
 
 

The Academy of Economic Studies                                                    
The Faculty of Finance, Insurance, Banking and Stock Exchange                          

Doctoral School of Finance and Banking 

High Frequency Data in Modeling and Forecasting Volatility Dissertation paper 
 

 
 
 

 

 

 

 

 

 

 
7/10/2009 

 

Student: Varvaroi Maria 

Coordinator Professor PhD Moisă Altăr 

 



 
1 

 

 

 

 

 

 

Table of Contents 
Table of Contents .................................................................................................................................... 1 

Abstract ................................................................................................................................................... 2 

Introduction ............................................................................................................................................. 3 

Literature Review..................................................................................................................................... 5 

Theoretical framework ............................................................................................................................ 7 

Modeling and Forecasting the Realized Volatility ................................................................................... 9 

Modeling Realized Volatility ................................................................................................................ 9 

Evaluating Alternative Volatility Forecasts ....................................................................................... 13 

Data and Methodology ......................................................................................................................... 14 

Data ................................................................................................................................................... 14 

Methodology ..................................................................................................................................... 15 

Adjusting for Market Microstructure Noise ...................................................................................... 17 

Properties and stylized facts.................................................................................................................. 19 

Empirical evidence ................................................................................................................................. 24 

Concluding remarks ............................................................................................................................... 26 

Bibliography .......................................................................................................................................... 28 

 



 
2 

 

 

 

Abstract 
 

 Until recently, the most popular ways to model and to forecast the volatility was 

through the use of ARCH-type models that treat volatility as a latent variable. The present 

paper follows the new wave emerged in the volatility-related research which highlights the 

great potential embodied in the use of high frequency data. This new approach proposes the 

construction of ex post volatility measures that allow us to treat volatility as an observable 

variable. The idea behind this new concept is that volatility can be approximated arbitrarily 

well by summing intradaily returns sampled at an ever higher frequency. The Realized 

Volatility (this name was first time used in (Andersen T.G.and T. Bollerslev , 1998) allows us 

to model and to forecast the volatility directly thus bringing significant increase both in fitting 

and in forecasting performance.  

 An important issue related to high-frequency data is the contamination with 

microstructure noise. This paper adopts two approaches to tackle this problem: first, the 

sampling frequency is chosen such that the effect of contamination is benign, second-the use 

of corrected measures, the so-called Realized Kernels, proposed by (Barndorff-

Nielsen,O.E.,P. R. Hansen, A. Lunde, and N. Shephard, 2006) with three different kernel 

weight functions: Bartlett, Parzen and Tukey-Hanning kernels. Thus a total of four volatility 

proxies are used in estimation and forecasting.  

 The models considered are the HAR-RV model proposed by (Corsi, 2003) and 

different modifications of the basic setup, built by considering different explanatory variables, 

yielding a total of 5 models.  The models and the proxies are compared, using the Euro/USD 

currency pair. The conclusion is that the corrected measures bring little or no improvements 

as concerned the fitting performance. This is due to the fact that at the considered sampling 

frequency the contamination with microstructure noise is almost negligible. However the 

forecasts are more accurate for the corrected measures, showing that as little as it is, the 

influence of microstructure noise still has to be taken account for. The conclusion is that the 

improved forecasting performance provides a sufficient incentive to use the corrected 

measures, even with some loss of simplicity.    
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Introduction  
 

Given the rapid growth in financial markets and the continual development of new and 

more complex financial instruments, there is an ever-growing need for theoretical and 

empirical knowledge of the volatility in financial time series. Measurement and forecasting 

volatility of asset prices in general and of exchange rates in particular has been a focus for 

researchers. But despite its importance, volatility is still an ambiguous term for which there is 

no unique, universally accepted, precise definition. Most frequently the volatility is defined as 

an indicator of the size of price movements. An interesting approach is found in 

(Dacorgogna,M.M., R. Gencay,U.A.Muller,R.B. Olsen,and O.V. Pictet, 2001) where the 

volatility is described as being “the visible “footprint” of less observable variables such as 

market presence and market volume”.  

Once one recognizes the importance of the volatility, the main issue arises: how to 

model and, most of all, to predict the volatility. Given its latent character, a common approach 

to deal with volatility is to conduct inference through strong parametric assumptions, 

considering, e.g. a GARCH-type model or a stochastic volatility model. The drawback of 

these approaches is the poor out-of-sample forecasting performance, despite the good fitting 

performance. An alternative approach is to rely on historical volatility measure that utilizes a 

backward looking rolling window of sample return volatility. The drawback of this specific 

alternative is its lack of dynamic updates and the equal weights that it assigns to all 

observations in the sample. And finally, the last procedure is to employ the existing 

derivatives and applying an options pricing model, to extract, using numerical procedures, the 

implied volatility, which is considered an unbiased forecast of the volatility. This approach 

has, also, some pitfalls, since it is model dependent. 

The availability of high-frequency data gives us a new tool to study the volatility. The 

idea of using intra daily data was first introduced by Merton (1983), who noted that the 

volatility of a Brownian motion can be approximated to an arbitrary precision using the sum 

of intraday squared returns. The vast literature of the last two decades has documented 

important improvements in modeling and forecasting volatility via use of novel volatility 
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proxies constructed from high-frequency data. The advantage of converting the volatility from 

a latent variable to an observable one lies in the fact that it allows to directly fit econometric 

models rather than using the more complicated GARCH-type models, required when 

volatility is latent.  

(Andersen T.G.and T. Bollerslev , 1998) proposes the Realized Volatility as an ex post 

volatility measure, and it can be regarded as a seminal paper on using high-frequency data in 

volatility forecasting, showing the big improvement of the forecast performance using novel 

proxies compared to a daily GARCH model.  

One of the issues related to measures of volatility using high frequency data is the 

microstructure noise that biases these measures. This noise is due to imperfections of the 

trading process e.g. bid-ask bounce, discreteness of price changes etc. There are procedures to 

undertake in order to mitigate the effect of the microstructure noise. One is sampling at an 

optimal frequency chosen through the analysis of the volatility signature plot, see (Andersen, 

T.G.,T. Bollerslev, F. X. Diebold and P. Labys, 1999) or other, more sophisticated methods, 

see (Zhang, L.,P.A.Mykland and Y. Ait-Sahalia, 2005) and (Bandi, F.M. and J. R. Russel, 

2003) or staggered sampling  (skip one sampling). Another is construction of new volatility 

proxies as proposed by (Zhang, L.,P.A.Mykland and Y. Ait-Sahalia, 2005), (Barndorff-

Nielsen,O.E.,P. R. Hansen, A. Lunde, and N. Shephard, 2006) and (Hansen P.R. and A. 

Lunde, 2006).  

 The purpose of this paper is to evaluate the out-of-sample forecasting performance of 

various models for realized volatility of the Euro/USD exchange rate, all related to the HAR-

RV model proposed by (Corsi, 2003). We use four volatility measures: a naïve estimator, the 

Realized Volatility, and three measures corrected for microstructure noise: realized kernels 

using Bartlett kernel, Parzen kernel and Tukey-Hanning kernel.  The choice of this particular 

exchange rate is determined by two reasons: the high liquidity and the small number of 

studies based on this pair of currencies. The considered models are: First, the basic HAR-RV-

RV model, proposed by (Corsi, 2003), then the realized variance is decomposed into its 

continuous sample path and jump components and each of these terms are taken as 

explanatory variable in the RV regression, yielding the HAR-RV-C and HAR-RV-CJ models. 

Finally, following (Forsberg,L.and E.Ghysels, 2006), a new explanatory variable is added 

based on its appealing properties: the realized power variation – RPV (p). Two cases are 

considered: p=1.3 and p=1.5, rendering other two models: HAR-RV-RPV (p). The models are 
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compared both for their in-sample fitting performance and their out-of-sample forecasting 

accuracy. 

 The paper is organized as follows: section 1 provides a literature review; section 2 

covers the theoretical framework followed by section 3 that introduces the models that are 

estimated and gives the tools to assess the forecasting performance; section 4 describes the 

data, the methodology employed to compute the measures used throughout the paper and 

subsection 4.3 provides description of the corrected measures. Section 5 discusses the 

properties and the stylized facts of intradaily returns, daily returns, realized volatility and 

jumps; the results of the estimations are presented in section 6, and section 7 concludes.  

Literature Review 
 

  Early reference to the use of high-frequency data are found in Merton, 1983, who 

noted that the integrated volatility of a Brownian motion can be approximated arbitrarily well 

using the sum of intradaily squared returns sampled at an ever increasing frequency. 

However, given the lack of data, the research focused on using daily squared returns as 

measures of volatility. GARCH-type models were the most popular ones and were used to 

model and forecast volatility considering it a latent variable, but these models performed 

poorly out-of-sample. With the availability of high-frequency data, new volatility proxies can 

be computed, and, as shown in (Andersen T.G.and T. Bollerslev , 1998), these proxies 

improve significantly the out-of-sample forecasting performance of GARCH-type models 

and, in addition, turn the volatility into an observable variable, thus making possible to model 

it directly. Since then, a vast literature, focusing on the use of high-frequency data to obtain 

good volatility forecasts, emerged. An important contribution to the development and 

understanding of this new field has been brought by (Dacorgogna,M.M., R. 

Gencay,U.A.Muller,R.B. Olsen,and O.V. Pictet, 2001), who discusses ways of filtering the 

data, describes its properties, proposes operators to deal with unequal spaced data (the 

Convolution Operators) and more. Very influential papers are (Barndorff O. E. and N. 

Shephard, 2002) who define, besides the realized volatility, other measures that circumvent 

the data complications, while retaining most of the relevant information in the intraday data 

for measuring, modeling and forecasting volatility and  (Barndorff-Nielsen,O.E. and N. 

Shephard, 2004) who provides theoretical framework to separate the continuous sample path 

component of the return process from the jump component.   
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An important issue related to high-frequency data is the noise that affects the true 

price. Studies showed that ignoring this noise can compromise the work and render sub-

optimal results. (Andersen, T.G.,T. Bollerslev, F. X. Diebold and P. Labys, 1999) uses the 

volatility signature plot to determine the highest frequency at which the noise is negligible. 

They found that sampling at 5 minutes is sufficiently safe for highly liquid assets. Other, more 

formal ways to determine the optimal sampling frequencies were proposed by (Bandi, F.M. 

and J. R. Russel, 2003) and (Zhang L.,P. Mykland and Y. Ait-Sahalia, 2005). But sampling at 

lower frequencies results in discarding large amount of data. Thus, new ways to deal with the 

noise have been proposed. One of the first noise corrected measures was proposed by (Zhou, 

1996), who incorporates the first order autocovariance of returns obtaining an unbiased 

estimator of variance with i.i.d. noise. (Zhang, L.,P.A.Mykland and Y. Ait-Sahalia, 2005) 

suggest using the Two Scales Realized Volatility (TSRV) that combines two RV measures, 

one computed at the highest and on at a lower sampling frequency. The realized kernel 

estimates proposed by (Barndorff-Nielsen,O.E.,P. R. Hansen, A. Lunde, and N. Shephard, 

2006) provide an equally efficient estimate of the volatility as the TSRV depending on the 

choice of the kernel weighting function.    

 An important improvement brought by the realized variance, as shown in (Andersen, 

T.G., Bollerslev, T., Diebold, F.X., Labys, P., 2001), is that, when realized volatility is used, 

the distribution of standardized daily return series is almost Gaussian. Moreover, the log-

realized volatility is almost Gaussian too. Thus one can use traditional, well documented 

models with normality assumptions to make inference and to forecast the volatility. An 

important property of the realized volatility is its high persistency. Thus, even if it is a 

stationary time series, there is significant evidence of long-memory, which has to be modeled 

using appropriate specifications, e.g. ARFIMA (p, d, q), d (0, 0.5), FIGARCH. Recently, 

(Corsi, 2003) proposed the Heterogeneous Autoregressive model for Realized Volatility 

(HAR-RV) which is able to capture the long-memory property being, at the same time, easy 

to estimate and to interpret. Another important alternative to the fractionally integrated 

models is Mixed Data Sampling (MIDAS) approach proposed and described by E. Ghysels, P. 

Santa-Clara and R. Valkanov.          
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Theoretical framework 
 

The logarithmic price  is assumed to evolve in continuous time as a 

jump diffusion process of the form: 

 

where   is the instantaneous drift function,  is the instantaneous diffusion function, 

 is a standard Brownian motion1,   is a Poisson jump process that describes the 

arrival of random events and  refers to the size of the jump: 

 

where p (t-) denotes the left limit of p(t), that is .  

 

 

 

 

 

The quadratic variation of a continuous process is a measure of its volatility. Then, for the 

return process  the quadratic variation is: 

 

                                                            
1 A random variable W(t) is called a Brownian motion if it satisfies the following properties:  

a) W(0)=0 
b) W(t) is a continuous function of t 
c) W has independent , normally distributed increments (i.e. if 0=t0<t1<...tn  and Yi=(W(ti)-W(ti-1)), i=1...n, 

then  i)Yi are independent 
          ii)E(Yi)=0,  
          iii)var(Yi)= ti-ti-1  (Shreve, 1997) 

p(t) 

t
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If the return process does not present any jumps, then the quadratic variation equals the 

integrated volatility of the continuous sample path component (  ).  

 Definition:  

Realized variance - the sum of intradaily squared returns sampled at 1/Δ frequency.  

 

 

 

According to (Andersen, T.G., T. Bollerslev, F. X. Diebold and P. Labys, 2001) “the realized 

variation converges uniformly in probability to the increment of the quadratic variation 

process as the sampling frequency increases”2. 

 

In the absence of jumps, the realized volatility is a consistent estimator of the integrated 

volatility. But in the presence of jumps, a new robust measure is needed. (Barndorff-

Nielsen,O.E. and N. Shephard, 2004) proposes the Bi-Power Variation (BV) as a robust 

measure in the presence of infrequent jumps:  

 

It is possible to show that: 

 

Hence, combining the results in (4) and (6) the jump component of the return process 

can be consistently estimated by: 

                                                            
2 (Andersen, T.G., T. Bollerslev, F. X. Diebold and P. Labys, 2001) 
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The jump component is truncated to zero as follows: 

 

 The continuous sample path component is defined as: 

 

 

Modeling and Forecasting the Realized Volatility 

Modeling Realized Volatility 
 

The first model to consider is the basic HAR-RV model (Heterogeneous 

Autoregressive model for Realized Volatility) proposed by (Corsi, 2003) and further 

developed and augmented in (Andersen,T.G.,T. Bollerslev and F. X. Diebold, 2007). In order 

to define the model, it is necessary to calculate the following measurements: 

 

 denotes the standardized multi-period realized variance. For h=5, we get the weekly 

realized volatility, and for h=22 – the monthly measure.  

Given these measures, the basic setup of the HAR-RV-RV model is:  

 

 The model can be shown to capture the long memory property of the realized variance 

being parsimonious and easy to estimate and providing an alternative to more difficult long 

memory models such as ARFIMA or FIGARCH, see (Corsi, 2003). The underlying 

assumptions of the model are the Heterogeneous Market Hypothesis3 and the asymmetric 

                                                            
3 (Muller, U. A., M. M. Dacorogna, R. D. Dave, O. V. Pictet, R. B. Olsen and J . R. Ward, 14-15 Oct,1993) 
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propagation of volatility between the short and long time horizons4. Thus, the market 

participants are separated in three categories: short term traders (e.g. market makers, intra-day 

traders); medium term and long term traders (e.g. portfolio managers, central banks, pension 

funds). Each category reacts differently to new information available in the market. Long term 

traders react to changes in volatility at a weekly or monthly time scale and do not respond to 

short term changes, while short term traders react quickly both to long term and to short term 

changes. Therefore, in the financial market one can observe an “informational cascade”5 from 

long time horizons to short term traders. According to this theory the coefficients of weekly 

and monthly realized volatility should be larger than the coefficient of daily RV. Also, if the 

aggregated realized volatilities over different horizons are indeed good proxies for 

multiperiod variance, then the coefficients could also be interpreted as market component 

weights6 .  

 The HAR-RV-RV is also estimated in the realized volatility and logarithmic realized 

volatility forms: 

 

 

   

 By decomposing the realized variance into its continuous sample path component and 

jump component one can account for the influence of the continuous sample path component 

by estimating, following (Forsberg,L.and E.Ghysels, 2006), the HAR-RV-C model, in 

realized variance, realized volatility and logarithmic realized volatility forms: 

 

 

                                                            
4 (Zumbach G. and P.Lynch, 2001) 
5 idem 
6 (Corsi, 2003) 
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 The normalized multiperiod sample path component is determined in a similar manner 

as the multiperiod RV: 

 

Next, the basic HAR-RV-C model is augmented, by adding the jump component. The 

jump component is estimated using Z-statistic, relying on α=0,999. Introduction of HAR-RV-

CJ model needs the definition of the normalized multi-period jump: 

 

The HAR-RV-CJ model may be expressed as:  

 

                                        

  The realized volatility form: 

 

                                        

 The logarithmic realized volatility form: 

                    

   

 According to the asymmetric propagation of volatility, for the HAR-RV-C and for 

HAR-RV-CJ models the coefficient of the weekly and monthly component should be larger 

than the coefficient of the daily component.    

 Following (Forsberg,L.and E.Ghysels, 2006) and (Liu,C. and J. M. Maheu, 2008) a 

new explanatory variable, the realized power variation, is added. It is defined as: 
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 For p=2 the RPV (2) equals RV. The reasons of including this measure in the RV 

regression are:  

• The absolute returns show a higher degree of persistence than the squared returns 

• The measures based on absolute returns are less severe downward biased that those 

based on squared returns 

• The absolute returns are immune (asymptotically) to the presence of jumps7   

The estimated models are: 

  

 

 

As pointed in (Forsberg,L.and E.Ghysels, 2006) the realized volatility is comparable 

to the RPV, thus one should not take the square root of RPV when estimating the realized 

volatility or the logarithmic realized volatility form. Thus, the non linear models are: 

   

 

 

   (25) 

  

Considering all the terms entering the equations above are observable, the models are 

estimated using standard OLS method. The first estimation yields heteroskedastic errors with 

significant autocorrelation up to 20th lag, thus the Newey-West HAC estimator of the 

variance-covariance matrix is used with a number of lag equal to 20. 

                                                            
7 (Forsberg,L.and E.Ghysels, 2006) 
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The out-of-sample forecast is performed as follows: the models are daily reestimated 

on a moving window of 1320 days yielding 520 daily forecasts.  

Evaluating Alternative Volatility Forecasts 
 

 The procedures used to assess the performance of the forecasts are: 

• A Mincer-Zarnowitz8 type regression of the form: 

 

where the actual realized volatility is denoted by , and the volatility forecasted by a 

certain model is denoted by . 

 For each MZ type regression we test the joint hypothesis (using Wald coefficient test)   

 

  

• The loss function: 

 

   (27) - mean squared error 

Where  denotes the true value of the realized variance and - the predicted value 

of the dependent variable. The choice of the MSE as the loss function used to assess the 

forecasting performance is largely explained in (Forsberg,L.and E.Ghysels, 2006). They also 

point to the fact that MSE obtained from different models where transformation upon the 

variables were made (such as square root or logarithm) are not comparable. Thus, for the 

model where the dependent variable is the realized volatility, the MSE is computed as 

follows: 

 

                                                            
8 Mincer,J. and  V. Zarnowitz;”The Evaluation of Economic Forecasts”, NBER paper, 1969 
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In the case where the logarithmic realized volatility is the dependent variable, the MSE 

takes the form: 

 

These measures are comparable and can be used to judge the performance of different 

forecasts. However there should be a note of precaution since transforming a logarithmic 

forecast to level by applying exponential function yields at least suboptimal prediction9.  

 

 Data and Methodology 
 

Data 
 

The empirical investigation is carried out on Eur/USD exchange rate at 5-minute 

frequency10. The choice of these currencies was determined by the liquidity and the depth of 

the market. Although attempts were made to work with Eur/Ron or USD/Ron, the conclusion 

was that these data sets were not suited for this kind of study, because of the presence of large 

gaps in the series that could not be filled by means of interpolation without loss of original 

properties. Also, an important issue to address when working with high frequency data is the 

noise contaminating the volatility measure and that is of much greater magnitude in an illiquid 

market. The explanation could be found in the fact that in a highly liquid market, the bid-ask 

spread is one hundredth of a percent, while in an illiquid market it can reach 2-3 percent. Due 

to the big spread, the bid-ask bounce effect creates the false impression of big market moves, 

when, in fact, the market didn’t change.  This spurious price change affects the realized 

volatility, thus making it a biased estimator for the true return variance. This is one of the 

motives of choosing to work with highly liquid Eur/USD exchange rate, which accounted for 

about 27% in 200711.  

                                                            
9 (Granger, C. and P. Newbold, 1976) 
10 The data was provided by Olsen and Associates 
11 (Bank for International Settlements, 2007) 
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The data span from November 1, 2001 – April 30, 2009, that is a total of 600 000 raw 

observations or 2347 days. The data is filtered, so as to account only for significant days 

considering the number of transactions. That means that there are at least 22 days a month 

with at least 60 observations per day. We followed (Zhou, 1996) when defining the start and 

the end of a day, thus we choose 24 hours since 0:00 Greenwich Mean Time (GMT) as a day. 

The argument provided in the cited paper above is the fact that “0:00 GMT is 9:00 am in 

Tokyo time and 24:00 GMT is 7:00 pm New York time and this 24 hour period covers most 

activities of the world market”.  Although the exchange market is open 24 hours a day, 7 days 

a week, only small trading volumes can be observed during weekends and holidays. 

Following (Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 2001) we remove 

weekend returns from the sample, i.e. from Friday 21:00 GMT to Sunday 21:00 GMT, and 

certain inactive trading days associated with holidays: Christmas (December 24,25,26), New 

Year ( December 31 and January 1-2), Good Friday, Easter Monday, Memorial Day, July 

Fourth, Labor Day and Thanksgiving and the following day. This leaves us 1,862 daily 

observations in total, of which 1,342 (from November 1, 2001 through April 14, 2008) form 

the estimation period, and the remaining 520 observations (from March 27, 2008 – April 30, 

2009) are used for the out-of-sample forecast evaluation.  

 Methodology  
 

The actual construction of the returns includes following steps: first, we extract the 

data for a single day from the file; second: we obtain the 5 – minute returns as the first 

difference of the logarithmic price:  

 These returns are labeled, following Andersen, Bollerslev, Diebold and Labys, 2001, 

2 347, where Δ=1/288 (there are a total of 288 intra-daily returns each 

24 hours for the sampling frequency = 5 minutes). These returns are saved for further analysis 

as we proceed to the next step, which is construction of the realized volatilities. 

As pointed in the theoretical background, meaningful ex – post volatility proxies may 

be constructed by cumulating squared intraday returns at an appropriate frequency (i.e. 5 

minutes).  In particular, based on the series of intraday returns constructed above, the realized 

volatility for 1 day is defined by: 
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  The RVs on Fridays were summed up with the RVs on Sundays, thus maintaining the 

definition of a day. 

 Also, it is needed to calculate the standardized bipower variation. As shown in 

(Barndorff-Nielsen,O.E., Shephard,N., 2004), the difference between the realized variance 

defined in (1) and the standardized bipower variation consistently estimates the jump 

component of the return process.  

 

where . 

 The jump component is calculated as the difference of these two measures defined 

above, and, since this difference can also be negative, it is necessary to truncate the actual 

empirical measurement at zero (Andersen, T.G., Bollerslev, T., Diebold, F.X., Labys, P., 

2001)): 

 

 

The continuous sample path component : 

 

The jumps series computed using equation 3 yields a total of 1696 jumps and contains 

a large number of close to zero jumps, that can be atributed rather to the discreteness of the 

return process than to jumps. Therefore one needs a way of discerning the significant jump 

from the rest of the series. Thus, following (Andersen,T., Bollerslev,T.,Diebold,F.X., 2005), 

we employ a shrinckage estimator:  
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This test statistic, under the assumption of no – jumps process, follows a standard 

normal distribution. The   measure is the standardized tri – power quarticity12: 

 

 

The idea is to compare the  statistic with a threshold value, say Φα, determined for 

a significance level α. Using the shrinkage estimator defined above, the jump component 

at the confidence level α,   takes the form:  

 

where I[·] denotes the indicator function. The significance level considered in this paper is 

α = 0.999.  

Adjusting for Market Microstructure Noise 
 

It is generally accepted that, due to microstructure effect that induces autocorrelation 

in the return process, the simple realized volatility measure defined in 1 is a biased and 

inconsistent estimator of the true volatility, with a bias that grows linearly with the 

number of sampled observations. The bias may be removed by adding the first order 

autocovariance of returns as in (Zhou, 1996), but this estimator is inconsistent. A 

consistent estimator is proposed by (Zhang L.,P. Mykland and Y. Ait-Sahalia, 2005) who 

define the Two Scales Realized Volatility by combining two RV, one computed at the 

highest frequency available and one computed at a lower frequency. This approach 

however requires a much denser data base that that we were working with. But other 

equally consistent estimate that can be computed using the data available could be found 

in the literature. In that sense, following (Barndorff-Nielsen,O.E.,P. R. Hansen, A. Lunde, 

and N. Shephard, 2006), we use realized kernel estimates, that use kernel weight functions 

                                                            
12 The tri power quarticity is a robust estimator of the integrated quarticity  
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to give weights and add autocovariance terms to the naïve RV defined in 1. The general 

formulation of the realized kernel is: 

 

where q is the bandwidth of k(x) and k(x) is a convenient kernel weight function, that 

satisfies k(0)=1 and k(1)=0. In addition, kernels that satisfy the smoothness conditions, 

k’(0)=k’(1)=0 are guaranteed to produce non-negative estimators In this paper we 

consider the following weight functions: 

o Bartlett kernel:  

o Parzen kernel:  

o Tukey-Hanning2 kernel:  

The last two kernel weight functions satisfy the smoothness condition too. 

The choice of optimal q (the bandwidth) implies the best tradeoff between the bias and 

the variance, but it requires the availability of the tick-by-tick data. Thus we rely on previous 

works of (J. Gatheral and C. A. Oomen, 2009) and (Chaboud,A., B. Chiqoine, E. Hjalmarsson 

and M. Loretan, March 2008). These papers study the performance of the realized kernels 

computed using bandwidth ranging from 1 to 30 or higher. The conclusion is that the use of 

large q allows sampling at very high frequencies (15 to 20 seconds), but at lower frequencies 

only a minimum bandwidth would improve the measures. Thus q in our case is set to 1. In 

addition higher value for q induce a greater variance, but do not reduce significantly the noise, 

therefore the optimal q can be set to one without any loss of optimality.    

The bipower – variation and the tri-power quarticity are also biased by the 

microstructure noise, specifically the bid – ask bounce effect, which determine a first – order 

autocorrelation. That could be the reason of finding too few jumps. In order to mitigate this 

effect a simple approach has been adopted: the bi – power variation and the tri – power 

quarticity measures are calculated based on staggered returns (skip – one returns). 
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Using these new measures we calculate four new  statistics: one using the naïve 

estimate of the realized volatility as in eq.30 and the staggered BV and TQ and the following 

three using the realized kernels and the staggered BV and TQ. Based on this new statistic, we 

construct four new  series.   

Properties and stylized facts 
 

1. Intra-daily returns 

Figure 1 graphs the 5-minutes returns of the Eur/USD exchange rate and table 1 

contains the first 4 moment of its empirical distribution and the p-value of the Ljung-Box 

statistics computed for the 10th lag. The data are consistent with those reported in the 

documented literature, that is the series is slightly asymmetric, with Skewness = 0.137184 and 

mean around zero. The kurtosis is 26.94424 - far greater than the kurtosis of a normally 

distributed random variable, which is 3. The leptokurtosis is an indicator of fat tails, meaning 

that an important probabilistic mass is found in the extremes of the distribution, making the 

10sigma – events much more probable relative to a normal distribution. The histogram of 5 

minutes returns depicted in figure 2 confirms the properties described above. To emphasize 

the large kurtosis of the series under discussion, the probability distribution function of a 

normally distributed variable is drawn too. Also, the low p-value of the LB statistics rejects 

the null of independence of the series. The acf plot shows a significant negative 

autocorrelation, which will be discussed below among the stylized facts.  

The analysis of the data beyond the basic statistics confirms the properties discussed in 

(Dacorgogna,M.M., R. Gencay,U.A.Muller,R.B. Olsen,and O.V. Pictet, 2001), that is: 

 The higher the sampling frequency, the higher the kurtosis 
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In order to confirm this stylized fact, we constructed two new price series: one, 

sampled at 15 minutes and the second sampled at 30 minutes13. The kurtosis determined for 

each series are presented in table 2. As predicted, the 5-minute series present the largest 

kurtosis and the 30-minute series – the smallest.   

 The intradaily return series presents first-order negative autocorrelation. 

Figure 3 graphs the autocorrelation function. The negative correlation can be observed 

up to lag 4, but the largest is at the first lag, hence the term (first order autocorrelation). After 

the fourth lag, the autocorrelations mainly lie within the 95% confidence interval of an 

independent and identically distributed Gaussian variable. This phenomenon is explained by 

the tendency of price to reverse, or bid-ask bounce in transaction price changes. When 

transactions randomly occur at the bid or ask quotes, the price changes in transaction prices 

can exhibit reversal which produces a negative first-order autocorrelation. This negative 

autocorrelation appears even if the “true” process for price changes lacks autocorrelation.  

 

 The intradaily returns present a U-shape seasonality for every 24 hours 

Figure 4 displays the autocorrelation function for the absolute intradaily return series, 

and we included as many lags as there are 5-minute returns in 4 days. The U-shape pattern 

can be observed at every 288 lags, confirming the presence of the seasonality with a period of 

one day. The highest autocorrelation are at the beginning and at the end of the day. The 

explanation, according to (Dacorogna, M.M., Gencay, R., Muller, U.A., Olsen, R.B., Pictet, 

O.V., 2001), lies in the overlapping of trading hours of the three major foreign exchange 

markets: the American, the European and the Asian markets.    

 

2. Daily returns  

The daily returns are determined as the logarithmic difference of the close – to – open 

prices. Table 3 shows the statistics for the daily return, and, as regards unconditional 

distribution, the series has zero mean and is slightly asymmetric to the right. The kurtosis is 

greater than 3 indicating fat tails. The Ljung – Box statistics shows no serial correlation in 

returns, but significant correlation in squared returns, pointing to volatility clustering. Figure 5 

shows the daily return series, as well as the squared daily return series. 

                                                            
13 For the 15-minute series we kept the prices at 0,15,30,45 and discarded the rest; for the 30-minute series 
only prices at 0 and 30 were kept. 
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As highlighted in (Andersen,T.G.,Bollerslev,T.,Diebold,F.X.,Labys,P., 2003) the 

standardized returns are well approximated by the standard normal distribution. The daily 

returns are standardized using all four volatility proxies, yielding four standardized series. 

Figure 6 plots the histogram, the empirical density function of the standardized returns and the 

normal density function for all four series. Table 4 contains the first four moments of the 

unconditional distribution and the results of the Jarque - Bera test and Kolmogorov Smirnov 

test statistics.  Although the null cannot be accepted, still the series are fairly close to the 

Gaussian distribution.   

 

3. Realized Volatilities 

 

Table 5 summarizes the parameters of the unconditional distribution of the realized 

volatility. Again, as in the case of intradaily returns, the results are in line with the findings in 

the documented literature. The kurtosis and skewness far exceed those of a normally 

distributed variable, suggesting a severely right - skewed leptokurtotic distribution. Following 

(Andersen,T.G.,Bollerslev,T.,Diebold,F.X.,Labys,P., 2003) we also studied the distributional 

properties of the logarithmic return  and found that the distribution of this 

series is indeed well approximated by the normal distribution. Table 6 presents the summary 

statistics. The kurtosis is in fact smaller than that of a Gaussian distribution. Figure 7 displays 

the histogram along with the empirical density function and the normal density and it can be 

seen that the empirical density conveys to normality. However the results reported in table 6 

for the Jarque – Bera and Kolmogorov-Smirnov tests strongly reject the null at any level of 

confidence. The departure of the empirical distribution from the normal one can be explained 

by the unusually high level of volatility recorded since 2008 which increased the kurtosis of 

the series. Indeed, if the normality tests are to be applied on the series discarding the last 500 

observation, the p-values increase substantially, as shown in the last two columns of table 6. 

Another important feature of the realized volatility is its long memory. Figure 8 plots 

the autocorrelation function up to lag 100, that is 100 days, and it is evident that the 

autocorrelation presents a hyperbolic decay which characterizes a long memory process.  

The inclusion of the Realized Power Variation as an additional explanatory variable is 

justified by its significant autocorrelation. It is evident that the RPV(1.3) and the RPV(1.5) 

display larger sample autocorrelation compared to the RV, as shown in figure 9 which plots 
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the sample autocorrelation function for   and  up to lag 

100 and it confirms the findings described above. 

 

4. Jumps 

Figure 10 displays the histogram of  for each of the four proxies and Φα 

corresponding to α= 0.9, 0.99, 0. 999 respectively. The fact that the histogram is so severely 

right skewed suggests that there are indeed significant jumps. Figure 11 shows exactly how 

the shrinkage estimator works, as it displays the initial jump series, the Z-statistics and the 

final jump series for the naïve RV (for the realized kernels the graphs are similar).    

Figure 12 displays the 4 jump series estimated based on the shrinkage estimator Z. The 

estimation yielded a total of 340 jumps for the naïve estimate of the realized volatility, 378 for 

the realized Bartlett kernel, 348 for the realized Parzen kernel and 347 for the realized Tukey-

Hanning kernel. The basic visual inspection shows that years 2004 and 2008 display jump 

clustering. An explanation could be found in BIS reports14 for these years. The 2004 report 

points to a sharp increase of the trading volume in the exchange rate market, particularly the 

carry trades, and, in addition, early 2004 recorded the lowest level of the US dollar vis-à-vis 

the Euro. In fact, 2004 ended a downward trend of the USD that started in 2002 culminating 

on February 17, when Euro reached its highest level. These factors are known to have a direct 

impact on volatility, in the sense that a large trading volume often implies an increased 

volatility, as well as negative returns.   

On the other hand, the record high volatility level of 2008 continued the trend started 

in July 2007, according to the same reference. The Euro/US dollar pair faced a heightened 

volatility that reached the level of exchange market volatility of September 2001. This pick-

up of volatility was accompanied, as in the previous case discussed above, by higher turnover 

in the foreign exchange spot market, as reported by EBS15. The main cause of such increase in 

volatility, as stressed by the BIS report, was a massive dislocation in major financial markets, 

as the result of sharp decrease of the attractiveness for the carry trade. Thus, exchange rates 

involved in these leveraged trades experienced a sharp increase in volatility and a reversal of 

the previous trend. Also, with the unwinding of these strategies (i.e. carry trades), the focus 

                                                            
14 BIS 74th and 78th annual reports   
http://www.bis.org/publ/arpdf/ar2008e.htm 
15 EBS-Electronic Broking Services, which accounts for about 60% of the spot interbank market 
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shifted from the interest rate differentials to growth differentials and current account balances 

as leading indicators. The soaring current account deficit of US and the negative prospects 

regarding the economy brought a rapid depreciation of the US dollar.  

Figure 13 plots the intradaily returns for some specific jump days. For all six days, the 

Z statistics is well above 10, indicating a highly significant jump. The first largest jump 

occurred on May 7, 2004 and the timing corresponds to the release of five important 

economic indicators such as hourly earnings, nonfarm payroll, unemployment rate, wholesale 

inventories and consumer credit. All indicators, except for the wholesale inventories and the 

unemployment rate, have a positive relationship with the dollar exchange rate: that is an 

increase in the hourly earnings or consumer credit gives a positive signal to the market, in the 

sense that it shows that consumers can afford large expenses, which can fuel economic 

growth. The wholesale inventories have a different significance: a high inventory suggests 

that the economy is slowing down, giving a negative sign to the market as a whole, and to the 

US dollar in particular. The unemployment rate shows the number of unemployed workers 

divided by the total civilian labor force, and a high figure (or an increase from the last period) 

indicates a lack of expansion within the economy and have a negative impact on the currency. 

All five indicators have had a positive impact leading to an appreciation of the US currency. 

Table 7 displays the figures related to this day and for the rest 5 days.  

For January 9 and March 5, 2004 the same indicator have had a different dynamics, 

thus an opposite impact: the American currency fell in respect to Euro. 

January 12, 2005 displays a significant jump, but as a result of two totally different 

macroeconomic indicators: the trade balance and the treasury budget. Both indicators have 

had a negative impact on the dollar: the trade balance decreased by almost 60$ bn while the 

budget deficit soared by 3, 4$ bn. These movements translated into a bearish market, meaning 

a decrease of the value of the American currency.   

The next day displays the reaction of the exchange rate to announcements related to 

inflation (CPI16, core CPI17) and more interesting, to the data provided by the surveys of 

worldwide homebuilders, that is housing starts and building permits. The first two indicators 

account for a majority of overall inflation, which is important because it may lead to a raise in 

                                                            
16 Consumer Price Index 
17 the Core CPI excludes more volatile items like food and energy 
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the interest rates, which is the price of money. But the actual figures are below the forecasted 

ones, having a negative impact on the currency. As for the last two indicators, they are used as 

business cycle indicators, and, in the context of the crisis, the focus on these figures is 

explained by the fact that investors want to see signs of recovery. But the negative dynamic 

cannot be interpreted as a sign of upward sloping economic trend, thus the devaluation of the 

American dollar.  

The trading session of March 18, 2009 was influenced by the current account deficit, 

which shrank by less than estimated and also by the FED18 decision to buy 1,2$ trillion worth 

of government bonds and mortgage related securities. These announcements influenced in a 

negative way the exchange rate, as the current account deficit decreased by less than expected 

and the new buying is perceived as printing more money. The result was a devaluation of the 

American dollar, as shown in figure 13.  

 The association of highly significant jump with identifiable macroeconomic news is in 

direct line with the evidence in (Andersen, T.G., Bollerslev,T., Diebold, F.X. , 2007) that 

document the link between significant price moves and macroeconomic announcements.  

 Table 8 displays basic summary statistics for the jump series J, the  series and for 

the  series. The last column reports the Ljung – Box statistics for up to fifth lag 

serial correlation and it confirms the lack of autocorrelation in the jumps series, suggesting 

that jump are very difficult to predict.   

Empirical evidence 
 

The models above were estimated using standard OLS, but the residuals presented 

heteroskedasticity, as shown by the Breusch-Pagan test, and significant autocorrelation up to 

lag 20. Thus, to obtain consistent estimators, it was necessary to use a heteroskedasticity and 

autocorrelation consistent (HAC) estimator of the variance-covariance matrix as the one 

proposed by Newey and West.  

                                                            
18 Federal Reserve System 
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Table 9 reports the results of the estimation of HAR-RV-RV models. The realized 

volatility form performs better in terms of R2, but the log realized volatility form is superior in 

terms of MSE. The estimates of the coefficients are significant thus confirming the 

persistence of the volatility. In addition, the coefficient of the weekly component is the largest 

one, followed closely by the monthly component, thus confirming the assumption of 

asymmetric volatility propagation.  

Table 10 reports the estimates for the HAR-RV-C models, which, judging by the R2 

performs slightly better than the HAR-RV-RV model, suggesting that there may be some gain 

in performance by modeling separately the continuous sample path and the jump component. 

Again the weekly component seems to prevail.  

The augmented HAR-RV-CJ model have higher R2 and lower MSE as compared to 

the HAR-RV-C model, thus providing evidence that including the jump component may 

improve fitting performance, as pointed in (Andersen,T.G.,T. Bollerslev and F. X. Diebold, 

2007). The coefficients of daily and weekly jump component are significant at 1% level at 

least, but the monthly coefficient is not significant at any level. The insignificance of the jump 

component points to the fact that the evolution of realized variance is almost entirely due to 

the sample path component.  

The HAR-RV-RPV model does not outperform the HAR-RV-CJ model, judging both 

by R2 and by MSE. But there are evidence that a higher persistence improves fitting 

performance, since the RPV (1.3) gives better results than the RPV (1.5), thus confirming the 

results of (Forsberg,L.and E.Ghysels, 2006). 

In evaluating the performance of various estimation models the most important issue is 

its out-of-sample forecasting performance. For initial illustration, figure 14a through 14d plots 

the forecasts obtained from HAR-RV-C model against the actual realized volatility for all four 

proxies. The model is picked randomly in order to save space, since the plots are similar for 

all models. It is evident that the forecasted series closely follows the actual one. More formal 

ways to assess forecasting performance used in the paper are presented in tables 14-16. Table 

14 shows the adjusted R2 of the Mincer-Zarnowitz regression and the conclusion is that the 

Bartlett realized kernel performs the worst, the other three measures presenting fairly similar 

results. Moving to table 15 which presents the result of the Wald test that tests the joint 

hypothesis α1=0 and α2=1 one can conclude that neither of the forecasts is optimal. Still the 
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HAR-RV-CJ model in the realized volatility and log realized volatility forms brings the most 

satisfactory results, since we cannot reject the null at any level of significance. As concern the 

MSE of the forecasts presented in table 16 it is clear that the realized kernels bring a 

significant improvement compared to the naïve realized variance, which shows a MSE 

sometimes 5 times larger than that of the other three proxies. This result highlights the 

importance of accounting for the microstructure noise even at such low sampling frequency, 

considered, otherwise, free of contamination.   

Concluding remarks  
 

 The main objective of this study is to forecast volatility of Euro/USD exchange rate by 

using high frequency data. The choice of this currency pair was determined by its high 

liquidity and depth, and by the fact that, despite the great importance of the Euro in 

international financial market, most of the studies are focused on US dollar.  

 The paper considers 5 models, all related to the basic HAR-RV (Heterogeneous 

AutoRegressive model for Realized Volatility) model proposed by (Corsi, 2003). To explore 

new possibilities related to high frequency data four different volatility proxies were adopted 

based on quotes sampled at 5 minute interval. The first one is a naïve estimator, which does 

not take account of the microstructure noise that contaminates the intradaily returns given the 

fact that at such low sampling frequency the contamination is benign. The other three are 

three different realized kernels, namely Bartlett, Parzen and Tukey-Hanning realized kernels, 

proposed by (Barndorff-Nielsen,O.E.,P. R. Hansen, A. Lunde, and N. Shephard, 2006) as 

robust estimators of volatility in presence of microstructure noise. The proxies are put to test 

resulting 15 model estimations for each of them, given the fact that the models were estimated 

in the realized variance, realized volatility and log realized volatility forms.  

 The results are mostly in line with previous findings regarding modeling and 

forecasting volatility obtained using high frequency data. It turns out that the realized variance 

is most difficult to model, yielding the worst results considering both fitting performance and 

forecast accuracy. The realized volatility and log realized volatility forms bring rather good 

results, with an adjusted R2 well above 0.60 for all considered models.  

 As concern specific model performance, the HAR-RV-CJ model surpasses all of the 

other models selected proving that separating the continuous sample path component from the 
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jump component could bring improvement in modeling and forecasting volatility. The 

addition of new explanatory variable such as Realized Power Variation of order p=1.3 and 

1.5, given the persistence properties gives results fairly close to those obtained from modeling 

only the realized volatility.  

 Turning to various volatility estimates an interesting conclusion arises. Judging by the 

fitting performance, it seems that the naïve estimator performs at least as good as the realized 

kernel estimators, supporting the idea that contamination with microstructure noise at such 

low frequencies as 5 minutes is benign. But the forecasting accuracy draws a different picture, 

especially looking at the MSE indicator. Thus, the forecasts based on naïve estimator display 

a MSE as much as 5 times higher than the MSE of the realized kernel based forecasts. This 

highlights the importance of correcting for the microstructure noise even at low level 

sampling frequencies.  

 Hopefully, this study would bring some contribution to the literature devoted to Euro 

and inspire some further research, since there are many issues that are to be explored. First, 

the realized volatility series may display some structural changes suggesting that a model that 

implies two or more regimes may produce some satisfactorily results. Second, as suggested by 

(Andersen,T.G.,T. Bollerslev and F. X. Diebold, 2007), improvements may be achieved in 

forecasting accuracy by modeling separately the continuous sample path component and the 

jump component. An example in this direction could be found for DEM/USD in (Lanne, 

2006) and it would be natural to apply the same approach to the Eur/USD pair. Third, very 

interesting results could be found if working with tick by tick data, which would make 

possible to compute other volatility estimates that exploit the whole data base. In addition, a 

recent study: (Chaboud,A., B. Chiqoine, E. Hjalmarsson and M. Loretan, March 2008) shows 

that the FX market allows sampling once every 15 to 20 seconds. Thus, the results obtained in 

this study could be redone using returns sampled at frequencies less than 1 minute. And last, 

new models developed recently and designed for realized measures, should be tested. In that 

sense the following paper is to be considered: (Brownlees, C. T. and G. M. Gallo, 2008).                  
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Intradaily returns 
Mean Std. dev Skewness Kurtosis LB10  p-value 
0.000001 0.000379 0.137184 26.944244 < 2.2e-16 
Table 1 

 

Frequency 5 minutes 15 minutes 30 minutes 
Kurtosis 26.94424 22.08325 17.78766 

Table 2 

 

Daily return series 
Mean Std. dev Skewness Kurtosis LB10 p-value LB2

10 p-value 
0.000220 0.006467 0.103582 4.635859 0.2413 < 2.2e-16 
The last two columns show the p-value of the Ljung-Box statistics for the daily return series, respectively 
for the squared daily return series. 
Table 3 

 

RV type 
used to 

standardize 
the returns 

Mean Std. dev Skewness Kurtosis JB p-value KS p-value 

Naïve 0.008292     0.986941     0.008412     2.531097  0.0002157 0.4554 
Bartlett 0.008601     0.986302     0.007408     2.468673  1.939e-05 0.3068 
Parzen 0.008406     0.985680     0.007414     2.495548  5.684e-05 0.3247 
TH 0.008349 0.985976 0.007692 2.509149 9.582e-05 0.3762 
Table 4 

 

RV type Mean Std. dev Skewness Kurtosis 
Naïve 0.000041 0.000043 4.418956 31.914416 

Bartlett 0.000041 0.000044 4.549322 31.423712 
Parzen 0.000041 0.000043 4.475789 30.052765 

TH 0.000041 0.000043 4.449837 29.545604 
Table 5 

 

  Mean Std. dev Skewness Kurtosis JB KS  JB’ KS’  

Naïve -5.189066 0.346557 0.590484 3.968051 0 0 0.06375 0.5611 
Bartlett -5.198005     0.353831     0.559127     3.913384     0 0 0.1306 0.8639 
Parzen -5.193016     0.349481     0.577726     3.948891     0 0 0.0936 0.7252 
TH -5.191258 0.348102 0.583685 3.958832 0 0 0.08009 0.5423 
Table 6 

 



 

 

 

 

 

 

Table 8 

 

 

 

 
Date Announcement Actual Forecasted 

Hourly Earning 0.2% 0.3% 
Nonfarm Payrolls +124K +155K 

January 9, 2004 

Unemployment Rate 5.7% 5.9% 
Hourly Earnings 0.2% 0.2% 

Nonfarm Payrolls 21K 120K 
Unemployment Rate 5.6% 5.6% 

March 5, 2004 

Consumer Credit $14.3 B $ 7.5 B 
Hourly Earnings 0.3% 0.1% 

Nonfarm Payrolls 288K 170K 
Unemployment Rate 5.6% 5.7% 

Wholesale Inventories 0.6% 0.4% 

May 7, 2004 

Consumer Credit $ 5.7B $ 6.0 B 
Trade Balance -$60.3 B -$52.3B January 12, 2005 

Treasury Budget -$3.4 B -$ 0.0 B 
Core CPI 0.0% 0.0% 

CPI -1.7% -1.5% 
Building Permits 616K 700K 

December 16, 2008 

Housing Starts 625K 725K 
Core CPI 0.2% 0.0% 

CPI 0.4% 0.2% 
March 18, 2009 

Current Account -$132.8B -$137,1B

 
 
 

Jump Mean Std.dev Skewness Kurtosis LB 5th lag 
p-value 

Naïve 0.000002 0.000007 12.897440 275.576480 0.1176 
Bartlett 0.000002 0.000007 7.508456 84.774190 0.002701 
Parzen 0.000002 0.000007 9.279680 131.049161 0.02416 

TH 0.000002 0.000007 10.662665 175.539196 0.04712 

Table 7 



 

The models are denoted by two numbers: the first stands for the type of estimated 
model and the second refers to the proxy used.  

Type of models: 

1. Realized Variance form 
2. Realized volatility form 
3. Log Realized Volatility 

Volatility proxy: 

1. Naive RV 
2. Bartlett realized kernel 
3. Parzen Realized kernel 
4. Tukey-Hanning realized kernel 

The standard deviations (in paranthesis) are computed using the Newey – West HAC 
estimator with 20 lags. 

Significance level: 

„***” -0%,” **”-0.1%,” *”-1%,”·” -5%, „  ” -10%  

Red-negative value, Black-pozitive value 

 

 

 

 

 

 

 

 

 

 

 

 

 

HAR-RV-RV 
 “β0” “βD” “βW” “βM” Adj R2 MSE 

1.1 0.0183030   
(0.011979) 

0.374400***    
(0.102969) 

0.297333.   
(0.155471) 

0.286631**   
(0.091812) 

0.7082542 0.3044323 

1.2 0.0193960    
(0.012096) 

0.337379***    
(0.098071) 

0.315517.    
(0.161592) 

0.302501***    
(0.091125) 

0.6836378 0.3010511 

1.3 0.0187040    
(0.011959) 

0.358978***    
(0.100420) 

0.306095.    
(0.159490) 

0.292157**    
(0.091615) 

0.6990210 0.3028522 

1.4 0.0185010    
(0.011947) 

0.366253***    
(0.101425) 

0.302276.    
(0.158033) 

0.289259**    
(0.091707) 

0.7036337 0.3035359 

2.1 0.0217520   
(0.013251) 

0.247831***   
(0.062307) 

0.395355***   
(0.082444) 

0.311428***   
(0.061849) 

0.7370266 0.2791520 

2.2 0.023347 .  
(0.013446) 

0.218780***  
(0.060455) 

0.411972***  
(0.086444) 

0.319527***  
(0.060658) 

0.7182862 0.2740827 

2.3 0.022383.    
(0.013270) 

0.234750***    
(0.061787) 

0.405983***    
(0.085119) 

0.312194***    
(0.061101) 

0.7303769 0.2770110 

2.4 0.0185010    
(0.011947) 

0.366253***    
(0.101425) 

0.302276.    
(0.158033) 

0.289259**    
(0.091707) 

0.7338050 0.2779938 

3.1 0.041912***   
(0.011303) 

0.158082***   
(0.034517) 

0.439067***   
(0.050749) 

0.367475***   
(0.047430) 

0.7095344 0.2523004 

3.2 0.047209***    
(0.011827) 

0.126060***    
(0.034355) 

0.466352***    
(0.053903) 

0.368991***    
(0.047776) 

0.6908543 0.2455768 

3.3 0.043948***    
(0.011481) 

0.142344***    
(0.034554) 

0.456148***    
(0.052131) 

0.364862***    
(0.047406) 

0.7030317 0.2495828 

3.4 0.042960***    
(0.011386) 

0.149000***    
(0.034569) 

0.449850***   
(0.051487) 

0.365113***    
(0.047361) 

0.7064159 0.2508637 

Table 9 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            HAR-RV-C 
 “β0” “βD” “βW” “βM” Adj R2 MSE 
1.1 0.035426**    

(0.011369) 
0.450572***    
(0.093594) 

0.2275140    
(0.154235) 

0.283267**    
(0.095593) 

0.7165928 0.3060031 

1.2 0.034535**    
(0.011512) 

0.422058***    
(0.098807) 

0.2371380    
(0.187587) 

0.320273**    
(0.106077) 

0.6879971 0.3018959 

1.3 0.035389**    
(0.011092) 

0.446056***    
(0.091282) 

0.2222300    
(0.159330) 

0.298473**    
(0.096397) 

0.7067372 0.3043211 

1.4 0.035964**    
(0.011446) 

0.447423***    
(0.091916) 

0.2262810    
(0.159509) 

0.288348**    
(0.098778) 

0.7106752 0.3048693 

2.1 0.038919**    
(0.012689) 

0.311881***    
(0.060841) 

0.340240***    
(0.084628) 

0.300246***    
(0.064319) 

0.7430561 0.2834385 

2.2 0.037540**    
(0.012615) 

0.286546***    
(0.065353) 

0.364102***    
(0.105879) 

0.309442***    
(0.068432) 

0.7231296 0.2781244 

2.3 0.038422**    
(0.012336) 

0.304371***    
(0.062672) 

0.351471***    
(0.093589) 

0.299113***    
(0.065094) 

0.7365573 0.2815555 

2.4 0.039196**    
(0.012675) 

0.306492***    
(0.061315) 

0.348898***    
(0.090809) 

0.297164***    
(0.065680) 

0.7399490 0.2823886 

3.1 0.021208.    
(0.011288) 

0.192883***    
(0.035204) 

0.399314***    
(0.049826) 

0.357941***    
(0.047471) 

0.7138841 0.2594587 

3.2 0.0163130    
(0.011671) 

0.148369***    
(0.037920) 

0.458578***    
(0.058882) 

0.346665***    
(0.050444) 

0.6960513 0.2543382 

3.3 0.019407.    
(0.011213) 

0.169719***    
(0.037244) 

0.436918***    
(0.054725) 

0.345355***    
(0.048290) 

0.7085950 0.2580003 

3.4 0.020798.    
(0.011224) 

0.178137***    
(0.036513) 

0.421818***    
(0.052395) 

0.350560***    
(0.047648) 

0.7119516 0.2587369 

Table 10 



 

HAR-RV-CJ 

 “β0” “βCD” “βCW” “βCM” “βJD” “βJW” “βJM” Adj R2 MSE 
1.1 0.0328016***    

(0.0092034) 
0.4466412***    
(0.0900008) 

0.22961490    
(0.1492245) 

0.2853838**    
(0.0941760) 

0.2730442**    
(0.0838989) 

0.7946695*    
(0.3388726) 

0.39066760    
(0.3290424) 

0.7187927 0.3065040 

1.2 0.034891**    
(0.011133) 

0.411738***    
(0.087839) 

0.2182550    
(0.185127) 

0.349915**    
(0.113515) 

0.1056240    
(0.142443) 

0.908881.    
(0.488247) 

0.8210580    
(0.559055) 

0.6910015 0.3025760 

1.3 0.0338552***    
(0.0099609) 

0.4406273***    
(0.0838216) 

0.21931920    
(0.1555935) 

0.3061295**    
(0.1016716) 

0.2494592***    
(0.0565773) 

0.8576442*    
(0.3658093) 

0.52156370    
(0.3602103) 

0.7093431 0.3049075 

1.4 0.0336910***    
(0.0095673) 

0.4413515***    
(0.0846305) 

0.22248920    
(0.1561395) 

0.2984952**    
(0.1028544) 

0.2244304***    
(0.0507171) 

0.8601428*    
(0.3956776) 

0.52513820    
(0.3760195) 

0.7130583 0.3054093 

2.1 0.031657**    
(0.011313) 

0.300965***    
(0.058840) 

0.354015***    
(0.081102) 

0.299882***    
(0.062306) 

0.064513**    
(0.023462) 

0.142387**    
(0.047596) 

0.0391150    
(0.062186) 

0.7450116 0.2831009 

2.2 0.036863**    
(0.012422) 

0.276056***    
(0.060534) 

0.357296***    
(0.105075) 

0.331853***    
(0.072710) 

0.0139660    
(0.023911) 

0.140398**    
(0.047158) 

0.122038.    
(0.074037) 

0.7251635 0.2790272 

2.3 0.036398**    
(0.011606) 

0.297710***    
(0.060520) 

0.353661***    
(0.092820) 

0.306109***    
(0.067897) 

0.038366.    
(0.020238) 

0.123012**    
(0.044074) 

0.0767860    
(0.060422) 

0.7377847 0.2818962 

2.4 0.032963**    
(0.011684) 

0.299727***    
(0.059603) 

0.352836***    
(0.090588) 

0.302254***    
(0.065898) 

0.041199.    
(0.021817) 

0.118511**    
(0.045882) 

0.0385720    
(0.061752) 

0.7410954 0.2821236 

3.1 0.025255.    
(0.015350) 

0.183644***    
(0.034944) 

0.412153***    
(0.049597) 

0.356268***    
(0.046424) 

0.094330*    
(0.040987) 

0.220666**    
(0.068343) 

0.0907840    
(0.090384) 

0.7154586 0.2582947 

3.2 0.00725450    
(0.0209832) 

0.1423434***    
(0.0368037) 

0.4530443***    
(0.0584459) 

0.3643880***    
(0.0519864) 

0.01182480    
(0.0355018) 

0.1985661**    
(0.0634270) 

0.1919051.    
(0.1085555) 

0.6974769 0.2561558 

3.3 0.0148740    
(0.016808) 

0.165206***    
(0.036596) 

0.437995***    
(0.054499) 

0.352259***    
(0.048499) 

0.0521290    
(0.037235) 

0.187264**    
(0.065276) 

0.145258.    
(0.087902) 

0.7095485 0.2590879 

3.4 0.0216040    
(0.015405) 

0.172704***    
(0.036161) 

0.426818***    
(0.052555) 

0.352875***    
(0.047292) 

0.067680.    
(0.040320) 

0.190354**    
(0.068036) 

0.1065580    
(0.087732) 

0.7129216 0.2585035 

Table 11 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

HAR-RV-RPV 1.3 
 “β0” “βD” “βW” “βM” Adj R2 MSE 

1.1 0.2519596***   
(0.0282561) 

0.0240830***   
(0.0067165) 

0.0225336**    
(0.0081115) 

0.0100999*    
(0.0050457) 

0.6980546 0.3025111 

1.2 0.2551428***   
(0.0278935) 

0.0219784**    
(0.0072349) 

0.0240033*    
(0.0099376) 

0.0107542*    
(0.0052982) 

0.6747313 0.2993250 

1.3 0.2535512***   
(0.0279978) 

0.0230307***   
(0.0069025) 

0.0232685**    
(0.0089825) 

0.0104271*    
(0.0051367) 

0.6888056 0.3009077 

1.4 0.2528919***   
(0.0280861) 

0.0234666***   
(0.0068069) 

0.0229641**    
(0.0086099) 

0.0102916*    
(0.0050901) 

0.6932479 0.3015693 

2.1 0.2078389***   
(0.0110163) 

0.0107012***   
(0.0020419) 

0.0127523***   
(0.0033107) 

0.0095939***   
(0.0026216) 

0.7390120 0.2957358 

2.2 0.2039657***   
(0.0108316) 

0.0099400***   
(0.0023148) 

0.0132163***   
(0.0037273) 

0.0099005***   
(0.0027870) 

0.7187328 0.2901962 

2.3 0.2060007***   
(0.0108902) 

0.0103200***   
(0.0021614) 

0.0129908***   
(0.0034981) 

0.0097460***   
(0.0026923) 

0.7311268 0.2932011 

2.4 0.2067854***   
(0.0109344) 

0.0104776***   
(0.0021075) 

0.0128936***   
(0.0034150) 

0.0096828***   
(0.0026600) 

0.7349488 0.2943073 

3.1 2.269210***    
(0.025181) 

0.115943***    
(0.031253) 

0.385081***    
(0.044386) 

0.213149***    
(0.035525) 

0.7176303 0.2597955 

3.2 2.289895***    
(0.027350) 

0.101612**    
(0.033465) 

0.395058***    
(0.050319) 

0.222360***    
(0.040935) 

0.6964922 0.2539491 

3.3 2.278770***    
(0.026053) 

0.108617***    
(0.032250) 

0.390046***    
(0.047151) 

0.217828***    
(0.037992) 

0.7095292 0.2572893 

3.4 2.274626***    
(0.025639) 

0.111607***    
(0.031810) 

0.387991***    
(0.045956) 

0.215906***    
(0.036911) 

0.7134840 0.2584265 

Table 12 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

HAR-RV-RPV 1.5 
 “β0” “βD” “βW” “βM” Adj R2 MSE 

1.1 0.148391***  
(0.019487) 

0.059188***  
(0.015004) 

0.043249*  
(0.018726) 

0.025541*  
(0.010768) 

0.7088575 0.3045460 

1.2 0.151535***  
(0.019072) 

0.054493**  
(0.016744) 

0.046503*  
(0.023056) 

0.027025*  
(0.011393) 

0.6846241 0.3012422 

1.3 0.149963***  
(0.019199) 

0.056840***  
(0.015715) 

0.044876*  
(0.020799) 

0.026283*  
(0.010999) 

0.6991839 0.3028833 

1.4 0.149312***  
(0.019299) 

0.057813***  
(0.015379) 

0.044202*  
(0.019915) 

0.025975*  
(0.010883) 

0.7038103 0.3035693 

2.1 0.2708239***  
(0.0113140) 

0.0259551***  
(0.0043864) 

0.0241301**  
(0.0082415) 

0.0238844***  
(0.0066202) 

0.7342095 0.3022057 

2.2 0.2669749***  
(0.0111726) 

0.0242391***  
(0.0051337) 

0.0251836**  
(0.0092382) 

0.0245663***  
(0.0069888) 

0.7137531 0.2963808 

2.3 0.2690066***  
(0.0112183) 

0.0250979***  
(0.0047209) 

0.0246699**  
(0.0086946) 

0.0242220***  
(0.0067809) 

0.7262206 0.2995318 

2.4 0.2697848***  
(0.0112519) 

0.0254530***  
(0.0045721) 

0.0244495**  
(0.0084951) 

0.0240814***  
(0.0067085) 

0.7300820 0.3006965 

3.1 1.424941***  
(0.012513) 

0.113777***  
(0.026782) 

0.318939***  
(0.037599) 

0.193467***  
(0.030312) 

0.7182422 0.2590906 

3.2 1.440041***  
(0.013684) 

0.100253***  
(0.028607) 

0.328676***  
(0.042923) 

0.201574***  
(0.035041) 

0.6970294 0.2532627 

3.3 1.431841***  
(0.012969) 

0.106906***  
(0.027601) 

0.323755***  
(0.040085) 

0.197584***  
(0.032466) 

0.7101032 0.2565922 

3.4 1.428830***  
(0.012748) 

0.109720***  
(0.027239) 

0.321754***  
(0.039012) 

0.195893***  
(0.031522) 

0.7140735 0.2577258 

Table 13 



 

 

 

 

Mincer-Zarnowitz regression 
Ho: α1=0 and α1=1  (p-value) 
 Naive Bartlett Parzen Tukey-Hanning 

1 0.32 0.22 0.27 0.29 
2 0.29 0.28 0.29 0.29 

HAR-
RV-RV 

3 0.016 0.019 0.019 0.018 
1 0.14 0.054 0.059 0.082 
2 0.33 0.2 0.19 0.23 

HAR-
RV-C 

3 0.19 0.25 0.23 0.20 
1 0.3 0.13 0.13 0.16 
2 0.76 0.55 0.5 0.54 

HAR-
RV-CJ 

3 0.77 0.55 0.38 0.37 
1 0.066 0.045 0.055 0.059 
2 0.15 0.14 0.14 0.14 

HAR-
RV-RPC 
1.3 3 0.12 0.13 0.12 0.11 

1 0.063 0.042 0.051 0.056 
2 0.11 0.11 0.1 0.11 

HAR-
RV-RPV 
1.5 3 0.067 0.092 0.076 0.071 
Table 15 

 

 

 

Mincer-Zarnowitz regression 
Adjusted R² 
 Naive Bartlett Parzen Tukey-Hanning 

1 0.8950810 0.8815645 0.8907257 0.8931173 
2 0.9049928 0.8957341 0.9016784 0.9033715 

HAR-
RV-RV 

3 0.9041155 0.8964124 0.9013027 0.9027194 
1 0.9201028 0.8990014 0.9170683 0.9193151 
2 0.9173330 0.9038770 0.9140440 0.9160607 

HAR-
RV-C 

3 0.9079164 0.8955576 0.9038662 0.9064052 
1 0.8981015 0.8793819 0.8967763 0.8988256 
2 0.9009779 0.8902342 0.8991075 0.9003612 

HAR-
RV-CJ 

3 0.8926952 0.8839583 0.8905152 0.8912801 
1 0.8521560 0.8251208 0.8408019 0.8460536 
2 0.9113617 0.8965140 0.9054941 0.9083048 

HAR-
RV-RPC 
1.3 3 0.9006989 0.8899413 0.8966788 0.8986691 

1 0.8789885 0.8514711 0.8675038 0.8728372 
2 0.9166845 0.9016403 0.9107523 0.9135979 

HAR-
RV-RPV 
1.5 3 0.9055235 0.8943567 0.9013256 0.9033959 

Table 14 



 

Forecast: MSE 
 Naive Bartlett Parzen Tukey-Hanning 

1 0.05579621 0.01776198 0.01793531 0.01800635 
2 0.07843692 0.01591763 0.01535754 0.01531190 

HAR-
RV-RV 

3 0.10611847 0.02824288 0.02684165 0.02661027 
1 0.04218951 0.02430843 0.02713929 0.02689419 
2 0.06507980 0.01581078 0.01608302 0.01637243 

HAR-
RV-C 

3 0.09317418 0.01870461 0.01817107 0.01915310 
1 0.05307414 0.03367978 0.03543336 0.03489641 
2 0.07592465 0.02554392 0.02503671 0.02507692 

HAR-
RV-CJ 

3 0.10239262 0.02753245 0.02808739 0.02964508 
1 0.08334444 0.02634451 0.02591997 0.02590775 
2 0.06833373 0.02454084 0.02397395 0.02389288 

HAR-
RV-RPC 
1.3 3 0.10139842 0.02029693 0.01909034 0.01880543 

1 0.06786980 0.02201944 0.02188815 0.02200263 
2 0.06423852 0.03654996 0.03654827 0.03669380 

HAR-
RV-RPV 
1.5 3 0.09806634 0.02044325 0.01936109 0.01913394 
Table 16 
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Figure 1 Figure 2

The red lines depicts the distribution of a normal 
variable 

Figure 4

The autocorrelation function computed for the 
absolute intradaily returns. 

Figure 3 

A significant negative correlation can be 
observed up to 4th lag 
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Figure 5 

The red circles show the volatility clustering 
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Figure 6 
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Figure 7 

The blue line represents the empirical probability function of the series, and the red line –
the pdf of a normally distributed variable 
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Figure 8 

Figure 9 
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Figure 10 
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Figure 11 

Figure 12 
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Figure 13 
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Figure 14b 

HAR-RV-C forecasts for the Bartlett realized kernel; Red-forecast; Green-actual 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 14a 

HAR-RV-C forecasts for the Naïve RV; Red-forecast; Green-actual 
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Figure 14d 

HAR-RV-C forecasts for the Tukey-Hanning realized kernel; Red-forecast; Green-actual 

Figure 14c 

HAR-RV-C forecasts for the Parzen realized kernel; Red-forecast; Green-actual 


