 0 
black_volatity_3_4 black_volatity_3_5 black_volatity_3_6 black_volatity_3_7 
black_volatity_3_8 black_volatity_3_9 0; 0 0 0 0 black_volatity_4_5 black_volatity_4_6 
black_volatity_4_7 black_volatity_4_8 black_volatity_4_9 0;  0 0 0 0 0 
black_volatity_5_6 black_volatity_5_7 black_volatity_5_8 black_volatity_5_9 0; 0 0 0 0 
0 0 black_volatity_6_7 black_volatity_6_8 black_volatity_6_9 0; 0 0 0 0 0 0 0 
black_volatity_7_8 black_volatity_7_9 0; 0 0 0 0 0 0 0 0 black_volatity_8_9 0; 0 0 0 0 0 
0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0]; 
 
Swaption_Price_Matrix =[0 swaption_price_1_2 swaption_price_1_3 
swaption_price_1_4 swaption_price_1_5 swaption_price_1_6 swaption_price_1_7 
swaption_price_1_8 swaption_price_1_9 0; 0 0 swaption_price_2_3 swaption_price_2_4 
swaption_price_2_5 swaption_price_2_6 swaption_price_2_7 swaption_price_2_8 
swaption_price_2_9 0; 0 0 0 swaption_price_3_4 swaption_price_3_5 
swaption_price_3_6 swaption_price_3_7 swaption_price_3_8 swaption_price_3_9 0; 0 0 
0 0 swaption_price_4_5 swaption_price_4_6 swaption_price_4_7 swaption_price_4_8 
swaption_price_4_9 0;  0 0 0 0 0 swaption_price_5_6 swaption_price_5_7 
swaption_price_5_8 swaption_price_5_9 0; 0 0 0 0 0 0 swaption_price_6_7 
swaption_price_6_8 swaption_price_6_9 0; 0 0 0 0 0 0 0 swaption_price_7_8 
swaption_price_7_9 0; 0 0 0 0 0 0 0 0 swaption_price_8_9 0; 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 
0 0 0 0 0 0] 
 
m=10 
RSME=0 
for i=1:m 
for j=1:m-i+1 
RSME_Temp=(Vol_Market_Matrix_modified(i,j)- Black_Vol_Matrix (i,j))^2; 
RSME=RSME+RSME_Temp; 
end 
end 

 


