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Abstract 

 

The purpose of this dissertation paper is to conduct a comprehensive analysis of 

unspanned stochastic volatility in commodity markets with focus and empirical evidence 

on crude-oil market. Using crude-oil futures and options on futures data from New York 

Mercantile Exchange (NYMEX) there are presented model-free results that strongly 

suggest the presence of unspanned stochastic volatility in the crude-oil market. Sharp oil 

prices changes exert influence on macroeconomic activity in general and crude-oil 

industry in particular. The importance of the results is that they show the extent to which 

volatility risk is spanned by the futures contracts. The extent to which crude-oil futures 

contracts trading span volatility will indicate if options on futures are redundant securities 

or there is needed a mixed strategy combining both types of crude-oil market derivatives 

(futures and options) to fully hedge against volatility risk.  
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1. Introduction 

 

Over the last few years, the persistent sharp oil prices changes in both the spot and 

futures markets have represented perhaps the most striking challenge to the forecasting 

abilities of private and public institutions worldwide. From the demand side increasing 

crude-oil prices led to new challenges in hedging against volatility risk. 

While volatility is clearly stochastic, it is not clear to what extent volatility risk 

can be hedged by trading in the commodities themselves or, more generally, their 

associated futures contracts, forward or swap contracts, in other words, the extent to 

which volatility is spanned.  

Existing equilibrium models from commodity markets imply that volatility risk is 

largely spanned by the futures contracts. Mainly, they suggest that market volatility is 

embedded in inventories which are the basis for futures price formation. Therefore by 

construction futures offer a high degree of volatility spanning.  

The consequence of these models is that they imply that options on futures are 

redundant securities. In spite of this, the data provided form Bank of International 

Settlements – BIS – strongly suggests that the market for commodity derivatives has 

exhibited phenomenal growth over the past few years. For exchange-traded commodity 

derivatives, the BIS estimates that the number of outstanding contracts more than 

doubled from 12.4 million in June 2003 to 32.1 million in June 2006. For over-the-

counter (OTC) commodity derivatives, the growth has been even stronger with the BIS 

estimating that, over the same period, the notional value of outstanding contracts 

increased five-fold from USD 1.04 trillion to USD 6.39 trillion. Importantly, a large and 

increasing fraction of the commodity derivatives are options (as opposed to futures, 

forwards and swaps). According to BIS statistics, options now constitute over one-third 

of the number of outstanding exchange-traded contracts and almost two-thirds of the 

notional value of outstanding OTC contracts. 

 The purpose of this paper is to show that if, for a given commodity, volatility 

contains important unspanned components it cannot be fully hedged and risk-managed 

using only the underlying instruments and options are not redundant securities. 
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The unspanned stochastic volatility evidence research is conducted in crude-oil 

market because it is by far the most liquid commodity derivatives market. The data for 

the analysis was provided by New York Mercantile Exchange – NYMEX – and contains 

a large set of futures and options on futures contracts prices. Since volatility is not 

directly observable I will use, for different options maturities, straddle returns and 

implied volatility of the at-the-money options straddles as proxies for the true volatility 

and I will show the extent to which futures contracts span volatility. If volatility is 

completely spanned by trading in futures contracts then the equilibrium models for 

commodity markets are correct in assuming that commodities futures prices formation 

incorporates market volatility. If shown on contrary, it means that options on futures are 

not redundant securities and their role is to extend the degree of hedging which futures 

contracts traditionally offer.   

 The reason for choosing these two volatility proxies is that straddle returns are not 

conditioned on a particular pricing model. Returns are obtained from daily options on 

futures market prices from NYMEX. While using the implied volatility, though it might 

be more accurate, it involves using a pricing model.  

 Previously, this approach was used to evidence the unspanned stochastic volatility 

in fixed-income market, more specifically to show the extent to which trading of bonds 

span the term structure of interest rates. 

 The dissertation paper is organized as follows. Section 2 contains a literature 

review of the models which treated the stochastic volatility in commodity and financial 

markets. Section 3 briefly presents the crude-oil derivatives data used in this paper and 

the computational aspects behind data which was used as input for the model. In section 4 

the paper contains the model used to evidence of the unspanned stochastic volatility in 

crude-oil market. Section 5 presents model estimation and analysis. Finally, in Section 6 

there are to be found the conclusion which can be drawn from this paper. Section 7 

contains the reference list and Section 8 the relevant additional information – Annexes - 

which are mentioned in the paper content. 
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2. Literature Review 

 

The first equilibrium models from commodity markets implied that futures 

contracts provide insurance against price volatility, the level of inventories being 

negatively related to the required risk premium of commodity futures. The starting point 

of these models was the traditional Theory of Storage originally proposed by Kaldor 

(1939). The theory provides a link between the term structure of futures prices and the 

level of inventories of commodities. This link, also known as “cost of carry arbitrage,” 

predicts that in order to induce storage, futures prices and expected spot prices of 

commodities have to rise sufficiently over time to compensate inventory holders for the 

costs associated with storage. Developments in this area were made by Deaton and 

Laroque (1992), Chambers and Bailey (1996), Routledge, Seppi and Spatt (2000). Their 

models predict a link between the level of inventories and future spot price volatility. 

Inventories act as buffer stocks which can be used to absorb shocks to demand and 

supply, thus dampening the impact on spot prices. Deaton and Laroque show that at low 

inventory levels, the risk of “stock-out” (exhaustion of inventories) increases and 

expected future spot price volatility rises. In an extension of the Deaton and Laroque 

model which includes a futures market, RSS show how the shape of the futures curve 

reflects the state of inventories and signals expectations about future spot price volatility. 

DL (1992) and RSS (2000) have explained the existence of a convenience yield as arising 

from the probability of a stock-out of inventories. Because they study storage in a risk-

neutral world, risk premiums are zero by construction, and futures prices simply reflect 

expectations about future spot prices. 

Another reference model, the model in Litzenberger and Rabinowitz (1995) and 

Ng and Pirrong (1994), incorporates the embedded option in reserves of extractable 

resource commodities. Finally it has similar implications. The relationship between 

volatility and the slope of the futures - Litzenberger and Rabinowitz (1995) showed it for 

crude oil, and Ng and Pirrong (1994), for metals - show that the degree of backwardation 

is indeed positively related to volatility, implying that volatility does contain a 

component that is spanned by the futures contracts. However, whether volatility also 

contains important unspanned components was not shown. 
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Other papers, which emphasize production/extraction and investment decisions 

for the formation of futures prices, include those of Casassus, Collin-Dufresne, and 

Routledge (2003), Kogan, Livdan, and Yaron (2005) and Carlson, Khoker, and Titman 

(2006).  

In their paper, Gordon, Hayashi and Rouwenhorst (2005), analyzed the 

fundamentals of commodity futures returns and predicted a link between the state of 

inventories, the shape of the futures curve, and expected futures risk premiums. They 

showed that show that the convenience yield is a decreasing, non-linear relationship of 

inventories and also linked the current spot commodity price and the current (nearest to 

maturity) futures price to the level of inventories, and empirically documented the 

nonlinear relationship predicted by the existence of the non-negativity constraint on 

inventories. In particular, they showed that low inventory levels for a commodity are 

associated with an inverted (“backwardated”) term structure of futures prices, while high 

levels of inventories are associated with an upward sloping futures curve (“contango”). 

 The existence of unspanned volatility factors was first evidenced in fixed income 

market. Collin-Dufresne and Goldstein (2002) and Heidari and Wu (2003) defined 

unspanned stochastic volatility as being those factors driving Cap and Swaption implied 

volatilities that do not drive the term structure of interest rates. In other words they 

showed that trading in underlying bonds do not span the term structure of interest rates. 

There are embedded factors in Cap and Swaption that bonds do not contain and make 

them more valuable in hedging against interest rates volatility risk That is, in contrast to 

the predictions of standard short-rate models, bonds do not span the fixed income market. 

 Using Collin-Dufresne and Goldstein (2002) approach, Trolle and Schwartz 

(2006) extended the problem with existence of unspanned stochastic volatility to 

commodity markets. They developed a tractable model for pricing commodity derivatives 

in the presence of unspanned stochastic volatility. The model features correlations 

between innovations to futures prices and volatility, quasi-analytical prices of options on 

futures and futures curve dynamics in terms of a low-dimensional affine state vector. 

Their evidence was on crude-oil market due to its liquidness and showed that in the 

presence of unspanned stochastic volatility factors options are not redundant securities. 

The model and the evidence could be extended as well on the other commodity markets. 
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Richter and Sorensen (2007) have a work in progress for a stochastic volatility model in 

the presence of unspanned volatility factors for the soybean market.  

 

3. Overview of the Data 
 

 As mentioned before, crude-oil market is the most liquid commodity market. The 

data used in this paper was delivered by New York Mercantile Exchange - NYMEX. It 

contains large data set of futures and options on futures prices with different maturities 

and strike prices.  The futures data contains daily prices for futures contracts starting with 

January 1987 and ending with May 2008. Since options on futures prices were available 

for research purposes only for June 2002 – December 2006 period, I chose to use the 

futures contracts prices for the same interval.  

 The NYMEX futures contract trades in units of 1,000 barrels, and the delivery 

point is Cushing, Oklahoma, which is also accessible to the international spot markets via 

pipelines. The contract provides for delivery of several grades of domestic and 

internationally traded foreign crude, and serves the diverse needs of the physical market. 

The NYMEX symbol for light-sweet crude-oil is CL. Crude oil futures are listed nine 

years forward using the following listing schedule: consecutive months are listed for the 

current year and the next five years; in addition, the June and December contract months 

are listed beyond the sixth year. Additional months will be added on an annual basis after 

the December contract expires, so that an additional June and December contract would 

be added nine years forward, and the consecutive months in the sixth calendar year will 

be filled in. The futures expire on the third business day prior to the 25th calendar day of 

the month proceeding the delivery month. If the 25th calendar day of the month is a non-

business day, expiration is on the third business day prior to the business day proceeding 

the 25th calendar day.  

 For my purpose I extracted from various maturities only futures contracts with 

time-to-maturity 1 Month, 3 Months, 6 Months, 9 Months and 1 Year. The reason is that 

crude-oil spot prices established on spot markets are not available. Mainly, spot prices are 

settled on one to one transactions between partners based on current market conditions. 

Therefore the 1 Month time-to-maturity futures contract serves as a proxy for the crude- 
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oil spot prices. The 1 Year time-to-maturity futures prices are continuous during the June 

2002 – December 2006 sample so I chose not to include them in the analysis. The 

quarterly maturities correspond to the traditional hedging strategy of a crude-oil refining 

based company. Being given the optimal refining capacity usually the company engages 

in a rolling futures contract with quarterly maturities providing the company with the 

necessary crude oil amount at a certain price which can be used for financial forecasts.  

� While futures offer price protection by allowing the holder of a futures contract to 

lock in a price level, a major advantage of options is that the holder of an options contract 

is afforded price protection, but still has the ability to participate in favorable market 

moves. Because the buyer of an options contract has the options contract but not the 

market moves against a position, and a trader holds on to this option, the maximum cost 

is the price he has already paid for the option. 

On the other hand, if the market moves in favor of a position, the virtually 

unlimited profit potential to the buyer of an options contract is parallel to a futures 

position, net of the premium paid for the options contract. Therefore, protection from 

unfavorable market moves is achieved at a known cost, without giving up the ability to 

participate in favorable market moves. Options on futures contracts expire three business 

days prior to the expiration of the underlying futures.  

For the research I chose crude-oil calendar spread options on futures. The reason 

is that calendar spread options are the most traded crude-oil options derivatives on 

NYMEX and thus the results of my study will be more representative. Also they imply 

delivery of the underlying asset as opposed to other derivatives which are only settled in 

cash, for example European Style options – NYMEX symbol LO. Their NYMEX trading 

symbol for calendar spread options is WA. The contract is simply an options contract on 

the price differential between two delivery dates for the same commodity. The price 

spread between contract months can be extremely volatile because the energy markets are 

more sensitive to weather and news than any other market. A widening of the month-to-

month price relationships can expose market participants to severe price risk which could 

adversely affect the effectiveness of a hedge or the value of inventory. The calendar 

spread options can allow market participants who hedge their risk to also take advantage 

of favorable market moves. 
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For the corresponding three maturities of the futures prices I extracted 

corresponding calendar spread straddles. One straddle consists of a call and a put option 

with the same strike. More, I chose the at-the-money straddles since they are sensitive to 

market volatility (“Vegas” peak for the at-the-money straddles). At-the-money property 

of an option means that the option has the strike price equal or near to spot price.  

This computation is helpful to extract from the whole options and futures sample 

the data I need for the evidence of unspanned stochastic volatility.   

 

4. The Model 

 

 If equilibrium models are correct and changes in crude oil prices are spanned by 

the futures contracts then in order to hedge against volatility risk one may construct a 

portfolio of futures contracts for this purpose.  

 One simple alternative to evidence if the conclusion of these models is correct is 

to simply regress changes in volatility from crude oil markets on futures contracts prices 

and see if they fully explain volatility changes. But volatility in crude oil market as well 

as in other commodity and financial markets is stochastic and not directly observable. 

Therefore I will use two reasonable proxies for the true and unobservable volatility – at-

the-money calendar spread straddles prices and at-the-money calendar spread straddles 

implied volatility. 

 A straddle consists of a call and a put option on the same underlying with the 

same strike. When purchasing a straddle the investor expects the market to spike in either 

direction. This is the case of long at-the-money straddle strategy which will be used 

throughout this paper as opposite to short at-the-money straddle which is used when 

market is expected to be quiet (expecting minor changes in volatility). Therefore we can 

say that by purchasing a straddle the investor trades volatility. Straddle profits are 

unlimited in either direction while losses are limited to the premium paid for both options 

which form the straddle.  

 The reason for selecting straddles as volatility proxies is the straddle Greeks 

indicators. The price of a near-ATM straddle has low sensitivity to variations in the price 
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of the underlying futures contract (since “deltas” are close to zero for ATM straddles) but 

high sensitivity to variations in volatility (since “Vegas” peak for ATM straddles). 

 Delta (Δ ) and Vega (ν ) for at-the-money straddles: 
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    The indicators were derived from the Black-Scholes option pricing formula 

where: 

 V – Value of the option; 

 S – Stock price; 

 q – Annual dividend yield; 

 τ  - Time to maturity (T-t); 

 σ  - Volatility; 

 r – Risk free rate; 

 Φ(d1) - The probability of exercise under the equivalent exponential martingale 
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Bellow graphic exhibits the typical payoff function of an at-the-money straddle:  
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 To avoid the non-stationary problem with straddle and futures prices, which is 

common to almost all asset prices I will use for further analysis straddle returns and 

futures returns. 

 Straddle returns are computed as follows:  
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 Where: 

 iS - The spot price of the underlying commodity. For calendar spread options type 

the underlying commodity spot price is the price differential from current market price 

and the futures price of the futures contract which at the maturity of the option.  

 K – The strike price; 

 putcall ππ , - Call and Put option prices; 

 The futures contracts returns are simply computed this way: 

jMonthiijMonthi icetractFuturesConiceSpotreturnsfutures ,, PrPr_ −=  

 Where: 

 iiceSpot Pr - The crude-oil spot price. In absence of a transparent spot market the 

spot price is computed as the price of the futures contract with shortest time to maturity, 

the contract with expiration the following month. 

 jMonthiicetractFuturesCon ,Pr - The today observed market price of the futures 

contract with expiration in “j” months. As mentioned before j = 3, 6, 9 Months.   

 

 There are three alternatives to evidence the presence of unspanned stochastic 

volatility in crude oil market: 

- Investigate how much of the variation in the prices of derivatives highly exposed 

to stochastic volatility (so-called “straddles”) can be explained by variation in the 

underlying futures prices; 

- Investigate how much of the variation in implied volatilities (which is related to 

expectations under the risk-neutral measure of future volatility) can be explained by 

variation in the underlying futures prices; 
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-� Investigate how much of the variation in realized volatility, estimated from high 

frequency data, can be explained by variation in the underlying futures prices.  

- Investigate how much of the volatility of the variance swaps can be explained by 

variation in the underlying futures prices.  

 Unfortunately high-frequency data is available only for calendar spread options. 

Also variance swaps are quite illiquid in the market therefore I will use only the first two 

approaches for evidence. �

 For the approach which requires the use of straddle implied volatility, this is 

computed as the average of straddle component put and call options implied volatilities. 

The put and call implied volatilities are obtained from put and call formulas of the Black-

Scholes model. 

 Briefly, the formulas for call and put options derived from the Black-Scholes 

partial differential equation are: 
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Φ is the cumulative distribution function. Φ(d1) and Φ(d2) are the probabilities of 

exercise under the equivalent exponential risk neutral measure and the equivalent risk 

neutral probability measure, respectively. 

  Being given the call and put option prices, the underlying futures price, the 

current and maturity date, the strike price and the risk free rate, the implied volatility is 

computed using the Newton-Raphson method. It is a root-finding algorithm that uses the 

first few terms of the Taylor series of a function )(xf in the vicinity of a suspected root. 

Newton's method is also known as Newton's iteration.   

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://mathworld.wolfram.com/Root-FindingAlgorithm.html
http://mathworld.wolfram.com/TaylorSeries.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/NewtonsIteration.html
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The Taylor series of )(xf about the point ε+= 0xx is given by: 

...)(''
2
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Keeping terms only to first order: 

εε )(')()( 000 xfxfxf +≈+  

This expression can be used to estimate the amount of offset ε  needed to land 

closer to the root starting from an initial guess 0x . Setting 0)( 0 =+ εxf and solving the 

above equation for 0εε ≡ gives: 
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This is the first-order adjustment to the root's position. By letting ε+= 01 xx , 

calculating a new 1ε , and so on, the process can be repeated until it converges to a fixed 

point (which is precisely a root) using:   

)('
)(

0

0
0 xf

xf
−=ε  

Therefore with a good initial choice of the root's position, the algorithm can be applied iteratively to 

obtain: 
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Many commodity markets as well as financial markets are characterized by a high 

degree of collinearity between returns. In order to extract the most uncorrelated sources 

of variation in a multivariate system I will use principal components analysis (PCA) for 

the futures returns.  

Mainly, principal components analysis objective is to: 

- Reduce dimensionality by taking into account only the most relevant 

principal components from the whole data set; 

http://mathworld.wolfram.com/TaylorSeries.html
http://mathworld.wolfram.com/Root.html
http://mathworld.wolfram.com/FixedPoint.html
http://mathworld.wolfram.com/FixedPoint.html
http://mathworld.wolfram.com/Root.html
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- Avoid near multicollinearity issues for the returns and use in further 

analysis only uncorrelated components. Also, these components 

characterize the data and are useful for drawing conclusions;  

Mathematical background: 

The data input to principal component analysis must be stationary. Principal 

component analysis is based on eigenvalues and eigenvector analysis of V =X’XT, the k 

x k symmetric matrix of correlations between the variables in X. Each principal 

component is a linear combination of these columns, where the weights are chosen in 

such way that: 

- the first principal component explains the greatest amount of the total 

variation in X, the second component explains the greatest amount of the 

remaining variation, and so on; 

- the principal components are uncorrelated to each other; 

 

Denoting by W the k x k matrix of eigenvectors of V. Thus: 

VW=WΛ  

Where Λ  is the k x k diagonal matrix of eigenvalues of V. Then we order the 

columns of W according to the size of corresponding eigenvalue. Thus if )( ijwW =  for 

i,j=1,…,k then the m-th column of W, denoted ),...,( 1 kmmm www = , is the k x 1 

eigenvector corresponding to the eigenvalue mλ and the column labeling has been chosen 

so that kλλλ >>> ...21 . 

Therefore the m-th principal component of the system is defined by: 

kkmmmm XwXwXwP +++= ...2211  

Where iX denotes the i-th column of X, the standardized historical input data on 

the i-th variable in the system. In matrix notation the above definition becomes: 

mm XwP =  

Each principal component is a time series of the transformed X variables, and the 

full T x m matrix of principal components, which has mP as its m-th column, may be 

written as: 
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P=XW 

The procedure leads to uncorrelated components because: 

 

P’P=W’X’XW=TW’WΛ  

 

W is an orthogonal matrix, which means 1' −=WW  and so P’P=TΛ . Since this is 

a diagonal matrix the columns of P are uncorrelated, and the variance of the m-th 

principal component is mλ (sum of eigenvalues). However, the sum of the eigenvalues is 

k, the number of variables in the system. Therefore, the proportion of variation explained 

by the first n principal components together is: 

k
n

i
i /

1
∑
=

λ    

 Because of the choice of labeling in W the principal components have been 

ordered so that 1P belongs to the first and largest eigenvalue 1λ , 2P belongs to the first 

and largest eigenvalue 2λ , and so on. In a highly correlated system the first eigenvalue 

will be much larger than the others, so the first principal component alone will explain a 

large part of variation. 

 Since 1' −=WW , is equivalent to X=PW’, that is: 

 

kikiii PwPwPwX +++= ...2211  

 

 Thus each vector of the data input may be written as a linear combination of the 

principal components.  

To sum up principal component analysis it is a way of identifying patterns in data, 

and expressing the data in such a way as to highlight their similarities and differences. 

Since patterns in data can be hard to find in data of high dimension, where the luxury of 

graphical representation is not available, principal components analysis is a powerful tool 

to achieve this. 

The principal components analysis will be illustrated in the next section on the 

highly correlated crude-oil futures prices returns. 
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In order to evidence the presence of unspanned stochastic volatility in crude-oil 

market I will use the first two approaches mentioned above: investigate how much of 

straddle returns and straddle implied volatilities variation can be explained by the 

variation of the futures returns.  

The evidence procedure consists of three steps: 

a)  The first step is principal components analysis of the correlation matrix of 

daily futures returns. We retain all the principal components identified in the analysis in 

an attempt to not exclude from evidence any source of variation embedded in a 

component, though that component might have minor significance.   

 b) For each futures contract “i” I regress the daily closest to the at-the-money 

straddle returns on the futures returns principal components.  

  For each futures contract “i” I regress the daily straddle implied volatilities 

on futures returns principal components. The daily straddle implied volatility is related to 

the average expected (under the risk-neutral measure) volatility of the underlying futures 

contract over the life of the option.  

Since in commodity and financial markets the returns dependency is rarely linear 

I will introduce in the regression equation the squared principal components also, in an 

attempt to take into account non-linearities between straddle returns and implied 

volatilities and futures returns. Therefore if I take into account just one principal 

component the regression equation to catch non-linearity will be: 

εββα +++= 2
21 xxy  

The coefficient for the squared principal component will be important (as long as 

it is significant) just for the sign indicating the convexity or concavity of the dependency.  

Another aspect is taking into account the cross-products dependencies of the 

straddle returns and implied volatility. These dependencies reflect changes in the 

marginal effect of one explanatory variable given others. Considering straddle returns and 

first two principal components the transformation can be written as: 

εβββββα ++++++= xwwxwxy 5
2

4
2

321  

 By rewriting the equation above as: 

εβββββα ++++++= )()( 531
2

42 wxxwwy  
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 We can interpret the intercept as a function of w and the slope of x as changing 

with w and x.  

 To sum up, taking into consideration both squared components and cross-product 

between components the regression equations for both approaches may be written as: 

Straddle returns regression: 

t
iiiiiiiiiiii xxxxxxxxxxxxy εβββββββββα ++++++++++= 329318217

2
36

2
25

2
14332211

 

Implied volatility regression: 

t
iiiiiiiiiiii xxxxxxxxxxxxz εβββββββββα ++++++++++= 329318217

2
36

2
25

2
14332211

 

 Where: 

 3,2,1, =ixi - The principal components of the futures return data. They numbered 

according to they variation explanatory power from principal component with highest 

eigenvalue to the principal component with smallest eigenvalue.  

 iy - The straddle returns at “i” maturity. In my case i = 3, 6, 9 Months. 

 iz  - The implied volatility of the straddles at “i” maturity.  

Both regressions will indicate the extent to which volatility is spanned by the 

futures contracts.  

c) Finally, I will analyze the principal components of the time series of 

residuals from the straddle return regressions and the implied volatility regressions. The 

principal components of the residuals are, by construction, independent of those of the 

futures returns. If there is unspanned stochastic volatility in the data, there should be at 

least one significant explanatory principal component for the variation due to unspanned 

factors. If the residuals are simply due to noisy data, there should not be one principal 

component with high explanatory power among residuals. 

 

5. The Model Estimation and Analysis 

 

Commodity futures prices are characterized by some important properties: 

- Commodity futures prices are often “backwardated" in that they decline with 

time to delivery,  
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- Spot and futures prices are mean reverting; 

- Commodity prices are strongly heteroscedastic and price volatility is correlated 

with the degree of backwardation;  

- Unlike financial assets, many commodities have pronounced seasonality in both 

price levels and volatilities. 

 Being given S(t) the time-t crude-oil spot price and F(t, T ) [P(t, T )] the time-t 

price of a crude-oil futures contract [zero-Coupon bond] with maturity T - t. The futures 

contract is backwardated if S(t) - P(t, T )F(t, T ) > 0 and strongly backwardated if S(t) - 

F(t, T ) > 0. 

 For our futures date the results confirm the above “backwardation” property: 

 
Backwardation type vs.  
Maturity of the Futures Contract 

3 
Months

6 
Months 

9 
Months 

Backwardation Degree(%) 45.6 52.7 55.3 

Strongly Backwardation Degree(%) 94.3 95.4 96.2 

 

Table 1 – The simple and strong “backwardation” degree 

 As time to maturity increases so does the backwardation degree. If we take a look 

on the futures prices graphical representation for various maturities we see that clearly 

the market was in contango, although market expectations derived from the prices of 

futures contracts for the same maturities were bearish.  

 
Graph 1 – Futures prices 
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 The strongly heteroscedasticity property of commodities, which can be translated 

as the property of futures prices to have time dependant functions for mean ( )(tμ ) and 

variance ( )(2 tσ ) poses a serious problem for out further econometric estimations. 

 In order to test the validity of property I will use Augmented Dickey-Fuller 

(ADF) test for the 3 Months futures prices. The ADF test is a unit root test which is 

carried out by estimating the following equation: 

tptttt yyyty εδδγβα +Δ++Δ+++=Δ −−− 1111 ...  

 This is the most restrictive form of the test, which includes the intercept ( )α and 

the trend (β ). The null hypothesis is that the coefficient of the level variable (γ ) is 0, 

which means the series is non-stationary, or less than 0 otherwise. I carried out the test 

for the futures prices with 3 Month maturity in levels using only the intercept. The results 

were: 
Null Hypothesis: FUTURES_3M has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -1.200488  0.6763 

Test critical values: 1% level  -3.435876  

 5% level  -2.863868  

 10% level  -2.568060  

*MacKinnon (1996) one-sided p-values.  

  

Table 2 – The ADF test results for 3 Months Futures Prices 

 The value of the ADF test is larger than the critical values for all levels of 

confidence meaning that we cannot reject the null hypothesis of the futures prices series 

being non-stationary. 

  Therefore I will further use futures returns instead of futures prices. Futures 

returns are computed as shown in 4th section as:  

jMonthiijMonthi icetractFuturesConiceSpotreturnsfutures ,, PrPr_ −=  
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 Building the futures returns time series offer the advantage of stationary. Indeed if 

we carry out once again the ADF test for the 3 Months futures returns, the value of the 

ADF test will reject the null hypothesis.  
  

Null Hypothesis: FCR_3M has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -6.498157  0.0000 

Test critical values: 1% level  -3.966124  

 5% level  -3.413762  

 10% level  -3.128951  

*MacKinnon (1996) one-sided p-values.  

 

Table 3 – The ADF test results for 3 Months Futures Returns 

 The ADF unit root tests for the 6 Months and 9 Months futures returns may be 

found in the Annex section of this paper (Table 13, 14, 15).  

 The graphical representation of the crude-oil futures returns for the chosen 

maturities show that in crude-oil market futures returns are highly correlated.   

 
Graph 2 – Futures returns (3 Months, 6 Months, 9 Months) 
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 This highly correlation suggests that for example the 9 Months futures returns are 

not only influenced by the crude-oil spot price but also by intermediate maturities futures 

returns. Next I will present the futures returns correlation matrix. The correlation 

coefficients are closed to 1 indicating as well a high correlation degree.  
  

 FCR_3M FCR_6M FCR_9M 

FCR_3M  1.000000  0.984578  0.965624 

FCR_6M  0.984578  1.000000  0.995120 

FCR_9M  0.965624  0.995120  1.000000 

  

Table 4 – Futures returns correlation matrix 

 If we examine the first column of the model we see that the correlation degree 

tends to decrease with maturity though very slightly.  

Since crude-oil futures returns are explanatory variables in my classical linear 

regression model, the highly correlated returns pose the problem of near 

multicollinearity. In this case, it is not possible to estimate all of the “betas” from the 

model. In the presence of multicollinearity, it will be hard to obtain small standard errors.

 Therefore I will use futures returns principal components analysis as a solution for 

the near multicollinearity problem.   

The starting point in identifying the futures returns principal components is the 

futures returns correlation matrix. Bellow there is presented the eigenvalues and 

eigenvectors of the futures returns correlation matrix. The eigenvectors are ordered after 

the corresponding eigenvalue, starting with the highest.  
 

Date: 07/06/08   Time: 17:16  

Sample (adjusted): 6/10/2002 10/20/2006 

Included observations: 1140 after adjustments 

Correlation of FCR_3M FCR_6M FCR_9M   

 Comp 1 Comp 2 Comp 3 

Eigenvalue  2.963599  0.035471  0.000930 

Variance Prop.  0.987866  0.011824  0.000310 

Cumulative Prop.  0.987866  0.999690  1.000000 
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Eigenvectors:   

Variable Vector 1 Vector 2 Vector 3 

FCR_3M -0.574725 -0.769887  0.277426 

FCR_6M -0.580496  0.144590 -0.801323 

FCR_9M -0.576815  0.621585  0.530016 

    

 

Table 5 – The eigenvalues and eigenvectors of futures returns correlation matrix 

  

The first principal component, which will be further denoted as 1PC , has the 

highest eigenvalue, which is responsible for explaining 98.76% ( k/1λ , where k is the 

matrix dimension, in my case 3) of the variation of the future returns. If we look at 

corresponding eigenvector weights they are quite similar due to strong correlation 

between futures returns.  

The significance of the first principal component corresponding eigenvector 

weights is that an upward shift in the first principal component induces a downward 

parallel shift of the futures returns curve. For this reason first principal component is 

called the trend component.  

 
 Graph 3 – 3M futures return curve reaction to 1PC upward shift. 
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 As shown in the theoretical section of my paper starting from the eigenvectors we 

can get to the original data applying the following formula: 

kikiii PwPwPwX +++= ...2211  

 The graph above shows by comparison the 3M futures return curve after inducing 

an upward shift in the first component. The downward parallel shift is explainable due to 

negative and similar weights of the eigenvector.   

The second principal component, which will be further denoted as 2PC , explains 

only 1.18% of futures returns variation. The weights are increasing from “-” to “+”. Thus 

an upward movement of the second principal component induces a change in slope of the 

futures returns, where short maturities move down and long maturities move up. The 

second principal component significance is that 1.18% of the total futures return variation 

is attributed to changes in slope. 

 
Graph 4– 3M futures return curve reaction to 2PC upward shift. 

The third principal component, which will be further denoted as 3PC , explains 

only 0.03% of the futures returns variation.  The weights are positive for the short term 

returns, negative for the medium term returns and positive for the long term returns. 

Therefore we can say that the third component influences the convexity of the returns 

curve. The significance of the third principal component is that 0.03% of the total 

variation is due to changes in convexity.  
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Graph 4– 3M futures return curve reaction to 3PC upward shift. 

 

Given the variance explained by each principal component I may choose to drop 

the third component and use only the first two components in the regression, since they 

cumulated explain 99.97% of the futures returns variation. I chose not to drop it since I 

want to see if changes in convexity have significance in explaining volatility in crude-oil 

markets as well.  

As I previously mentioned the main purpose when using principal components 

analysis was to eliminate the strong correlation among futures returns. Indeed if we check 

the correlation matrix of principal components we see that correlation indices are close to 

0 indicating that we managed to extract patterns from original data which move 

independently.  

 
  PC1 PC2 PC3 

PC1 1.00000000000000 0.00000000000000 -0.00000000000002 

PC2 0.00000000000000 1.00000000000000 -0.00000000000011 

PC3 -0.00000000000002 -0.00000000000011 1.00000000000000 

 

Table 6 – Principal components correlation matrix 

 I decided to include squared principal components and principal components 

cross-product in an attempt to take into account possible non-linearity between volatility 
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proxies and futures returns. Though, this may lead as well to near multicollinearity issue. 

In Annex part of this paper you may find the correlation matrix of principal components 

(Table 16). The correlation indices are not high, the highest values are for correlations 

between squared principal components of the first two components and cross-product 

between them (0.336674).  

 Next, I will compute the time series of volatility proxies I chose. The first 

volatility proxy is straddle returns for the same maturity as futures returns (3 Months, 6 

Months and 9 Months). Straddle returns were computed using: 

⎪
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 The period of the sample from which I extracted the straddles was 10/6/2002 – 

12/14/2006. When I built the straddles I looked mainly for at-the-money straddles 

(straddles with strike price near or equal to spot price). The daily frequency of the data 

was not so high, therefore there were days when just only straddle may be computed from 

the put and call options available. I decided to take it into account for further evidence 

imposing though the condition that strike price divided by the underlying asset spot price 

to be in the interval (0.75; 1.25). Where straddle could not be computed due to lack of 

data or values outside the (0.75; 1.25) interval I used for the missing daily straddle 

information the previous available straddle returns value.  

 The 3Months straddle returns series is represented in the bellow graphic.   

 
Graph 5– 3M straddle returns curve 
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 Further, I will carry out the ADF unit root test to see if we can work with the level 

series or there is needed at least on difference in order to obtain a stationary series. The 

output of the ADF test (carried out with both intercept and trend included) is: 
  

Null Hypothesis: WA_3M has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 2 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -7.405778  0.0000 

Test critical values: 1% level  -3.966139  

 5% level  -3.413769  

 10% level  -3.128955  

*MacKinnon (1996) one-sided p-values.  

 

Table 7 – Calendar spread straddle returns ADF test result 

 The value of the ADF test is lower than test critical values. Therefore the null 

hypothesis can be rejected leading to conclusion that calendar spread options straddle 

returns for the mention period are stationary.  

 In Annex part of this paper there are shown unit root tests results carried out for 

straddle returns for 6 Months and 9 Months maturities (Table 17, 18).  

 The second volatility proxy is the straddle implied volatility. As mentioned, 

straddle implied volatility is computed as the average of Call and Put options which form 

the straddle implied volatility.  

2
IVIV

IV
PutCallStraddle +

=  

 The implied volatility is derived from Black-Scholes formulas for Call and Put 

options using the options market prices and the risk free rate of the US T-Bills with 3 

Months and 6 Months maturities. For the 9 Months maturity the risk free rate was not 

available, therefore I computed it as the average of 6 Months and 1 Year risk free rate.  

 The graphical representation of 3M straddle implied volatility.  
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Graph 6– 3M straddle implied volatility curve 

 The layout of 3M of straddle implied volatility ADF unit root test shows the series 

is stationary allowing use it as volatility proxy for our unspanned stochastic volatility 

research.  
 

Null Hypothesis: WA_IV_3M has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 4 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -5.262452  0.0001 

Test critical values: 1% level  -3.966153  

 5% level  -3.413776  

 10% level  -3.128960  

*MacKinnon (1996) one-sided p-values.  

 

Table 8 – Calendar spread 3M straddle returns ADF test result 

 

 Next, I will regress calendar spread (NYMEX symbol WA) straddle returns on 

principal components of the futures returns, squared principal components of the returns 

and cross-products between components. Since 2R  is the square of the correlation 

coefficient between the values of the dependant variables and corresponding fitted values 

from the regression model. Using straddle returns as a volatility proxy the 2R  will 
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indicate the extent to which volatility is spanned by trading in the futures contracts, 

which information is emphasized by the principal components used as regressors. 

However, there are some issues around the 2R as goodness of fit measure.  

- If we change the order of the regressors the value will change; 

- 2R  will never fall if we add extra regressors ; 

Therefore, I will rely on Adjusted 2R as goodness of fit measure since it takes into  

account the loss of degrees of freedom associated with adding extra variable (squared 

principal components and cross-products between them). 

2R = ⎥⎦
⎤

⎢⎣
⎡ −

−
−

− )1(11 2R
kT

T  

 Where, k is the number of degrees of freedom.  

 The layout of the 3M straddle returns regression on futures returns principal 

components is presented bellow. 
 

Dependent Variable: WA_3M   

Method: Least Squares   

Date: 06/30/08   Time: 21:04   

Sample (adjusted): 6/10/2002 10/20/2006  

Included observations: 1140 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.425578 0.013792 30.85750 0.0000 

PC1 0.173028 0.005772 29.97657 0.0000 

PC2 0.275921 0.057700 4.782031 0.0000 

PC3 2.162054 0.385089 5.614420 0.0000 

PC1*PC1 0.057807 0.002972 19.45140 0.0000 

PC2*PC2 0.583068 0.196789 2.962914 0.0031 

PC3*PC3 -1.675284 2.113742 -0.792568 0.4282 

PC1*PC2 0.311658 0.028326 11.00240 0.0000 

PC1*PC3 0.643695 0.181391 3.548663 0.0004 

PC2*PC3 -1.974297 1.457376 -1.354693 0.1758 

R-squared 0.612262     Mean dependent var 0.616018 

Adjusted R-squared 0.609173     S.D. dependent var 0.501939 
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S.E. of regression 0.313793     Akaike info criterion 0.528565 

Sum squared resid 111.2664     Schwarz criterion 0.572764 

Log likelihood -291.2818     F-statistic 198.2596 

Durbin-Watson stat 0.685380     Prob(F-statistic) 0.000000 

 

Table 9 – Calendar spread 3M straddle returns regression on principal components of 

futures returns output 

 We notice that the coefficients for squared third principal component and product 

between second and third component are not significant. Though, the third principal 

component (the convexity influence on variance) explained only 0.03% of the total 

futures returns variation. Lack of significance for the coefficient does not influence the 

results.  

 We see that straddle returns have a non-linear dependency on the futures returns 

trend component. The values of the coefficient for 1PC and 1
2PC are both positive which 

means the straddle returns dependency on trend component takes the shape of an 

increasing convex function. Since 1PC is responsible for explaining 98.76% of the futures 

return variation we might say that an upward movement in 1PC will lead to a parallel 

downward shift of the straddle returns. The slope )( 2PC  coefficient is significant as well. 

An upward movement in )( 2PC will make straddle returns to decrease for short maturities 

and increase for long maturities. This change has also a degree of convexity 

( 2
2PC coefficient is significant), but since 2PC is responsible only with 1.18% 

explanation for the whole futures returns variation the convexity is slight. Also the 

marginal influence of the components is significant – trend component change on slope 

component change and trend component change on convexity component change).  

 The regression both 2R and 2R are low 0.61 and 0.60, which indicates that trading 

in futures contracts do not span much of crude-oil prices volatility embedded in our 

volatility proxy – straddle returns. For commodity and financial markets high 2R and 

2R should exceed 0.85, whereas 2R and 2R bellow 0.7 indicate that volatility risk cannot 

be hedged using only futures contracts.  
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One problem which may appear is the residuals autocorrelation. A key 

assumption for Ordinary Least Squares method is that residuals have the following 

property: 

jiuu ji ≠∀= ,0),cov(  

 Since by iu we denote the residuals of the regression estimation the property 

assumes that covariance between errors over time are 0. Having autocorrelation among 

residuals it is not a problem by itself. But since it is a key assumption of OLS if it is 

violated it means that estimated coefficients may not be significant. In the Annex part of 

this paper there are presented the test performed to evidence and eliminate residuals 

autocorrelation (Table 19,20). 

If we examine the squared residuals correlogram we see that we have partial 

autocorrelation among squared residual at lag 1 and 2. We try to model the residuals in 

order to get rid of the partial autocorrelation by introducing two MA (Moving Average) 

terms – MA (1) and MA (2). Running the regression with second order MA terms leads 

to a different regression output. We eliminate residuals autocorrelation (Durbin-Watson 

test is close to 2). The 2R and 2R increase (0.76 and 0.75) but the most important fact is 

the significance of the main coefficients remains unchanged - 1PC , 1PC -squared, 

21 * PCPC . 

 Later on I will use regression residuals to evidence the presence of unspanned 

stochastic volatility in crude-oil market. Therefore I will retain the residuals form the 

original regression.  

 Running the regressions for the 6 Months and 9 Months maturities exhibits same 

low values for 2R and 2R for 6 Months regression – 0.64 and 0.63 – whereas for 9 

Months the results are even lower – 0.24 and 0.23. The results indicate that most 

volatility risk cannot be hedged by trading in the futures contracts.  
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Futures Returns (Principal Components) 
Regression Output 

R^2 
Adjusted 

R^2 
S.E. From 

Regression 
Sum of the Squared Residuals 

3M Straddle 
Returns 

0.612262 0.609173 0.313793 111.2664 

6M Straddle 
Returns 

0.639721 0.636852 0.478931 259.1941 
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9M Straddle 
Returns 

0.239385 0.233327 1.041255 1225.16 

 

Table 10 – 2R and 2R from straddle return regressions 

  

We notice that the explanatory power of the futures contracts decreases with 

maturity. The standard errors from regression as well as the sum of the squared residuals 

increases with maturity meaning that the gap between yy ˆ− (actual versus fitted of 

straddle returns) increases while time-to-maturity increases.   

 Now we want to investigate how much of the variation in straddle implied 

volatilities (which is related to expectations under the risk-neutral measure of future 

volatility) can be explained by variation in the underlying futures prices. 

 I used the same approach as in straddle returns regressions. The coefficient 

significance it is quite similar. There is the same partial autocorrelation problem for the 

squared residuals. Introducing MA terms in the regression equation does not change the 

significance of the estimated coefficients therefore we may assume that the regression 

estimation was successful. 

 In straddle implied volatility case the capacity of futures contracts variation to 

span crude-oil market volatility is even lower which confirms what the conclusion from 

straddle returns regression that one cannot hedge much against volatility risk using only 

trading of futures contracts.  

 Implied volatility regressions output as well as the procedure for eliminating 

partial autocorrelation among residuals are shown in the Annex part of this paper (Table 

21-25). I will retain the implied volatility residuals as well for further evidence.  
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Futures Returns (Principal Components) 
Regression Output 

R^2 
Adjusted 

R^2 
S.E. From 

Regression 
Sum of the Squared 

Residuals 

3M Straddle 
Implied Volatility 

0.179701 0.173167 0.447045 491.46 

6M Straddle 
Implied Volatility 

0.064359 0.056907 0.850868 818.0939 
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9M Straddle 
Implied Volatility 

0.055037 0.04751 1.424951 2294.449 

 

Table 11 – 2R and 2R from straddle implied volatility regressions 

 

The first remark is that the highest explanatory power is for the shortest maturity 

(3M) but still very low. Straddle implied volatilities 2R and 2R evidence that there is a 

very low extent in which futures returns can be used to hedge against volatility.  Also the 

explanatory power of the futures contracts decreases with maturity. The standard errors 

from regression as well as the sum of the squared residuals increases with maturity 

meaning that the gap between yy ˆ− (actual versus fitted of straddle returns) increases 

while time-to-maturity increases.   

 There are both advantages and disadvantage for using these approaches to 

evidence the presence of unspanned stochastic volatility.  

  

Straddle returns: 

“+” Straddle returns are not conditioned on a particular pricing model. They  

are computed based on NYMEX observed call and put premiums, corresponding strike 

prices. The only assumption in straddle computation is the choice of the shortest time-to-

maturity futures contract as a proxy for the crude-oil spot price. 

“-“ Straddles have high gammas ( 2

2

S
V

∂
∂  = 

TS
d

σ
ϕ )( 1 , where V is the option  

premium – Call or Put). Gamma shows how much will vary the value of the option at 

high changes in crude-oil spot price. It indicates the convexity of the option value. Since 

straddles are built to hedge against significant changes in crude-oil prices they are subject 



 33

to high gammas. The assumed significant variant spot price is used in computation of 

both straddle returns and futures returns. As shown in futures returns principal 

components analysis and in the significance of estimated coefficients from the straddle 

returns regression straddle returns are convex in futures returns. Though, even if volatility 

is completely unspanned by the futures contracts the presence of squared principal 

components (measuring convexity of the dependencies) may not lead to results close to 0. 

This may be one of the explanations for higher 2R and 2R in straddle returns regressions 

than in straddle implied volatility regressions. 

  

Straddle implied volatilities: 

“+” If volatility is completely unspanned by futures contracts result will be 0  

or closed to 0. If we look at the results this is the case for 9M straddle implied volatility 

regression.  

“-“ The results for straddle implied volatilities are conditioned on the accuracy  

of the pricing model we use. In our case we conditioned on Black-Scholes model.  

  

The third and final step in my evidence is analyzing of the residuals from the 

regression. I retained the three sets of residuals from each regression type. Next, I will 

extract the principal components out of each set of regression residuals.  If there is 

unspanned stochastic volatility in the data, there should be large common variation in the 

residuals. Using the principal components analysis properties this should lead us to a first 

principal component which embeds most of the variation from the residuals. If the 

residuals are simply due to noisy data, there should not be common variation in the 

residuals. 

The output of principal components analysis for the two data sets containing 

regression residuals are presented in the Annex part of this paper (Table 26, 27). Bellow 

can be found the synthesis of the analysis.   
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Principal Components Analysis 

Common Variation 
Among Residuals 

PC1 
explanatory 

power for the 
variance 
among 

residuals (%) 

PC2 
explanatory 

power for the 
variance among 

residuals (%) 

PC3 
explanatory power for 
the variance among 

residuals (%) 

Straddle Returns 
Residuals 76.69 16.86 6.43 

Straddle Implied 
Volatility Residuals 77.64 16.62 5.72 

 

Table 12 – explanatory power of the first three principal components of the regression 
residuals 

 
For the straddle return regressions, the first principal component explains 76.69% 

of the variation in the residuals across maturities, while for the implied volatility 

regressions, it explains 77.64%. The main property of principal component analysis is 

that it identifies patterns in data. The strong explanatory power of the first component 

evidence the presence of large common variation in the residuals, which strongly 

indicates that low 2R and 2R from the regressions are primarily due to an unspanned 

stochastic volatility factor rather than noisy data. 

 One potential weakness of above procedure is that it assumes the estimated 

coefficients are constant over the 1140 observation length sample. In reality this is not the 

case, they are time varying. To compensate this I will split the entire sample in four 

“windows” of 285 observations each. I will repeat the procedure for these rolling 

windows and see if the new results are consistent with previously illustrated unspanned 

stochastic volatility evidence. The aggregated results are displayed in the Annex part of 

this paper (Table 28, 29).  

 Briefly, the rolling window results display the same low 2R and , 2R meaning that 

futures variance has low explanatory power on straddle returns– the volatility proxy - 

even if we split the sample. 2R and 2R are higher for 6 Months maturity than for 3 

Months but sensible lower for the 9 Month maturity. The sum of the squared residuals 

increases with maturity.   

Analyzing the principal components of the residuals of the rolling window 

straddle return regression we notice that first component explanatory power ranges from 
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49.5% to 92%. This suggest as well the presence of large common variation in the 

residuals, the signal that low 2R and 2R are due to an unspanned stochastic volatility 

factor rather than noisy data. 

 

6. Conclusions 

  

 In this dissertation paper I presented evidence of the unspanned stochastic 

volatility in crude-oil market. The results are important since they contradict the general 

commodity equilibrium models derived mainly from Kaldor’s (1939) Theory of Storage, 

models applied to crude-oil market as well, which suggest that crude-oil market spot 

prices volatility is determined by the levels of inventories. On the other hand these 

models suggest the inventories levels are the basis for futures prices formation. 

 If we rely on these approaches it will mean that trading in futures contracts will be 

enough to protect against volatility risk. Though, the data obtained from BIS – Bank of 

International Settlements – states that the number of options on futures derivatives is 

highly increasing for crude-oil market.  

 Secondly, there are oil refining companies who still use hedging strategies based 

on entering a rolling futures contract with different maturities to protect against volatility 

risk. In my example I simulated one of these strategies with a rolling futures contract with 

quarterly maturities. The results obtained from the evidence procedure suggest that there 

is at least one unspanned stochastic volatility factor which cannot be hedged. The low 

results for 2R and 2R clearly show the low extent to which futures contracts hedge 

against volatility risk. Therefore, the rolling futures contract strategy is not of much help. 

 The results are important because they do not rely on a particular pricing model – 

the case of straddle returns. The implied volatility regression results, though they are 

model dependant, emphasize the straddle returns regression result.  

 Further direction in this area will mean to extend the evidence procedure taking 

into account high frequency data as Andersen and Benzoni (2005) did for fixed income 

market. 

 Also a good direction will be to develop an option pricing model to take into 

account the unspanned stochastic volatility. 
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  There could be interesting to investigate the unspanned stochastic volatility in 

other commodity markets less liquid where the futures contracts trading covers the most 

part of the transactions. For example metals commodities markets.  
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8. Annex 

Table 13 - ADF test for crude-oil spot futures prices 
 

Null Hypothesis: FUTURES_SPOT has a unit root 

Exogenous: Constant   

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -1.337612  0.6138 

Test critical values: 1% level  -3.435876  

 5% level  -2.863868  

 10% level  -2.568060  

*MacKinnon (1996) one-sided p-values.  

     

 

Table 14 – ADF test for crude-oil 6 Months futures returns 

 

Null Hypothesis: FCR_6M has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -5.408393  0.0000 

Test critical values: 1% level  -3.966124  

 5% level  -3.413762  

 10% level  -3.128951  

*MacKinnon (1996) one-sided p-values.  

 

Table 15 – ADF test for crude-oil 9 Months futures returns 
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Null Hypothesis: FCR_9M has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -5.131246  0.0001 

Test critical values: 1% level  -3.966124  

 5% level  -3.413762  

 10% level  -3.128951  

*MacKinnon (1996) one-sided p-values.  

 

Table 16– Principal components, Squared principal components and Cross-products 

between principal components correlation matrix. 
 

  PC1 PC2 PC3 PC1^2 PC2^2 PC3^2 PC12 PC13 PC23 

PC1  1.000000                 

PC2  1.96E-15  1.000000               

PC3 0.00 0.00  1.000000             

PC1^2  0.076823 -0.15 -0.14  1.000000           

PC2^2 -0.22 -0.37 -0.01  0.207121  1.000000         

PC3^2 -0.05  0.100960  0.480248  0.015384  0.096237  1.000000       

PC12 -0.12 -0.36  0.125049  0.336674  0.314062 -0.02  1.000000     

PC13 -0.17  0.083183 -0.37  0.080146  0.016955 -0.14 -0.12  1.000000   

PC23  0.081019  0.002317  0.429687 -0.08 -0.25  0.627921  0.016908 -0.14  1.000000

 

 

Table 17 – ADF test for calendar spread 6 Months straddle returns 
 

Null Hypothesis: WA_6M has a unit root  

Exogenous: Constant, Linear Trend  

Lag Length: 0 (Automatic based on SIC, MAXLAG=22) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -5.758844  0.0000 
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Test critical values: 1% level  -3.966124  

 5% level  -3.413762  

 10% level  -3.128951  

*MacKinnon (1996) one-sided p-values.  

 

Table 18 – ADF test for calendar spread 9 Months straddle returns 
 

 

Null Hypothesis: WA_RET_9M has a unit root  

Exogenous: Constant   

Lag Length: 0 (Automatic based on SIC, MAXLAG=15) 

   t-Statistic   Prob.* 

Augmented Dickey-Fuller test statistic -3.715733  0.0044 

Test critical values: 1% level  -3.454626  

 5% level  -2.872121  

 10% level  -2.572482  

*MacKinnon (1996) one-sided p-values.  

 

Table 19 – Partial autocorrelation among residuals of 3M straddle returns regression on 

principal components of the futures returns 
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Table 20 – Calendar spread 3M straddle returns regression on principal components of 

futures returns output including which models the residuals in order to eliminate partial 

autocorrelation 
 

Dependent Variable: WA_3M   

Method: Least Squares   

Date: 07/07/08   Time: 13:48   

Sample (adjusted): 6/10/2002 10/20/2006  

Included observations: 1140 after adjustments 

Convergence achieved after 23 iterations  

White Heteroskedasticity-Consistent Standard Errors & Covariance 

Backcast: 6/06/2002 6/07/2002  

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.454981 0.022262 20.43761 0.0000 

PC1 0.161534 0.011063 14.60119 0.0000 

PC2 0.119649 0.108860 1.099107 0.2720 

PC3 1.606924 0.519199 3.095005 0.0020 

PC1*PC1 0.051177 0.006797 7.529449 0.0000 

PC2*PC2 0.298509 0.257420 1.159618 0.2464 

PC3*PC3 -1.498973 2.788953 -0.537468 0.5911 

PC1*PC2 0.243046 0.061034 3.982122 0.0001 

PC1*PC3 0.488360 0.373483 1.307581 0.1913 

PC2*PC3 -0.440279 2.290440 -0.192225 0.8476 

MA(1) 0.576291 0.048558 11.86812 0.0000 

MA(2) 0.299662 0.044152 6.787111 0.0000 

R-squared 0.759935     Mean dependent var 0.616018 

Adjusted R-squared 0.757594     S.D. dependent var 0.501939 

S.E. of regression 0.247128     Akaike info criterion 0.052653 

Sum squared resid 68.88970     Schwarz criterion 0.105693 

Log likelihood -18.01213     F-statistic 324.6113 

Durbin-Watson stat 1.831519     Prob(F-statistic) 0.000000 

Inverted MA Roots -.29+.47i     -.29-.47i  

 



 42

Table 21 – Calendar spread 6M straddle returns regression on principal components of 

futures returns output. 
 

Dependent Variable: WA_6M   

Method: Least Squares   

Date: 06/30/08   Time: 21:04   

Sample (adjusted): 6/10/2002 10/20/2006  

Included observations: 1140 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob.   

C 0.891877 0.021050 42.36981 0.0000 

PC1 0.182752 0.008810 20.74417 0.0000 

PC2 -0.204198 0.088065 -2.318715 0.0206 

PC3 -0.470916 0.587749 -0.801218 0.4232 

PC1*PC1 0.149071 0.004536 32.86512 0.0000 

PC2*PC2 1.707215 0.300352 5.684044 0.0000 

PC3*PC3 -6.490724 3.226136 -2.011919 0.0445 

PC1*PC2 -0.201998 0.043234 -4.672244 0.0000 

PC1*PC3 0.750564 0.276851 2.711075 0.0068 

PC2*PC3 2.792259 2.224345 1.255317 0.2096 

R-squared 0.639721     Mean dependent var 1.388184 

Adjusted R-squared 0.636852     S.D. dependent var 0.794751 

S.E. of regression 0.478931     Akaike info criterion 1.374214 

Sum squared resid 259.1941     Schwarz criterion 1.418414 

Log likelihood -773.3022     F-statistic 222.9399 

Durbin-Watson stat 0.233306     Prob(F-statistic) 0.000000 

 

 

Table 22 – Calendar spread 6M straddle returns regression on principal components of 

futures returns output. 
 

Dependent Variable: WA_9M   

Method: Least Squares   

Date: 06/29/08   Time: 12:58   
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Sample (adjusted): 6/10/2002 10/20/2006  

Included observations: 1140 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob.   

C 2.180095 0.045765 47.63684 0.0000 

PC1 -0.157929 0.019154 -8.245442 0.0000 

PC2 0.067175 0.191464 0.350847 0.7258 

PC3 -3.488171 1.277838 -2.729743 0.0064 

PC1*PC1 0.148414 0.009861 15.04992 0.0000 

PC2*PC2 0.444897 0.653002 0.681310 0.4958 

PC3*PC3 11.68019 7.014011 1.665266 0.0961 

PC1*PC3 0.051355 0.601908 0.085320 0.9320 

PC1*PC2 -0.089425 0.093995 -0.951386 0.3416 

PC2*PC3 2.515891 4.835997 0.520243 0.6030 

R-squared 0.239385     Mean dependent var 2.646579 

Adjusted R-squared 0.233327     S.D. dependent var 1.189192 

S.E. of regression 1.041255     Akaike info criterion 2.927464 

Sum squared resid 1225.160     Schwarz criterion 2.971664 

Log likelihood -1658.654     F-statistic 39.51549 

Durbin-Watson stat 0.060293     Prob(F-statistic) 0.000000 

 

Table 23 – Calendar spread 3M straddle implied volatilities regression on principal 

components of futures returns output. 
 

 

 

Dependent Variable: WA_IV_3M   

Method: Least Squares   

Date: 06/30/08   Time: 20:42   

Sample (adjusted): 6/10/2002 10/20/2006  

Included observations: 1140 after adjustments 

Variable Coefficient Std. Error t-Statistic Prob.   

C 2.134059 0.133923 15.93501 0.0000 
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PC1 0.179456 0.056049 3.201744 0.0014 

PC2 -4.806310 0.560285 -8.578327 0.0000 

PC3 -14.46602 3.739363 -3.868579 0.0001 

PC1*PC1 -0.192425 0.028858 -6.668055 0.0000 

PC2*PC2 12.69585 1.910893 6.643937 0.0000 

PC3*PC3 -27.16623 20.52523 -1.323553 0.1859 

PC1*PC3 -2.207645 1.761375 -1.253365 0.2103 

PC1*PC2 -0.942972 0.275059 -3.428250 0.0006 

PC2*PC3 44.47415 14.15167 3.142678 0.0017 

R-squared 0.179701     Mean dependent var 1.988859 

Adjusted R-squared 0.173167     S.D. dependent var 3.350966 

S.E. of regression 3.047045     Akaike info criterion 5.074955 

Sum squared resid 10491.46     Schwarz criterion 5.119154 

Log likelihood -2882.724     F-statistic 27.50511 

Durbin-Watson stat 0.311573     Prob(F-statistic) 0.000000 

 

Table 24 – Partial autocorrelation among residuals of 3M straddle implied volatility 

regression on principal components of the futures returns  

 
 

 

Table 25 – Calendar spread 3M straddle implied volatility regression on principal 

components of futures returns output including which models the residuals in order to 

eliminate partial autocorrelation 
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Dependent Variable: WA_IV_3M   

Method: Least Squares   

Date: 07/07/08   Time: 14:51   

Sample (adjusted): 6/10/2002 10/20/2006  

Included observations: 1140 after adjustments 

Convergence achieved after 19 iterations  

Backcast: 6/06/2002 6/07/2002  

Variable Coefficient Std. Error t-Statistic Prob.   

C 2.259644 0.173734 13.00635 0.0000 

PC1 0.218204 0.074695 2.921279 0.0036 

PC2 -3.371287 0.595331 -5.662876 0.0000 

PC3 -13.22784 3.732385 -3.544072 0.0004 

PC1*PC1 -0.147461 0.035052 -4.206874 0.0000 

PC2*PC2 4.726614 1.762007 2.682517 0.0074 

PC3*PC3 -2.313252 17.28295 -0.133846 0.8935 

PC1*PC3 -2.026224 1.718391 -1.179140 0.2386 

PC1*PC2 0.025651 0.309410 0.082902 0.9339 

PC2*PC3 20.02444 11.98333 1.671025 0.0950 

MA(1) 0.841608 0.026104 32.24109 0.0000 

MA(2) 0.490377 0.026290 18.65293 0.0000 

R-squared 0.692256     Mean dependent var 1.988859 

Adjusted R-squared 0.689255     S.D. dependent var 3.350966 

S.E. of regression 1.867979     Akaike info criterion 4.098062 

Sum squared resid 3935.981     Schwarz criterion 4.151101 

Log likelihood -2323.895     F-statistic 230.6716 

Durbin-Watson stat 1.616334     Prob(F-statistic) 0.000000 

Inverted MA Roots -.42-.56i     -.42+.56i  

 

Table 26 – Principal components analysis for the straddle returns regression residuals 
 

Date: 07/07/08   Time: 15:50  
Sample (adjusted): 6/10/2002 10/20/2006 
Included observations: 1140 after adjustments 
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Covariance of R_WA_3M R_WA_6M R_WA_9M  

 Comp 1 Comp 2 Comp 3 

Eigenvalue  1.131444  0.248877  0.094989 
Variance Prop.  0.766920  0.168695  0.064386 

Cumulative Prop.  0.766920  0.935614  1.000000 

Eigenvectors:   

Variable Vector 1 Vector 2 Vector 3 

R_WA_3M  0.004976  0.129672  0.991544 
R_WA_6M  0.253241  0.959071 -0.126696 
R_WA_9M  0.967390 -0.251730  0.028066 

 
 
Table 27 – Principal components analysis for the straddle implied volatility regression 

residuals 
  

Date: 07/07/08   Time: 15:52  
Sample (adjusted): 6/10/2002 10/20/2006 
Included observations: 1140 after adjustments 
Covariance of R_WA_IV_3M R_WA_IV_6M R_WA_IV_9M  

 Comp 1 Comp 2 Comp 3 

Eigenvalue  9.266107  1.983520  0.683712 
Variance Prop.  0.776489  0.166217  0.057294 

Cumulative Prop.  0.776489  0.942706  1.000000 

Eigenvectors:   

Variable Vector 1 Vector 2 Vector 3 

R_WA_IV_3M -0.995729  0.088116 -0.027571 
R_WA_IV_6M  0.038706  0.127277 -0.991112 
R_WA_IV_9M  0.083823  0.987945  0.130144 
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Table 28 – 2R and 2R for straddle returns regression – Rolling Windows 

Futures Returns Principal Components  
Regression Output R^2 Adjusted 

R^2 
S.E. From 

Regression 
Sum of the Squared 

Residuals 

3M Straddle 
Returns 0.595727 0.582496 0.250818 17.3002 

6M Straddle 
Returns 0.84287 0.837728 0.364208 36.47813 

Fi
rs

t W
in

do
w

 

9M Straddle 
Returns 0.499059 0.482665 1.213151 404.7273 

3M Straddle 
Returns 0.174372 0.147351 0.17336 8.264747 

6M Straddle 
Returns 0.264857 0.234253 0.482294 63.96694 

Se
co

nd
 W

in
do

w
 

9M Straddle 
Returns 0.105283 0.076002 1.250616 430.111 

3M Straddle 
Returns 0.535728 0.520534 0.333389 30.56583 

6M Straddle 
Returns 0.680356 0.669895 0.309532 26.34772 

Th
ird

 W
in

do
w

 

9M Straddle 
Returns 0.0899 0.053443 0.101605 0.102334 

3M Straddle 
Returns 0.474501 0.456853 0.395743 41.9721 

6M Straddle 
Returns 0.646467 0.634594 0.419518 47.1668 

Fo
ur

th
 W

in
do

w
 

9M Straddle 
Returns 0.448315 0.431207 0.434085 50.49913 

 

Table 29 – Explanatory power of straddle returns residuals principal components 

Principal Components Analysis 

Common Variation 
Among Residuals 

PC1 
explanatory 

power for the 
variance 
among 

PC2 
explanatory 

power for the 
variance among 

residuals (%) 

PC3 
explanatory power for 
the variance among 

residuals (%) 
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residuals (%) 

Straddle Returns 
Residuals 

First Window 
92.07 4.38 3.54 

Straddle Returns 
Residuals 

Second Window 
85.84 9.92 4.23 

Straddle Returns 
Residuals 

Third Window 
5.35 45.21 1.18 

Straddle Returns 
Residuals 

Fourth Window 
49.51 31.62 18.86 

 


