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Foreword

This document is an update and restatement of the mathematical models in the 1996RiskMetrics Technical
Document, now known asRiskMetrics Classic. RiskMetrics Classicwas the fourth edition, with the original
document having been published in 1994. Since the initial publication, the model has become the standard
in the field and is used extensively in practice, in academic studies, and as an educational tool. At the same
time, the aim that risk models be transparent has become a guiding principle of the RiskMetrics Group,
Inc. and has carried over to our subsequent models for credit, pension funds, and retail investors. However,
there have been numerous modeling and technological advances, and the standard risk model has evolved
significantly since 1996. While we at RiskMetrics have incorporated this evolution into our software offering
and have regularly published updates to our methodology, it has been almost five years since we updated the
formal statement of the model. Given our continued commitment to transparency, we have thus created this
new document,Return to RiskMetrics: The Evolution of a Standard. We encourage our readers to provide
feedback or submit questions by email atrtr@riskmetrics.com

The authors would like to thank Christopher Finger and Allan Malz of RiskMetrics for their continuous
support and invaluable comments. We would also like to thank Anne and Arnie Sternheim for editing this
document.
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Introduction

In October 1994, the risk management group at J.P. Morgan took the bold step of revealing its internal risk
management methodology through a fifty page technical document and a free data set providing volatility
and correlation information for roughly twenty markets. At the time, there was little standardization in
the marketplace, and the RiskMetrics model took hold as the benchmark for measuring financial risk. In
the subsequent years, as the model became a standard for educating the industry as well, the demands
for enhancements and advice grew. We continued to develop the model, and by mid-1998, theTechnical
Documenthad been updated three times, with the last release (the fourth edition, orRiskMetrics Classic)
tipping the scales at almost 300 pages, more timely updates and advances had come in the form of thirteen
RiskMetrics Monitors, and the free dataset had expanded to cover foreign exchange, equity, fixed income,
and commodities in 33 countries. Demand for a straightforward implementation of the model arose as well,
leading to the development of our first software product,FourFifteen.

In 1998, as client demand for the group’s risk management expertise far exceeded the firm’s internal risk
management resources, RiskMetrics was spun off from J.P. Morgan. We have continued in our commit-
ment to transparency, and have continued to publish enhancements to the RiskMetrics methodology, most
recently in two issues of theRiskMetrics Journalin 2000. In total, we have now distributed approximately
100,000 physical copies of the various versions of theTechnical Document, and still consistently provide
over 1,000 electronic versions each month through our website. Meanwhile, the RiskMetrics datasets are
still downloaded over 6,000 times each month.

Clearly, standards do not remain static as theoretical and technological advances allow for techniques that
were unpractical or unknown previously and as new markets and financial products require new data sources
and methods. We have faced these issues; the methodology employed in our second and third generation
market risk applications represents a significant enhancement of the RiskMetrics model as documented in
RiskMetrics Classic. Additionally, our experience, and the experience of the industry as a whole, has taught
that a single risk statistic derived from a single model is inadequate, and as such, we have emphasized the
use of alternative risk measures and stress tests in our software. So, while our model has evolved, and now
represents a standard for the year 2001, the basic documentation still represents a standard for the year 1996,
and a good deal has changed since then.

Looking back, we can divide the material covered inRiskMetrics Classicinto three major pieces. The first
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of these, covered in Part One, contains the applications of the measures, or the “why” of risk measurement.
In this area, regulatory standards have changed, as have disclosure and management practices. To address
these changes, and to provide insight into risk management practices without delving into modeling details,
we publishedRisk Management: A Practical Guidein 1999.

A second area, covered in Part Four ofRiskMetrics Classic, concerns the market data that serves as the
key input to the model. As we have covered more and broader markets, the data aspect of RiskMetrics has
perhaps expanded more than any other area. We have formed a separate data service, DataMetrics, which
now warehouses close to 100,000 series. Acknowledging the critical nature of this service, and its status
as a product in itself, we will soon publish theDataMetrics Technical Document. This document covers
market data sources used by DataMetrics, methods used to enhance the quality of the data, such as outlier
identification, fitting of missing data, and synchronization, and analytics employed for derived data such as
bootstrapped yield curves.

The third area, covered in Parts Two and Three ofRiskMetrics Classic, is the mathematical assumptions
used in the model itself. Although we have made significant enhancements to the models as represented
in our software, our documentation has lagged this innovation and, unfortunately,RiskMetrics Classic, as
a representation of our software, is slightly underwhelming. In other words, a self-contained statement of
the standard risk model does not exist today. The first goal ofReturn to RiskMetrics, then, is to rectify
this problem by documenting the updated market-standard risk methodology that we have actually already
implemented.

As well as this update, we have seen the need to clarify a number of misconceptions that have arisen as a
result of the acceptance ofRiskMetrics Classic. Practitioners have come to equate Value-at-Risk (VaR), the
variance-covariance method, and RiskMetrics. Thus, it is common that pundits will criticize RiskMetrics
by demonstrating that VaR is not an appropriate measure of risk. This is really a criticism of the use of a
percentile to measure risk, but not a criticism of the model used to compute the measure. At the same time,
we hear critics of VaR who claim the method is deficient because it captures only linear positions. This is
not a criticism of the risk measure, but rather of the classic RiskMetrics variance-covariance method used
to compute the measure. To be clear, we state that VaR is not RiskMetrics, and, in fact, is a risk measure
that could even be an output of a model at odds with our assumptions. By the same token, RiskMetrics is
not VaR, but rather a model that can be used to calculate a variety of risk measures. Finally, RiskMetrics
is not a single set of computational techniques and approximations, such as the linear portfolio assumption
or the Monte Carlo procedure. Rather, RiskMetrics encompasses all of these within a hierarchy of solution
techniques for the fundamental model.

A final goal to this exercise is one of introspection. We have spoken of clarifying what RiskMetrics is not;
there also lies the more difficult task of illuminating what RiskMetrics is. In a very strict sense, RiskMetrics is
two fundamental and battle-tested modeling assumptions: that returns on risk factors are normally distributed
and that volatilities of risk factors are best estimated using an exponentially weighted moving average of
past returns. These two assumptions carry over fromRiskMetrics Classic. Since the volatility estimation
procedure has not changed, and since its explanation inRiskMetrics Classicis clear, we will not repeat the
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discussion in this document. On the other hand, though the normality assumption has not changed, we have
seen the need to present it differently for clarity. In Chapter 2, we state the assumptions more technically
and discuss two frameworks to calculate risk measures within the model: the closed-form approach, which
is simpler but requires more approximations, and the Monte Carlo approach, which is more exact but also
more burdensome. Of course, two assumptions do not make a risk model, and even with these assumptions
stated, the model is not complete. For instance, it is still necessary to specify the risk factors, to which we
have devoted Chapter 1, and the instrument pricing functions, to which we have devoted Chapter 5.

More generally, a risk model does not make a risk management practice. This brings us to a broader definition
of RiskMetrics: a commitment to the education of all those who apply the model through clear assumptions
and transparency of methods. Only by understanding the foundation of a model, and by knowing which
assumptions are driven by practical needs and which by modeling exactitude, can the user know the realm
of situations in which the model can be expected to perform well. This philosophy has motivated our
restatement and clarification of the RiskMetrics modeling assumptions. Additionally, it has motivated us to
discuss complementary modeling frameworks that may uncover sources of risk not revealed by the standard
model. Chapters 3 (historical simulation) and 4 (stress testing) are thus included not as an obligatory nod to
alternate approaches, but rather as necessary complements to the standard statistical model. Only through a
combination of these is a complete picture of risk possible.

Throughout this document, our goal is the communication of our fundamental risk-modeling framework.
However, in the interest of brevity, and to avoid overly taxing the patience of our readers, we have stayed
away from delving into details that do not add to the basic understanding of our approach. For instance, in
Chapter 5, we have chosen not to catalogue all of the instruments that we cover in our software application,
but rather have provided a detailed look at a representative set of instruments that illustrate a broad range of
pricing approaches: fixed cash flows, floating rate cash flows, options with closed-form pricing solutions,
and options requiring Monte Carlo or tree-based pricing methods.

We recognize that following onRiskMetrics Classic, even if only in a focused treatment as we have written
here, is a humbling task. We hope that this document is as useful in the year 2001 asRiskMetrics Classic
was in 1996. To the readers of the old document, welcome back. We appreciate your continued interest, and
thank you in particular for the feedback and questions over the last five years that have helped mold this new
document. To those of you who are new to RiskMetrics in particular and risk modeling in general, we hope
that this document gives you a solid understanding of the field, and happily invite questions, comments, and
criticisms.

Return to RiskMetrics: The Evolution of a Standard
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MEASUREMENT





Chapter 1

Risk Factors

Risk management systems are based on models that describe potential changes in the factors affecting
portfolio value. These “risk factors” are the building blocks for all pricing functions. In general, the factors
driving the prices of financial securities are equity prices, foreign exchange rates, commodity prices, and
interest rates. By generating future scenarios for each risk factor, we can infer changes in portfolio value and
reprice the portfolio accordingly for different “states of the world.”

One way to generate scenarios is to specify the probability that a risk factor will take a certain future value. We
would then be making an assumption regarding its distribution. Another way is to look at the past behavior of
risk factors and then assume that future behavior will be similar. These two alternatives lead to two different
models to measure risk. The first is covered in Chapter 2, and is based on explicit assumptions about the
probability distribution of risk factors. The second, based on the historical behavior of risk factors, will be
explained in Chapter 3.

Once we have specified the possible scenarios and their likelihood, we produce profit and loss (P&L) scenarios.
Part II covers the most important aspects of instrument pricing. Finally, we use the P&L scenarios to compute
measures of risk for the portfolio. For example, we could calculate 95% Value at Risk as the loss amount that
would be exceeded only 5% of the time. Part III describes the calculation of risk statistics and the creation
of different kinds of reports based on those statistics.

In the rest of this chapter, we will describe the main types of risk factors, as well as the conventions we will
adopt throughout the document to express them.

Equities

Equity risk factors are always expressed in the form of prices or levels. This means that an equity exposure
can be represented by its own time series of prices, or alternatively, mapped to an appropriate index. For
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8 CHAPTER 1. RISK FACTORS

example, changes in value for a position in Ford stock can be described by changes in the stock itself or by its
sensitivity to changes in an index such as the S&P 500.1 Equity forwards and equity options are also driven
by the same underlying price series.

In addition to straight equities, there are a range of instruments for which we have a history of prices, but not
a good pricing function in terms of underlying risk factors. These instruments could be treated like equities
instead of trying to work out a relationship between their price and the prices of a set of risk factors. An
analogy in the straight equity world is to model an equity using only its own time series as opposed to the
use of a factor model for equity pricing. Outside straight equities, we could model Brady bonds using their
own time series of prices instead of utilizing a model based on an underlying yield curve.

Foreign exchange

Foreign exchange spot rates drive the currency risk of cash positions in foreign currencies, FX forwards,
cross currency swaps, and FX options. Note that we can think of FX spot rates as the prices of unit amounts
of foreign currencies. In most applications, we make use of covered parity between FX rates and interest
rates to obtain forward currency prices.

Commodities

Commodity exposures are driven by spot and futures prices. Spot prices are used only for spot commodity
transactions, while futures prices drive the commodity futures, commodity options, and options on commodity
futures.

In the case of futures prices, we need to construct a constant maturity curve from the prices of individual con-
tracts with specific delivery dates. The methodology used to construct constant maturity curves is described
in Malz (2001a).

Interest Rates

The drivers of fixed income exposures can be expressed as zero-coupon bonds.2 A zero-coupon bond is a
simple fixed income security that pays one unit of local currency at maturity. The prices of zero-coupon
bonds are directly linked to interest rates, and once we agree on a quoting convention for interest rates, we can
obtain zero-coupon bond prices from interest rates. For example, zero-coupon interest rates in the U.S. are

1The sensitivity to an index is usually called the beta of the security with respect to the index.
2We can also think of zero-coupon bonds as discount factors.
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usually quoted using semiannual compounding. If we denote thet-year semiannually compounded interest
rate byz(2)

t , then we can calculate the price of a zero-coupon bond maturing int years as

Bt =
(

1 + z
(2)
t

2

)−2t

. (1.1)

If we now denote byzt the t-year continuously compounded interest rate, we can express the price of the
zero-coupon bond as

Bt = e−zt t . (1.2)

Note that we can obtain continuously compounded rates from semiannual interest rates using the formula
zt = 2 log(1 + z

(2)
t /2).

We use continuously compounded interest rates because they have nice properties that facilitate their math-
ematical treatment. For example, the logarithmic return on a zero-coupon bond is equal to the difference of
interest rates multiplied by the maturity of the bond. That is,

log

(
e−̃zt

e−zt

)
= −(̃z − z)t, (1.3)

where z̃ corresponds to a future interest rate scenario. This property of continuous rates turns out to be
important because we can directly infer the behavior of changes in interest rates from the behavior of bond
returns.

Next, using a set of zero-coupon bonds, we can price other fixed income securities such as coupon bonds and
interest rate swaps. For example, suppose that we have a bond maturing in one year paying a semiannual
coupon of 10%. Then, we can express the price of the bond as

P = 5B0.5 + 105B1, (1.4)

whereBt denotes the price of a zero-coupon bond maturing at time t. This means that the priceP of the
coupon bearing bond is a linear function of the prices of two zero-coupon bonds. The reader has probably
noticed that this procedure is a little different from common market practice, where the price of the bond is
expressed as a function of the yield for that particular security. We can write the priceP of the bond in terms
of the yield as

P = 5

(1 + y

2)
+ 105

(1 + y

2)2
. (1.5)

Note that the yieldy of the bond can also be obtained from the zero-coupon bond prices by combining (1.4)
and (1.5). However, given the yield on a specific bond we cannot back out the zero-coupon rates.3

3This is because the yield represents an average return for an investment and hence incorporates security specific information
such as coupon size, frequency, and time to maturity.

Return to RiskMetrics: The Evolution of a Standard



10 CHAPTER 1. RISK FACTORS

We can also apply the same process to price plain vanilla swaps. For example, if we assume for simplicity
that we are entering into a swap today, then the floating leg will be worth par, and the fixed leg can be priced
as a fixed coupon bond where the coupon is equal to the swap rate. Since the swap rate is chosen to make the
value of the swap zero, this means that we can recover the swap rate from the term structure of zero-coupon
rates.

We can use a set of bonds and swaps with maturities spanning the length of the term structure of interest
rates to construct a yield curve. Malz (2001a) provides a detailed explanation of how to construct a yield
curve from a set of bond and swap prices.4 The advantage of constructing a yield curve is that we can
recover the prices of a group of fixed income securities with a small set of information. That is, assuming
that any intermediate point can be recovered by interpolation, a yield curve can be described with only a
few nodes.This means that we can use a pre-specified set of zero-coupon bonds to price any fixed income
instrument based on a reference yield curve. For example, if we had to price 50 different U.S. government
bonds, we would price them using a common yield curve obtained from a fixed set of zero-coupon bonds.

The use of a yield curve does not guarantee that the price of every individual security will exactly match its
market price, and adding a spread specific to each security might be necessary to match prevailing market
prices. For example, if we know the current price of a bond, we solve for the spread such that when added to
the base yield curve, we recover the price of the bond. This procedure is called calibration and is explained
in detail in Chapter 5.

Although the yield curve gives us a good idea of the rate of borrowing for each term length, the liquidity
and demand for a specific issue, as well as the credit quality of the issuer, introduce differences between the
theoretical price and the observed market price of the security.5 One way of minimizing this problem is to
construct yield curves using only instruments issued by entities with similar credit quality. However, the
construction of such corporate yield curves can be complicated due to the lack of bonds spanning the term
length of the yield curve. For example, we can gather a set of BBB corporate bonds and use them to construct
a representative yield curve for BBB corporate debt. Note that even when using corporate curves, we will
still have pricing errors due to specific supply and demand effects. We can use a calibration procedure and
obtain a specific spread on top of the corporate curve to try to minimize those pricing errors.

In addition to bonds and swaps, we can also price interest rate derivatives using yield curves expressed as
a set of zero-coupon bond prices. For example, a bond option can be priced using Black’s formula where
the current value of the underlying can be obtained with the corresponding yield curve, and the only other
relevant factor is the implied volatility of the bond. If we do not have a history of implied volatilities, we can
assume that the implied volatility will remain constant throughout the analysis period. We can use similar
approaches to price caps, floors, swaptions, and other interest rate derivatives. Chapter 5 presents a discussion
of the models used to price these instruments.

4These methods also generally use money market rates to obtain the short end of the yield curve.
5The difference between the market price of a security and the price we obtain from the zero-coupon yield curve (i.e., the

theoretical price) is the source of the specific risk.
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While these four—equity prices, FX rates, commodity prices, and interest rates—are the main factors, there
are others that influence prices such as implied volatility and credit spreads. In fact, every changing parameter
in a pricing formula can be considered a risk factor. However, it is not always simple to specify the distribution
of future values for every parameter. For example, in order to calculate the risk introduced in an option by
changes in implied volatility, we need the corresponding time series of implied volatilities. In some cases, this
information is not readily available.6 Furthermore, two alternative sets of risk factors can describe equally
well the changes in price for an instrument. For example, changes in a corporate bond can be explained by
changes in a sovereign curve plus changes in the corresponding corporate spread. Alternatively, a change in
the price of a corporate bond can also be attributed to changes in a corporate curve that embeds the credit
quality information of the corporate issuer. In short, there are different ways to measure risk. Our framework
will be extended to incorporate other risk factors and financial products.

The following two chapters introduce our model to describe the potential changes in risk factors, and the
methods used to quantify the risks for a given portfolio.

6See Malz (2001a) for a complete discussion on implied volatilities.

Return to RiskMetrics: The Evolution of a Standard
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Chapter 2

Models based on Distributional
Assumptions

Chapter 2 discusses the distributional assumptions of the model and their role in the estimation of risk. The
Monte Carlo and parametric methods are presented in detail, as well as the practical implications of their
use, their differences, and their similarities.

2.1 The multivariate normal model for returns

One of the main contributions of the classic methodology presented inRiskMetrics Classic(see Morgan
Guaranty Trust Company (1996)) is a model to update the return volatility estimates based on the arrival of
new information, where the importance of old observations diminishes exponentially with time. Once we
obtain a volatility estimate, the RiskMetrics methodology assumes that logarithmic returns on the risk factors
follow a normal distribution conditional on the current volatility estimate.

The present chapter describes the distributional assumptions made inRiskMetrics Classic, as well as the
RiskMetrics volatility model. We also show how to use these distributional assumptions in Monte Carlo
methods to generate risk factor scenarios and compute risk statistics. Finally, we explain the parametric
method originally described inRiskMetrics Classic.

As we mentioned above, the model for the distribution of future returns is based on the notion that logarithmic
returns, when standardized by an appropriate measure of volatility, are independent across time and normally
distributed.

13



14 CHAPTER 2. MODELS BASED ON DISTRIBUTIONAL ASSUMPTIONS

Let us start by defining the logarithmic return of a risk factor as

rt,T = log

(
PT

Pt

)
= pT − pt, (2.1)

wherert,T denotes the logarithmic return from timet to timeT , Pt is the level of the risk factor at timet ,
andpt = log(Pt ).1

Given a volatility estimateσ , the process generating the returns follows a geometric random walk:

dPt

Pt

= µdt + σdWt. (2.2)

This means that the return from timet to timeT can be written as

rt,T = (µ − 1

2
σ 2)(T − t) + σε

√
T − t, (2.3)

whereε ∼ N(0, 1).2

There are two parameters that need to be estimated in (2.3): the driftµ and the volatilityσ . In Kim, Malz
and Mina (1999) we have shown that mean forecasts for horizons shorter than three months are not likely to
produce accurate predictions of future returns. In fact, most forecasts are not even likely to predict the sign of
returns for a horizon shorter than three months. In addition, since volatility is much larger than the expected
return at short horizons, the forecasts of future distribution of returns are dominated by the volatility estimate
σ . In other words, when we are dealing with short horizons, using a zero expected return assumption is as
good as any mean estimate one could provide, except that we do not have to worry about producing a number
for µ. Hence, from this point forward, we will make the explicit assumption that the expected return is zero,
or equivalently thatµ = 1

2σ
2.

We can incorporate the zero mean assumption in (2.3) and express the return as

rt,T = σε
√

T − t, (2.4)

The next question is how to estimate the volatilityσ . We use an exponentially weighted moving average
(EWMA) of squared returns as an estimate of the volatility. If we have a history ofm + 1 one-day returns
from timet − m to timet , we can write the one-day volatility estimate at timet as

σ = 1 − λ

1 − λm+1

m∑
i=0

λir2
t−i = R>R, (2.5)

1The notation log(·) is used to denote the natural logarithm.
2For a derivation of (2.3) see Hull (1997).
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2.1. THE MULTIVARIATE NORMAL MODEL FOR RETURNS 15

where 0< λ ≤ 1 is the decay factor,rt denotes the return from dayt to dayt + 1, and

R =
√

1 − λ

1 − λm+1


rt√
λrt−1
...√

λmrt−m

 . (2.6)

The smaller the decay factor, the greater the weight given to recent events. If the decay factor is equal to one,
the model reduces to an equally weighted average of squared returns. The obvious question to ask is: how
large should the decay factor be?

By using the idea that the magnitude of future returns corresponds to the level of volatility, one approach to
select an appropriate decay factor is to compare the volatility obtained with a certainλ to the magnitude of
future returns.

In Section 5.3 ofRiskMetrics Classic, we formalize this idea and obtain an optimal decay factor by minimizing
the mean squared differences between the variance estimate and the actual squared return on each day. Using
this method, we show that each time series (corresponding to different countries and asset classes), has a
different optimal decay factor ranging from 0.9 to 1. In addition, we find that the optimalλ to estimate
longer-term volatility is usually larger than the optimalλ used to forecast one-day volatility. The conclusion
of the discussion inRiskMetrics Classicis that on averageλ = 0.94 produces a very good forecast of one-day
volatility, andλ = 0.97 results in good estimates for one-month volatility.3

An important consequence of using an exponential weighting scheme is that regardless of the actual number
of historical returns used in the volatility calculation, the effective number of days used is limited by the
size of the decay factor. In other words, 99.9% of the information is contained in the last log(0.001)/ log(λ)

days. For example, if we useλ = 0.94, then 99.9% of the information is contained in the last 112 days. For
λ = 0.97, 99.9% of the information is contained in the last 227 days.

The EWMA one-day volatility estimate changes every day—as we incorporate new information and discard
old observations—reflecting the stochastic nature of volatility. To understand how volatility is changing
through time in our model, we can write (2.5) in recursive form:

σ 2
t = λσ 2

t−1 + (1 − λ)r2
t , (2.7)

whereσt denotes the volatility at timet .

From (2.7) we can see that the variance at timet is a weighted average of the variance at timet − 1 and the
magnitude of the return at timet . Note that the weight applied to the past variance is equal toλ, which is
consistent with the notion that the decay factor is equivalent to the weight given to past observations.

Since volatility is not constant, it becomes very important to understand the difference between the conditional
and the unconditional distribution of returns. The assumption behind our model is that one-day returns

3Fleming, Kirby and Ostdiek (2001) find an optimal decay factor close to 0.94 for one-day volatility using a similar approach.
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16 CHAPTER 2. MODELS BASED ON DISTRIBUTIONAL ASSUMPTIONS

Figure 2.1:Conditional versus unconditional normal distributions
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conditioned on the current level of volatilityare independent across time and normally distributed. It is
important to note that this assumption does not preclude a heavy-tailed unconditional distribution of returns.
For example, if returns on Mondays, Wednesdays and Fridays were independent and normally distributed with
a volatility of 40%, and returns on Tuesdays and Thursdays were also independent and normally distributed,
but with a volatility of 10%, we can only say that returns are normally distributed given that we know
which day of the week it is. Unconditionally, the distribution of returns is non-normal and presents fat tails.
Figure 2.1 compares the unconditional distribution of returns described above to a normal distribution with
the same unconditional volatility. One can see that the unconditional distribution of returns has much heavier
tails than those of a normal distribution.

The model explained above applies to a single risk factor. As we will illustrate, the model can be generalized
to describe the dynamics of multiple risk factors.

Suppose that we haven risk factors. Then, the process generating the returns for each risk factor can be
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2.1. THE MULTIVARIATE NORMAL MODEL FOR RETURNS 17

written as

dP
(i)
t

P
(i)
t

= µidt + σidW
(i)
t , i = 1, . . . , n (2.8)

where Var(dW(i)) = dt , Cov[dW(i), dW(j)] = ρi,j dt , andρi,j is the correlation between returns on assetsi

andj .

From (2.8) it follows that the return on each asset from timet to timet + T can be written as

r
(i)
t,T = (µi − 1

2
σ 2

i )(T − t) + σiεi

√
T − t, (2.9)

whereεi ∼ N(0, 1), and Cov[εi, εj ] = ρi,j .

If we incorporate the zero mean assumption we get that

r
(i)
t,T = σiεi

√
T − t . (2.10)

We can see that the equations representing the evolution of returns over time are almost identical for a single
or multiple risk factors ((2.4) and (2.10) respectively). The only difference is that when we have more than
one risk factor, we need to take into account the correlation between returns on the various risk factors.

As in the single risk factor case, we need to obtain an estimate of the future variability of returns. We also need
to assess how close each pair of risk factors move together by estimating their correlation. This information
is summarized in a covariance matrix that we denote by6. Each entry on the covariance matrix represents
the covariance between each pair of assets and is equal to the product of their respective volatilities and their
correlation. For example, the covariance between returns on asseti and assetj can be written as:

6i,j = σiσjρi,j = 1 − λ

1 − λm+1

m∑
k=0

λkr
(i)
t−kr

(j)

t−k. (2.11)

Note that (2.11) is similar to (2.5), where we have replaced the squared return on a single asset with the
product of the returns on two assets. This means that if the return for both assets is either positive or negative
on the same days, the correlation between returns will be positive. If the returns tend to be of opposite signs
on the same days, then the correlation will be negative.

We can also write the covariance matrix6 as

6 = R>R, (2.12)

whereR is anm × n matrix of weighted returns:

R =
√

1 − λ

1 − λm+1



r
(1)
t r

(2)
t · · · r

(n)
t√

λr
(1)
t−1 · · · · · · √

λr
(n)
t−1

...
...

...
...

...
...

...
...√

λmr
(1)
t−m

√
λmr

(2)
t−m · · · √

λmr
(n)
t−m

 . (2.13)
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18 CHAPTER 2. MODELS BASED ON DISTRIBUTIONAL ASSUMPTIONS

In this section we have stated the distributional assumptions for risk factor returns and explained how to
calculate the volatility and correlation parameters from historical data. In the following section we will show
how to use simulation methods to obtain risk factor return scenarios from these distributions. We will also
describe how to use risk factor scenarios to arrive at P&L scenarios for an entire portfolio.

2.2 Monte Carlo simulation

In order to understand the process to generate random scenarios, it is helpful to write (2.8) in terms of
independent Brownian incrementsdW̃ (i):

dP
(i)
t

P
(i)
t

= µidt +
n∑

j=1

cjidW̃
(j)
t . i = 1, . . . , n (2.14)

The process of going from (2.8) to (2.14) is similar to a principal component analysis, where we can write a
set of correlated variables as the linear combination of a set of independent variables.4 The coefficients of
the linear combinationcji are not unique but satisfy certain requirements.

We can gain more intuition about the coefficientscji if we write (2.14) in vector form:

dPt

Pt

= µdt + C>dW̃ t , (2.15)

where{dPt

Pt
}i = dP

(i)
t

P
(i)
t

(i = 1, 2, . . . , n) is an×1 vector,dW̃ is a vector ofn independent Brownian increments,

andC = [cij ] is anyn× n matrix such that the covariance matrix of returns6 can be written as6 = C>C.5

This means that the vector of returns for every risk factor from timet to timeT can be written as

r t,T = (µ − 1

2
σ 2)(T − t) + C>z

√
T − t, (2.16)

wherer t,T is a vector of returns from from timet to timeT , σ 2 is an × 1 vector equal to the diagonal of the
covariance matrix6, andz ∼ MV N(0, I ).6

Following our assumption thatµi = 1
2σ

2
i , we can rewrite (2.16) as

r t,T = C>z
√

T − t, (2.17)

4In other words, this is just a rotation resulting in orthogonal components.
5The importance ofC will become apparent when we explain the generation of multivariate returns.
6MVN stands for multivariate normal.
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2.2. MONTE CARLO SIMULATION 19

Note that the one-day returns (T − t = 1) from (2.17) follow a MVN distribution with zero mean and
covariance matrix6. This means that (2.10) and (2.17) are equivalent. To verify this statement, we can
calculate the covariance ofr as

Covariance = E[C>zz>C] (2.18)

= C>E[zz>]C (2.19)

= C>IC (2.20)

= 6. (2.21)

Following (2.4) and (2.17) we can use independent standard normal variables to generate return scenarios.
For instance, if we only have one risk factor, we can follow (2.4) and generate aT -day return by multiplying
a standard normal variableε by the scaled volatility

√
T σ .

In the case where we want to generate scenarios of joint returns for multiple risk factors, we first need to find
a matrixC such that6 = C>C. Then, we generaten independent standard normal variables that we store
in a column vectorz. Finally, we multiply the scaled volatility matrix

√
T C> by the vectorz to produce a

n × 1 vectorr of T -day joint returns.

It is important to emphasize that the choice ofC is not unique. There are different methods to decompose6

that result in differentC. Two popular methods for decomposing a matrix are the Cholesky decomposition
and the Singular Value decomposition (SVD).7 One important difference between these decompositions is
that the Cholesky algorithm fails to provide a decomposition when the covariance matrix is not positive
definite. On the other hand, we can always find the SVD of a matrix. A non-positive definite covariance
matrix corresponds to a situation where at least one of the risk factors is redundant, meaning that we can
reproduce the redundant risk factor as a linear combination of the other risk factors. This situation most
typically arises when the number of days used to calculate the covariance matrix is smaller than the number
of risk factors. For example, if we have three risk factors, but only two possible states of the world, then we
can hedge one of the risk factors with a combination of the other two.

Once we have produced return scenarios for the risk factors, we need to translate those returns into profit
and loss scenarios for the instruments that we hold. For example, if we hold an equity, and have generated
a one-day return scenarior, we can express the one-day profit and loss (P&L) of the position asP1 − P0,
whereP0 is the current equity price, andP1 = P0e

r is the price of the equity one day from now. In a similar
fashion, if we are holding an equity option, we can obtain the P&L asBS(P1) − BS(P0), whereBS(P ) is
the Black-Scholes pricing formula evaluated at the equity priceP .

In general, if we haveM instruments in a portfolio, where the present value of each instrument is a function
of n risk factorsVj(P), with j = 1, . . . , M andP = (P (1), P (2), . . . , P (n)), we can obtain a one-day P&L
scenario for the portfolio following the next steps:

1. Generate a setz of independent standard normal variables.
7Trefethen, L.N. and Bau, D. III (1997) is a good reference for the calculation of Cholesky and SVD.
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20 CHAPTER 2. MODELS BASED ON DISTRIBUTIONAL ASSUMPTIONS

2. Transform the independent standard normal variables into a set of returnsr = r(1), r(2), . . . , r(n)

corresponding to each risk factor using the matrixC. In other words,r = C>z.

3. Obtain the price of each risk factor one day from now using the formulaP1 = P0e
r .

4. Price each instrument using the current pricesP0 and the one-day price scenariosP1.

5. Get the portfolio P&L as
∑

j (Vj (P1) − Vj(P0)).

The procedure can be easily extended to generateT -day P&L scenarios. The only difference is that we
generate aT -day price scenario using the formulaPT = P0e

r
√

T .

As we just discussed, the simulation of returns scenarios is based on the generation of independent and
identically distributed standard normal random variables. The first step to generate normally distributed
random variables is to generate uniform random numbers taking values from zero to one with equal probability.
Once we have independent uniform random numbers, we apply a transformation to obtain normally distributed
random numbers. Algorithms for computer random number generation have been widely studied, and their
two most desirable properties are a long period (a sequence of random numbers should not repeat too often)
and negligible serial correlations (e.g., small numbers should not always be followed by small numbers).
The random number generator that we have used in our applications is a version of an algorithm proposed
by L’Ecuyer (1988) with a period of 2× 1018, and where we shuffle the observations to break up serial
correlations.8 In practice, if we obtain 10,000 scenarios on 100 risk factors every day, it would take about 8
billion years to repeat the same set of scenarios.9

This concludes our discussion on random scenario generation. Up to this point, we have stated the distri-
butional assumptions for our model (returns are conditionally MVN), and explained how to estimate the
relevant parameters (the covariance matrix6) from historical data. Then, we discussed how to sample from
our assumed distribution of returns to obtain P&L scenarios. Note that as long as we can express the price of
a given instrument as a function of the risk factors, we can use our framework to obtain P&L scenarios for
that instrument (and consequently for the entire portfolio). In Chapter 6, we explain how to use the generated
P&L scenarios to calculate various risk measures (including VaR, Marginal Var, and Incremental Var).

The risk analysis in this section was based on the generation of sample scenarios for each instrument in
the portfolio. Note that the independence between our distributional assumptions and the specific portfolio
pricing functions allows for a tremendous flexibility in Monte Carlo methods. The price for this flexibil-
ity is computational complexity. If we are willing to sacrifice some accuracy, and incorporate additional
assumptions about the behaviour of the pricing functions, we can avoid some of the computational burden
of Monte Carlo methods and come up with a simple parametric method for risk calculations. Parametric

8See Press, Teukolsky, Vetterling and Flannery (1992) pp. 278-283 for a technical description of the algorithm.
9One can also make use of variance reduction techniques to reduce the number of simulations required to achieve a certain

precision level. Three of these techniques are importance sampling, stratified sampling, and control variates. For a reference on
variance reduction techniques in a VaR framework see Glasserman, Heidelberger and Shahabuddin (2000b).
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methods were originally described in the classic RiskMetrics methodology. The following section provides
a detailed explanation of the parametric methods.

2.3 Parametric methods

As we mentioned in the previous section, the parametric approach represents an alternative to Monte Carlo
simulation to calculate risk measures. Parametric methods present us with a tradeoff between accuracy and
speed. They are much faster than Monte Carlo methods, but not as accurate unless the pricing function can
be approximated well by a linear function of the risk factors.

The idea behind parametric methods is to approximate the pricing functions of every instrument in order to
obtain an analytic formula for VaR and other risk statistics. In this section, we describe the so called delta
method which is based on a linear approximation of the pricing functions.

Let us assume that we are holding a single position dependent onn risk factors denoted byP (1), P (2), . . . , P (n).
To calculate VaR, we approximate the present valueV of the position using a first order Taylor series expan-
sion:

V (P + 1P) ≈ V (P) +
n∑

i=1

∂V

∂P (i)
1P (i). (2.22)

Equation (2.22) can be interpreted in the following way. If the price of one of the risk factors changes by an
amount equal to1P , then the present value of the position will approximately change by the sensitivity of the
position to changes in that risk factor (∂V/∂P ) weighted by the magnitude of the change (1P ). To take into
account simultaneous shocks to different risk factors, we add all the individual increments(∂V/∂P (i))1P (i).

From (2.22) we can then approximate the change in present value as

1V = V (P + 1P) − V (P) ≈
n∑

i=1

δir
(i), (2.23)

where

δi = P (i) ∂V

∂P (i)
. (2.24)

Note that (2.23) gives a simple expression for the P&L as a linear combination of risk factor returns. It is
convenient to express (2.23) in matrix notation:

1V ≈ δ>r . (2.25)

The entries of theδ vector are called the “delta equivalents” for the position, and they can be interpreted as
the set of sensitivities of the present value of the position with respect to changes in each of the risk factors.
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Note that the returns in (2.23) are actually percentage returns(r = 1P/P ), but our model is constructed
on the assumption that logarithmic returns are normally distributed. To be consistent with our distributional
assumptions, we make the assumption that log(P1/P0) ≈ P1/P0 − 1. 10

In order to understand our choice to model logarithmic returns, we need to explore the properties of percentage
and logarithmic returns. Percentage returns have nice properties when we want to aggregate across assets.
For example, if we have a portfolio consisting of a stock and a bond, we can calculate the return on the
portfolio as a weighted average of the returns on each asset:

P1 − P0

P0
= wr(1) + (1 − w)r(2), (2.26)

wherew is the proportion of the portfolio invested in the stock,r(1) = (S1 −S0)/S0 is the return on the stock,
andr(2) is the return on the bond. On the other hand, it is easy to verify that the logarithmic return on a
portfolio is not a weighted average of the individual asset logarithmic returns. This property implies that the
rigorous way of writing the change in value of the portfolio in (2.23) is as a function of percentage returns.
However, we have chosen to express (2.23) in terms of logarithmic returns. The reasons for our choice are
explained below.

In contrast with percentage returns, logarithmic returns aggregate nicely across time. The logarithmic return
from time t to time T is equivalent to the sum of the logarithmic return from timet to time τ and the
logarithmic return from timeτ to timeT , wheret ≤ τ ≤ T . This can be shown easily using the standard
properties of logarithms:

rt,T = log

(
PT

Pt

)
=
(

log
Pτ

Pt

)
+
(

log
PT

Pτ

)
= rt,τ + rτ,T . (2.27)

This temporal additivity of logarithmic returns implies that if one-period returns are independent (as implied
by the geometric random walk of (2.2)) the volatility of returns scales with the square root of time. After
considering the advantages of each type of return, it is clear that we have to forego either the ability to
aggregate across assets or the ability to aggregate across time (implying that we cannot scale volatility as the
square root of time). Looking at the parametric method in isolation, the choice is not obvious. However, if we
consider that Monte Carlo simulation does not benefit from linear aggregation across returns, that volatility
scaling is an important property of the model for both Monte Carlo and parametric methods, and that the
consistency of distributional assumptions across methods is desirable, we conclude that logarithmic returns
offer the best alternative.

Delta equivalents have nice aggregation properties. Suppose that we have a portfolio consisting ofM

10This approximation is particularly good when returns are small (P1/P0 ≈ 1), because log(1 + x) ≈ x whenx is small.

RiskMetrics Group



2.3. PARAMETRIC METHODS 23

positions. Then, the P&L of the total portfolio can be written as

P&L =
M∑
j

1Vj (2.28)

≈
M∑
j

δ>
j r (2.29)

= δ>
Portfolior . (2.30)

This means that we can calculate the delta equivalents independently for each position and then aggregate
them to obtain the delta equivalents for the total portfolio.

Example 2.1 Delta equivalents of an equity denominated in a foreign currency

If we are a USD based investor, the delta equivalents for a stock denominated in GBP with a current price
of GBP 7, and an exchange rate of GBP 0.7 per USD, are USD 10 for both the foreign exchange and the
equity risk factors. These values can be formally derived from (2.24) and the formula for the present value
of the investment in USD. Denoting the value of the position byV , the foreign exchange rate bySFX, and
the equity price bySEQ, we have thatV = SFX × SEQ = USD 10,∂V/∂SFX = SEQ, ∂V/∂SEQ = SFX,
and henceV = δSFX = δSEQ = USD 10.

Example 2.2 Delta equivalents of a bond

Let us say that we are a EUR based investor and have EUR 100 invested in a two-year zero-coupon bond.11

Since the two-year zero-coupon bond is a risk factor itself, we have thatδ = EUR 100B2, whereB2 is the
present value of a zero-coupon bond expiring in two years. Similarly, if we have EUR 100 invested on a
two-year bond paying an annual coupon of 6%, we have that the delta equivalent with respect to the one-year
zero-coupon bond is EUR 6B1, and the delta equivalent with respect to the two-year zero-coupon bond is
EUR 106B2.

If we had the one-year zero-coupon bond and the two-year coupon bond in a portfolio, we could use the
additivity property to calculate the delta equivalents for the portfolio. In this case, the delta equivalent of the
portfolio with respect to the one-year zero-coupon bond would be EUR 6B1, and the delta equivalent with
respect to the two-year zero-coupon bond would be EUR 206B2.

Note that the cash flows in our examples fall exactly on a risk factor (i.e., the one-year and the two-year
zero-coupon bonds). If we had a cash flow at 1.5 years, we would have to map the present value of the cash
flow between the two adjacent nodes at one and two years. Cash flow maps are explained in Chapter 5.

So far, we have been able to express the P&L of a portfolio as a linear combination of risk factor returns,
and it seems only fair to ask if we have gained anything through this exercise. Since our final objective in

11Note that in this example we do not have any foreign exchange risk.
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this section is to obtain statistics without relying on simulation methods, we need to obtain a tractable P&L
distribution.

Since risk factor returns are normally distributed, it turns out that the P&L distribution under our parametric
assumptions is also normally distributed with mean zero and varianceδ>6δ.12 In other words,

1V ∼ N(0, δ>6δ). (2.31)

The normal distribution is entirely described by its mean and variance, so the fact that the P&L is normally
distributed has deep implications for the calculation of risk measures. For example, percentiles of a normal
distribution can be expressed as multiples of the standard deviation, and we can therefore conclude that VaR
under our parametric assumptions will be a multiple of the standard deviation (

√
δ>6δ). In Chapter 6, we

explain how to calculate various risk measures (including VaR, Marginal Var, and Incremental Var), using
the assumptions set forth in this section.

In this chapter we provide a description of a risk model based on explicit distributional assumptions for factor
returns. Section 2.1 states the multivariate normal model for the distribution of risk factor returns, while
Section 2.2 and Section 2.3 explain two different methods to assess risk based on these distributions. The
first method is based on Monte Carlo simulation and makes no assumption regarding the pricing functions
for the instruments. Monte Carlo methods are highly accurate, but are also computationally expensive. The
second method is based on a parametric analysis that relies on the assumption that pricing functions are linear
in the risk factors. Parametric methods provide very fast answers that are only as accurate as the underlying
linearity assumption.

An alternative to an explicit model for return distributions is the use of historical frequencies of returns.
The main advantage of using the empirical distribution of risk factor returns is that no specific distributional
assumptions need to be made and no parameters (e.g., volatilities and correlations) need to be estimated.
This means that the historical data dictate the shape of the multivariate distribution of returns. The main
shortcoming of using an empirical distribution is that the period selected might not be representative of
potential future outcomes.

12The result follows from the fact that linear combinations of normal variables are also normally distributed.
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Chapter 3

Models Based on Empirical Distributions

A shared feature of the methods of Chapter 2 is that they rely on the assumption of a conditionally normal
distribution of returns. However, it has often been argued that the true distribution of returns (even after
standardizing by the volatility) implies a larger probability of extreme returns than that implied from the
normal distribution. Although we could try to specify a distribution that fits returns better, it would be a
daunting task, especially if we consider that the new distribution would have to provide a good fit across
all asset classes. There has been a lot of discussion of these issues and some alternative distributions have
been proposed. But up until now academics as well as practitioners have not agreed on an industry standard
heavy-tailed distribution (or family of distributions).1

Instead of trying to explicitly specify the distribution of returns, we can let historical data dictate the shape
of the distribution. In other words, we can come up with an empirical distribution of risk factor returns from
the frequency with which they are observed. This means that if returns larger than 10% have occurred on
average on one out of 20 days in the past, we say that there is a 5% probability that tomorrow’s return is larger
than 10%. In this approach, the historically observed risk factor changes are assumed to be independent and
identically distributed (i.i.d.), and correspond to the same distribution applicable to the forecast horizon.

It is important to emphasize that while we are not making direct assumptions about the likelihood of certain
events, those likelihoods are determined by the historical period chosen to construct the empirical distribution
of risk factors. Therefore, the choice of the length of the historical period is a critical input to the historical
simulation model. In the selection of a sample period, we are faced with a trade-off between long sample
periods which potentially violate the assumption of i.i.d. observations (due to regime changes) and short
sample periods which reduce the statistical precision of the estimates (due to lack of data). The problem
with using old information is that it might not be relevant in the current regime. One way of mitigating
this problem is to scale past observations by an estimate of their volatility. Hull and White (1998) present a
volatility updating scheme; instead of using the actual historical changes in risk factors, they use historical

1See Appendix A for a discussion of non-normal distributions.
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changes that have been adjusted to reflect the ratio of the current volatility to the volatility at the time of the
observation. As a general guideline, if our horizon is short (one day or one week), we should use the shortest
possible history that provides enough information for reliable statistical estimation.2 It is also important to
note that regulators usually require the use of at least one year of data in VaR calculations.3

3.1 Historical simulation

One can make use of the empirical distribution of returns and obtain risk statistics through the use of historical
simulation. The premise behind historical simulation is that potential changes in the underlying risk factors
are identical to the observed changes in those factors over a defined historical period. This means that we
perform a historical simulation by sampling from past returns, and applying them to the current level of
the risk factors to obtain risk factor price scenarios. We finally use these price scenarios to obtain P&L
scenarios for the portfolio. This historical simulation approach has the advantage of reflecting the historical
multivariate distribution of risk factor returns. Note that this method also incorporates information about
extreme returns as long as they are included in our sample period.

To formalize these ideas, suppose that we haven risk factors, and that we are using a database containingm

daily returns. Let us also define them × n matrix of historical returns as

R =



r
(1)
t r

(2)
t · · · r

(n)
t

r
(1)
t−1 · · · · · · r

(n)
t−1

...
...

...
...

...
...

...
...

r
(1)
t−m r

(2)
t−m · · · r

(n)
t−m

 . (3.1)

Then, as each return scenario corresponds to a day of historical returns, we can think of a specific scenarior
as a row ofR.

Now, if we haveM instruments in a portfolio, where the present value of each instrument is a function of
then risk factorsVj(P), with j = 1, . . . , M andP = (P (1), P (2), . . . , P (n)), we can obtain aT -day P&L
scenario for the portfolio as follows:

1. Take a rowr from R corresponding to a return scenario for each risk factor.

2. Obtain the price of each risk factorT days from now using the formulaPT = P0e
r
√

T .

3. Price each instrument using the current pricesP0 and also using theT -day price scenariosPT .

2For a discussion of the construction of precision measures in historical simulation, see Butler and Schachter (1998).
3See Basel Committee on Banking Supervision (1996).
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4. Get the portfolio P&L as
∑

j (Vj (PT ) − Vj(P0)).

This process is almost identical to the procedure outlined in Section 2.2 for Monte Carlo simulation, except
that instead of sampling from a normal distribution, we sample the returns from our historical database.

Note that in order to obtain aT -day return scenario in step 2, we multiplied the one-day return scenarior

by
√

T . This guarantees that the volatility of returns scales with the square root of time. In general, this
scaling procedure will not exactly result in the trueT -day return distribution, but is a practical rule of thumb
consistent with the scaling in Monte Carlo simulation. An alternative method would be to create a set of
T -day non-overlapping returns from the daily return data set. This procedure is theoretically correct, but it
is only feasible for relatively short horizons because the use of non-overlapping returns requires a long data
history. For example, if we have two years of data and want to estimate the distribution of one-month returns,
the data set would be reduced to 24 observations, which are not sufficient to provide a reliable estimate. It
is important to mention that in this case, the use of overlapping returns does not add valuable information
for the analysis and introduces a bias in the estimates. The intuition is that by creating overlapping returns,
a large observation persists forT − 1 windows, thus creatingT − 1 large returns from what otherwise
would be a single large return. However, the total number of observations increases by roughly the same
amount, and hence the relative frequency of large returns stays more or less constant. In addition, the use of
overlapping returns introduces artificial autocorrelation, since largeT -day overlapping returns will tend to
appear successively.

Example 3.1 Obtaining the portfolio P&L scenarios from historical returns

Suppose that we are a USD based investor and have a portfolio consisting of a cash position of EUR one
million, 13,000 shares of IBM, and a short position consisting of a one year at-the-money call on 20,000
shares of IBM. The current exchange rate is USD 0.88 per EUR, the price of IBM is USD 120 per share,
the one year rate is 6%, and the implied volatility is 45.62%. The current value of the portfolio is then USD
1,946,123. Table 3.1 shows the current value of each position.

Table 3.1: Current value of the portfolio

Position Value (USD)
Cash 880,000
Equity 1,560,000
Option -493,876
Total 1,946,123

We can apply historical return scenarios to our positions and obtain one-day portfolio P&L scenarios. Table 3.2
contains historical returns for three consecutive days.
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Table 3.2: Historical returns

Date EUR IBM 1Y Bond
22-Sep-00 3.74% 1.65% 0.04%
21-Sep-00 0.56% -1.35% -0.05%
20-Sep-00 0.18% 0.60% 0.00%

For example, taking the historical returns for 22-Sep-2000, we can see that our position in EUR would have
gained 3.74% and its P&L would have been USD 880,000× [e0.0374 − 1] = USD 33,535. Similarly, we
can calculate the P&L for the equity position as USD 1,560,000× [e0.0165− 1] = USD 25,953. We finally
need to compute the P&L of the option position. To do this, we need to calculate the new price of the
underlying equity (IBM) and the new interest rate based on the returns on 22-Sep-2000. The new price of
IBM is USD 120× e0.0165 = USD 121.99, and the new interest rate is 6%− 0.04%= 5.96%. We can then
use the Black-Scholes pricing formula with the new IBM price and discount rate to obtain the P&L of the
option position as USD 20,000× [BS(120, 6%) − BS(121.99, 5.96%)] = −USD 25,411. To calculate the
P&L for the total portfolio, we simply sum the individual P&L’s for each position.

We can repeat this exercise for each day to obtain a set of one-day portfolio P&L historical scenarios. Table 3.3
contains the P&L scenarios for the portfolio corresponding to each day of historical returns.

Table 3.3: P&L historical scenarios

Date P&L (USD)
22-Sep-2000 34,078
21-Sep-2000 3,947
20-Sep-2000 1,688

In this chapter we explained how to obtain P&L scenarios for a portfolio from the risk factors’historical return
scenarios. By using actual historical returns instead of simulated returns from a predetermined distribution,
we can capture the fat tails often found in many risk factors’ return distributions. As we will describe in
Chapter 6, once we have a set of P&L scenarios, the computation of risk measures is independent of whether
we used Monte Carlo or historical simulation to obtain those scenarios. In Chapter 6, we will give a detailed
account of how to use the historical P&L scenarios to calculate risk measures.

In the following chapter we introduce stress testing as a complement to the statistical methods presented in
Chapters 2 and 3. The advantage of stress tests is that they are not based on statistical assumptions about
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the distribution of risk factor returns. Since any statistical model has inherent flaws in its assumptions, stress
tests are considered a good companion to any statistically based risk measure.

Return to RiskMetrics: The Evolution of a Standard
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Chapter 4

Stress Testing

Stress tests are intended to explore a range of low probability events that lie outside of the predictive capacity
of any statistical model. These events might be related to crises produced by major displacements such as
wars, political instability, natural catastrophes, or speculative attacks on currencies; they could also be linked
to changes in return expectations or the risk appetite of investors, possibly leading to the burst of a speculative
bubble; or they could be attributable to events that are somewhat foreseeable such as shifts in monetary policy.
Therefore, the estimation of the potential economic loss under hypothetical extreme changes in risk factors
allows us to obtain a sense of our exposure in abnormal market conditions. For example, we can investigate
how much we would lose in the event of an equity crisis of a magnitude comparable to the 1987 stock market
crash. Alternatively, we could gauge the potential effect of a currency crisis on our portfolio, such as the
Brazilian real devaluation of 1998.

Stress tests can be done in two steps.

1. Selection of stress events. This is the most important and challenging step in the stress testing process.
The goal is to come up with credible scenarios that expose the potential weaknesses of a portfolio
under particular market conditions.

2. Portfolio revaluation. This consists of marking-to-market the portfolio based on the stress scenarios
for the risk factors, and is identical to the portfolio revaluation step carried out under Monte Carlo
and historical simulation for each particular scenario. Once the portfolio has been revalued, we can
calculate the P&L as the difference between the current present value and the present value calculated
under the stress scenario.

The most important part of a stress test is the selection of scenarios. Unfortunately, there is not a standard or
systematic approach to generate scenarios and the process is still regarded as more of an art than a science.1

1For a reference on generation of stress scenarios see Laubsch (1999). Malz (2000) constructs a warning signal for stress events
based on implied volatility.

31



32 CHAPTER 4. STRESS TESTING

Given the importance and difficulty of choosing scenarios, we present three options that facilitate the process:
historical scenarios, simple scenarios, and predictive scenarios.

4.1 Historical scenarios

A simple way to develop stress scenarios is to replicate past events. For instance, we could take the market
changes experienced during the Russian crisis, and investigate the effect that they would have in our current
portfolio. In other words, a historical stress test could answer the question: what would happen to my
portfolio if the events that caused Russia to default happened again?

One can select a historical period spanning a financial crisis (e.g., Black Monday (1987), Tequila crisis
(1995), Asian crisis (1997), Russian crisis (1998)) and use the returns of the risk factors over that period as
the stress scenarios. In general, if the user selects the period from timet to timeT , then following (2.1) we
calculate the historical returns as

r = log

(
PT

Pt

)
, (4.1)

and calculate the P&L of the portfolio based on the calculated returns

P&L = V (Per) − V (P ). (4.2)

Example 4.1 The Russian crisis

Let us say that we have USD 3,000 invested in a portfolio equally distributed among the Brazilian, Indonesian,
and Polish stock markets. We can then calculate the impact that an event of the magnitude of the Russian
crisis would have on our portfolio. In this example, we take the historical returns on the relevant markets
between 1-Jul-1998 and 30-Aug-1998 and apply them to our portfolio. Table 4.1 shows the logarithmic
returns between those dates.

Table 4.1: Returns between 1-Jul-1998 and 30-Aug-1998

Equity Foreign Exchange
Brazil Bovespa -48.19% BRL -1.34%
Indonesia JSE -36.47% IDR 22.60%
Poland WIG -41.24% PLN -10.19%

To calculate the change in value for each of our positions, we use (4.2). If we denote byV the current value
of our position in a foreign index,r(1) denotes the logarithmic return on the equity index (in local currency),
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andr(2) corresponds to the logarithmic return on the foreign exchange rate, we have that the change in value
of each of our positions is given by:

1V = V [er(1)+r(2) − 1], (4.3)

whereV = USD 1,000 per instrument in our example.

Following (4.3), we can compute the change in value of our portfolio under the historical stress event
corresponding to the Russian crisis. Table 4.2 presents the resulting changes in value by position.

Table 4.2: Historical stress test results

Country Change in Value (USD)
Brazil -390.59
Indonesia -129.58
Poland -402.11
Total -922.29

4.2 User-defined simple scenarios

We have seen that historical extreme events present a convenient way of producing stress scenarios. However,
historical events need to be complemented with user-defined scenarios in order to span the entire range
of potential stress scenarios, and possibly incorporate expert views based on current macroeconomic and
financial information.

In the simple user-defined stress tests, the user changes the value of some risk factors by specifying either
a percentage or absolute change, or by setting the risk factor to a specific value. The risk factors which are
unspecified remain unchanged. Then, the portfolio is revalued using the new risk factors (some of which will
remain unchanged), and the P&L is calculated as the difference between the present values of the portfolio
and the revalued portfolio.

Example 4.2 Simple stress test: a currency crisis

Using the emerging markets equity portfolio of Example 4.1, we can show how a simple stress test works
given a user-defined scenario. The scenario in this case is a currency crisis where each currency devalues by
10%. Under this scenario, all the losses are due to changes in the foreign exchange rates and we keep the
equity indices (in local terms) constant.
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Since we are only moving the FX rates, the change in value of the portfolio is given by

1V = V [er(2) − 1], (4.4)

wherer(2) = log(1 − 0.1) = −0.1053 corresponds to a 10% depreciation expressed in logarithmic returns.
The stress test results from the user-defined scenario are given in Table 4.3. The total P&L resulting from
the scenario is simply the sum of the P&L’s for the individual instruments.

Table 4.3: Simple stress test results

Country Change in Value (USD)
Brazil -100
Indonesia -100
Poland -100
Total -300

Note that the results from this stress test do not reflect the effect that a currency crisis would have in the
equity markets. The next section explains how to incorporate the effect that the user-stressed risk factors
(also called core factors) have on the remaining risk factors (also called peripheral factors).

4.3 User-defined predictive scenarios

Since market variables tend to move together, we need to take into account the correlation between risk
factors in order to generate realistic stress scenarios. For example, if we were to create a scenario reflecting a
sharp devaluation for an emerging markets currency, we would expect to see a snowball effect causing other
currencies in the region to lose value as well.

Given the importance of including expert views on stress events and accounting for potential changes in every
risk factor, we need to come up with user-defined scenarios for every single variable affecting the value of
the portfolio. To facilitate the generation of these comprehensive user-defined scenarios, we have developed
a framework in which we can express expert views by defining changes for a subset of risk factors (core
factors), and then make predictions for the rest of the factors (peripheral factors) based on the user-defined
variables. The predictions for changes in the peripheral factors correspond to their expected change, given
the changes specified for the core factors.

What does applying this method mean? If the core factors take on the user-specified values, then the values
for the peripheral risk factors will follow accordingly. Intuitively, if the user specifies that the three-month
interest rate will increase by ten basis points, then the highly correlated two-year interest rate would have an
increase equivalent to its average change on the days when the three-month rate went up by ten basis points.
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For example, let us say that we have invested USD 1,000 in the Indonesian JSE equity index, and are interested
in the potential scenario of a 10% IDR devaluation. Instead of explicitly specifying a return scenario for
the JSE index, we would like to estimate the potential change in the index as a result of a 10% currency
devaluation. In the predictive framework, we would specify the change in the JSE index as

1JSE = µJSE+ β(−.10− µIDR), (4.5)

where1JSE denotes the change in the equity index,β denotes the beta of the equity index with respect to
the FX rate, and the expected return on the two risk factors (µJSE andµIDR) are set to zero.2 In this example,
β = 0.2, so that if the IDR drops 10%, then the JSE index would decrease on average by 2%.

Equation (4.5) illustrates the method to predict peripheral factors when we have only one core factor. In this
case, the predictions are simply based on the beta of the peripheral factor with respect to the core factor. This
means that the magnitude of the change in the peripheral factor corresponds to the correlation between the
core and the peripheral factor scaled by the ratio of their volatilities.3

We can generalize this method to incorporate changes in multiple core factors. We define the predicted
returns of the peripheral factors as their conditional expectation given that the returns specified for the core
assets are realized. We can write the unconditional distribution of risk factor returns as[

r1

r2

]
∼ N

([
µ1

µ2

]
,

[
611 612

621 622

])
, (4.6)

wherer2 is a vector of core factor returns,r1 is the vector of peripheral factor returns, and the covariance
matrix has been partitioned. It can be shown that the expectation of the peripheral factors (r1) conditional
on the core factors (r2) is given by

E[r1|r2] = µ1 + 6126
−1
22 (r2 − µ2). (4.7)

Settingµ1 = µ2 = 0 reduces (4.7) to

E[r1|r2] = 6126
−1
22 r2, (4.8)

where612 is the covariance matrix between core and peripheral factors, and622 is the covariance matrix of
the core risk factors.4

Equation (4.8) is also useful outside of a predictive stress testing environment. Some readers might already
have recognized that it corresponds to a multivariate regression, and hence can be used to extract information
about the sensitivity of a price series with respect to a set of factors. For example, we could analyze the
sensitivity of Coca-Cola stock to a one standard deviation move in a beverage sector index.

2Beta is defined asβ = ρσJSE/σIDR, whereρ is the correlation between JSE and IDR returns.
3We make the assumption that the correlations and volatilities do not change as a result of the change in the core factor. Finger

and Kim (2000) derive a method to introduce correlation breakdowns in stress tests.
4Kupiec (1998) uses the conditional distribution (mean and covariance) of peripheral factors, given core factor returns, to compute

VaR under stress scenarios.

Return to RiskMetrics: The Evolution of a Standard



36 CHAPTER 4. STRESS TESTING

Example 4.3 Predictive stress test: a currency crisis

We can continue with Example 4.2 and analyze the effect that the currency devaluations would have on the
equity positions. Based on (4.8), we need the covariance matrix of risk factor returns. Table 4.4 shows
the covariance between the risk factors for our portfolio. The covariances between the core and peripheral
factors (612) correspond to the upper right quadrant of the table, the covariances between the core factors
(622) correspond to the lower right quadrant, and the upper left quadrant corresponds to the covariance
between the peripheral factors (611).

Table 4.4: Covariance matrix of risk factor returns

Bovespa JSE WIG BRL IDR PLN
Bovespa 2.9130 -0.0055 0.2767 0.0360 0.0972 0.2759

JSE -0.0055 0.9308 0.0769 0.0093 0.2766 -0.0971
WIG 0.2767 0.0769 0.8225 -0.0336 0.0064 0.0900
BRL 0.0360 0.0093 -0.0336 0.2035 -0.0650 0.1309
IDR 0.0972 0.2766 0.0064 -0.0650 1.4070 -0.2123
PLN 0.2759 -0.0971 0.0900 0.1309 -0.2123 0.3633

Using (4.8) and the numbers from Table 4.4, we can calculate the returns on the equity indices conditional on
a 10% devaluation on each of the currencies. Table 4.5 shows the predicted returns on the peripheral (equity)
factors.

Table 4.5: Logarithmic returns for the peripheral factors

Factor Return
Bovespa -8.59%
JSE -1.83%
WIG -0.57%

We can finally find the change in value of our portfolio by using the returns from Table 4.5 together with the
10% devaluation scenario for each currency. Table 4.6 contains the results from the stress test.

The result of our stress test shows that the risk of our stress event is USD 95.52 higher than the figure we
obtained from the simple stress test. This difference arises from the impact that the currency devaluation has
on the equity indices.

This chapter concludes the description of the models used to measure the exposure of portfolios to hypothetical
stress scenarios.5 In the previous chapters, we have presented two models for the behavior of risk factor
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Table 4.6: Predictive stress test results

Country Change in Value (USD)
Brazil -174.09
Indonesia -116.31
Poland -105.12
Total -395.52

returns that work well under normal market conditions. Since normal market conditions are presumed not
to hold during stress events, the assumptions embedded in the statistical models of Chapters 2 and 3 might
be unrealistic. In light of this inherent weakness, models of return distributions have to be complemented by
stress tests.

In Part I we have discussed statistical models that describe the distribution of risk factors, as well as methods
to explore potential losses under stress scenarios. Up to this point, we have taken for granted the availability
of pricing functions expressed in terms of the underlying risk factors. Part II provides a detailed discussion
of a representative set of instruments that illustrates the approaches used to construct pricing functions.

5For further reading on stress testing see the April 2000 issue of the RiskMetrics Journal. A list of the articles in the Journal can
be found in Appendix B.
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PRICING CONSIDERATIONS





Chapter 5

Pricing Framework

As we point out in Chapter 1, the price of a financial instrument is a function of a set of risk factors. In this
chapter, we will explain the pricing methodology RiskMetrics uses to value various financial instruments. The
methodology is meant to be used inVaR calculations (through either parametric or simulation methods), stress
testing, and other risk management processes. For these applications, especially forVaR estimation, hundreds
or thousands of valuations are usually required to obtain the P&L distribution of a complex instrument.
Therefore, unlike for the valuation of just a few instruments in trading, we must pay special attention to
calculation expenses. The pricing models for these complex instruments are chosen, or, in some cases,
constructed so that with minimal sacrifice in accuracy, a great reduction in computational expense can be
achieved.

While the pricing methods for a number of financial instruments are included as examples in this chapter,
they are used only to illustrate our approaches, and are not meant to give an exhaustive list of the instruments
that are covered in RiskMetrics.1

5.1 Discounting and mapping cash flows

5.1.1 Basic pricing concepts and conventions

The RiskMetrics building blocks for describing a position are its cash flows. A cash flow is specified by an
amount of a currency, and a payment date.

Once determined, these cash flows are marked-to-market. Marking-to-market a position’s cash flows means
determining the present value of the cash flows given current market rates and prices. The present value of

1For a full list of covered instruments contact RiskMetrics (contact information on the back cover).
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a cash flow is found by multiplying the cash flow amount by a discount factor, which depends on current
market rates, and particularly, the zero-coupon rate on instruments that pay no cash flow until the considered
date. It is important that the zero-coupon rates be extracted from instruments which are similar to the position
we want to value. For example, in marking-to-market a cash flow from an instrument issued by the U.S.
Treasury, Treasury rates will be used, while for a cash flow from a Aa-rated financial corporate bond, the
financial corporate Aa zero rate curve will be a good choice if a firm-specific zero rate curve is not available.

To determine the discount factor, we must first lay out the conventions we use to express interest rates. As
indicated in Chapter 1, RiskMetrics works with continuously compounded rates. The conversion formula
between discretely and continuously compounded rates is given by

z = m log

(
1 + z(m)

m

)
, (5.1)

wherez is the continuously compounded rate, andz(m) is the discretely compounded annual rate with a
compounding frequency ofm.

Generally, there is a different interest rate for each future maturity. The relationship between the interest
rates and the payment dates of cash flows is called theterm structureof interest rates.

RiskMetrics treats yield curves as piecewise linear, where points outside of the first and last maturity vertices
take on the value of the nearest vertex. As shown in Figure 5.1, suppose a curve is composed of the six
months, one year, and two-year rates:z0.5 = 0.0475,z1 = 0.05, andz2 = 0.06. The three-month rate would
be 0.0475, the 1.5-year rate would be 0.055, and the 2.5-year rate would be 0.06.

Figure 5.1: Interpolation of interest rates from term structure
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With the above specified conventions, suppose that we have a single cash flow of USD 1 at a future timet ,
and that the annualized zero-coupon rate for timet is zt , then the present value of this cash flow is given by
e−zt t . By definition, this is also the discount factor for a cash flow at timet .
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Example 5.1 Fixed-coupon bond

Let us consider a two year bond with a principal of USD 100 and a fixed coupon rate of 5% per annum.
Suppose the coupons are paid semiannually, and the zero-coupon curve is the one shown in Figure 5.1. To
calculate the present value of cash flows, we discount the first coupon of USD 2.5 at the six-month zero-
coupon rate (4.75%), the second coupon at the one-year zero-coupon rate (5%), and so on. The price of the
bond is then given by the sum of all the discounted cash flows:

2.5e−0.0475×0.5 + 2.5e−0.05×1 + 2.5e−0.055×1.5 + (2.5 + 100)e−0.06×2 = USD 98.03. (5.2)

5.1.2 Cash flow mapping for parametric VaR calculations

In the RiskMetrics methodology, a portfolio of financial instruments is broken down into a number of future
cash flows. This is adequate for pricing purposes. However, in the parametric VaR calculation, the large
number of combinations of cash flow dates leads to the impractical task of computing an intractable number of
volatilities and correlations, especially when we are considering a portfolio with many financial instruments.
The RiskMetrics methodology simplifies the time structure by mapping each cash flow to a pre-specified set
of RiskMetrics vertices. An example set of the vertices is listed below:

1m 3m 6m 1yr 2yr 3yr 4yr 5yr 7yr 9yr 10yr 15yr 20yr 30yr.

Mapping a cash flow means splitting it between two adjacent RiskMetrics vertices. Figure 5.2 shows how
the actual cash flow occurring at six years is split into the synthetic cash flows occurring at the five-year
and seven-year vertices. After the cash flow map, a portfolio of instruments are transformed into a portfolio
of standard cash flows. Now, for parametric VaR calculations, we only need to take care of volatilities
and correlations for these standard vertices. Values of these volatilities and correlations are provided in the
RiskMetrics data set.

There is no unique way of splitting a cash flow between two vertices. The original RiskMetrics cash flow
map sets the volatility of the considered cash flow to be the linear interpolation of the volatilities on the two
neighboring vertices. The cash flow map is then worked out so that this interpolated volatility and the present
value of the cash flow are preserved. This approach performs very well under most circumstances. However,
it has certain drawbacks. First of all, the volatility in this map does not match the volatility from Monte Carlo
simulation, where the interest rate, rather than the volatility itself, is interpolated from the corresponding
values on neighboring vertices. In addition, the original cash flow map could produce undesirable results if
the correlation between the returns of the zero-coupon bonds corresponding to the two neighboring vertices
is very small (though this is a very rare event).2

2For an example and more details refer to Mina (1999).
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Figure 5.2: RiskMetrics cash flow map
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The improved RiskMetrics cash flow map starts with the linear interpolation of interest rates, i.e.

zt = αzL + (1 − α)zR, (5.3)

whereα = (tR − t)/(tR − tL), t is the maturity of the zero-coupon bond,tL and tR are the two adjacent
vertices, andzL andzR are the two corresponding zero rates at the vertices. Note that this procedure is
consistent with the Monte Carlo simulation of VaR for a zero-coupon bond.

To work out the cash flow map, let us first assume that a payment of USD 1 at timet is mapped into a payment
of WL at timetL, and a payment ofWR at timetR, as well as a cash positionC. To preserve the present value
(Vt ) of the cash flow, we should have the following equivalence:

Vt = e−zt t = WLe−zLtL + WRe−zRtR + C. (5.4)

The cash flow map should also preserve the sensitivity of the present value to changes in the zero rates for
the two neighboring vertices. This is equivalent to taking the partial derivative of (5.4) with respect tozL or
zR while keepingWR, WL andC constant. With the expression ofzt in (5.3), we have

∂Vt

∂zL

= −αte−zt t = −WLtLe−zLtL, (5.5)

from which we obtain

WL = α
t

tL
e−zt t ezLtL . (5.6)

Similarly, we can obtain

WR = (1 − α)
t

tR
e−zt t ezRtR . (5.7)
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Finally, from (5.4), (5.6), and (5.7) we can derive the cash position as

C = −(t − tL)(tR − t)

tRtL
e−zt t . (5.8)

Therefore, the amount ofVt dollars invested in a zero coupon bond with maturity at timet can be represented
by a portfolio of(α t

tL
Vt ) dollars (the present value ofWL) invested in a bond with maturity equal to the left

vertex,[(1 − α) t
tR

Vt ] dollars (the present value ofWR) invested in a bond with maturity equal to the right

vertex, and a cash position of[− (t−tL)(tR−t)

tRtL
Vt ] dollars.

Example 5.2 Cash flow mapping for a forward rate agreement (FRA)

A forward rate agreement (FRA) is a contract locking in the interest rate that will be applied to a certain
notional principal for a specified period in the future.3

A typical FRA is stated in terms of the effective date, length of the agreement, forward interest rate, and
principal amount. For example, a 3× 6 FRA locks the interest rate for a three month period between three
and six months from the date we entered the contract. FRAs are generally cash-settled at the start of the
forward rate agreement period.

In general, a FRA is priced as if one borrows the nominalN at settlement datetf and pays back the nominal
plus interest at a raterx at maturity datetm,

Ne−zf tf − N [1 + rx(tm − tf )]e−zmtm (5.9)

wherezf andzm are the zero rates from the present totf andtm respectively.

Consider a 3× 6 FRA on EUR one million at a forward rate of 5.136%. Suppose the FRA is entered into on
1-Aug-2000, so the FRA is equivalent to borrowing EUR one million for three months on a discount basis
and investing the proceeds for a payoff of 1,000,000× (1 + 0.05136× 92/360) = EUR 1,013,125 at the
end of six months. Here 92 is the number of days between 1-Nov-2000 and 1-Feb-2001.

One month into the trade on 1-Sep-2000, this FRA is now equivalent to borrowing EUR one million for
two months on a discount basis and investing the proceeds for the same payoff of EUR 1,013,125 at the
end of five months. If we use the example set of RiskMetrics vertices, the two-month cash flow must be
mapped to the one-month and three-month vertices, while the five-month cash flow must be split between
the three-month and six-month vertices.

The EUR one-, three- and six-month money market rates on 1-Sep-2000 are 4.664%, 4.829% and 5.044%
respectively. From linear interpolation, the two- and five-month rates are 4.748%, 4.997%. With this
knowledge, the cash flow map for the FRA is shown in Table 5.1.

The parametric VaR can then be calculated based on the volatilities and correlations of the one-month,
three-month, and six-month money market rates.

3For more details on FRAs see Malz (2001a).
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Table 5.1: Cash flow map for a FRA

Date Flow Term Yield PV Cash 1m 3m 6m
1-Nov-2000 -1,000,000 2m 4.748 -992,127 337,977 -992,127 -337,977
1-Feb-2001 1,013,125 5m 4.977 992,420 -104,599 519,112 577,907

Total 293 233,378 -992,127 181,135 577,907

5.2 Generalized framework

5.2.1 Floating rate instruments

Unlike for the simple bond in our first two examples, coupon payments on many financial instruments are
not fixed. Their coupon rates are often floating based on certain reference interest rates. Typical examples
include floating rate notes and swaps. The pricing of these instruments involves the determination of future
values of these interest rates.

Consider a case in which the current zero rates for maturitiest1 andt2 arez1 andz2, respectively. Denote
ft1,t2 as the forward rate for the period of time betweent1 and t2. The fundamental arbitrage relationship
between current and future rates implies that

ez1t1eft1,t2(t2−t1) = ez2t2. (5.10)

The forward rate is solved to be

ft1,t2 = z1 + z2 − z1

t2 − t1
t2, (5.11)

This implied forward rate will then be used to set cash flows in the pricing of floating rate instruments.

Example 5.3 Floating rate notes (FRN)

Consider an FRN whose coupon rate varies with some interest rate. The floating coupon rate is usually
set some time in advance of the actual coupon payment. For example, if coupon payments are paid on a
semiannual basis, the current six-month LIBOR rate will be used to determine the payments in six months.

Suppose that we have an FRN that pays six-month LIBOR on a principal ofN . Assume the next coupon pay-
ment occurs att0 with a coupon ratec0. After that, the coupon payment times areti = t0+0.5i (i = 1, · · · , n),
and we denote the zero-coupon rates corresponding to these dates byzi . For theith coupon payment, the
coupon rate is the forward six-month LIBOR rate atti−1. Using (5.11), we obtain the (continuously com-
pounded) forward six-month LIBOR rate as

fti−1,ti = zi−1 + 2(zi − zi−1)ti . (5.12)
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Then, using (5.1), we transform this rate into a semiannually compounded rate, which is used as the coupon
rate for theith payment:

ci = 2[e0.5fti−1,ti − 1] = 2ezi ti−zi−1ti−1 − 2, (5.13)

where we used the relationshipti = ti−1 + 0.5. For example, if the continuously compounded zero rate is
6% for one year, and 6.5% for 1.5 years, then the coupon rate for the payment at 1.5 years will be 7.64%.

The present value of theith (i > 0) coupon payment is given by

Vi = N
ci

2
e−zi ti = Ne−zi−1ti−1 − Ne−zi ti (5.14)

Similar to the fixed coupon bond in our previous example, we can write down the present value of the FRN
as the sum of all the discounted cash flows:

V = N
c0

2
e−z0t0 + V1 + · · · + Vn + Ne−zntn , (5.15)

where the first term on the right hand side is the present value of the next coupon payment, and the last term
is the present value of the principal payment at maturity. Using (5.14), the right-hand side is equal to

N
c0

2
e−z0t0 + (Ne−z0t0 − Ne−z1t1) + · · · + (Ne−zn−1tn−1 − Ne−zntn) + Ne−zntn (5.16)

Equation (5.16) collapses nicely to give the present value of the FRN as:

V = N(1 + c0

2
)e−z0t0. (5.17)

Equation (5.17) implies that immediately after a payment date, a FRN is identical to a newly issued floating-
rate note. More importantly, (5.17) implies that the only risk is due to changes in a short term rate. One can
easily verify that the same result holds for any compounding frequency.

Example 5.4 Plain vanilla interest rate swap (IRS)

An interest rate swap (IRS) is an agreement between two counterparties to exchange fixed for floating cash
flows. Although the notional principal is not exchanged in a swap, we can assume without changing the
value of the swap that the two counterparties pay each other the same notional amount.4 It can be thought of
as a portfolio consisting of one fixed leg, which is equivalent to a fixed-coupon bond, and one floating leg,
which is equivalent to an FRN.

Suppose that a firm enters into an IRS to receive six-month LIBOR and pays 5% per annum semiannually on a
notional of USD 100 million. The swap has 1.25 years left to maturity. We also assume that the continuously

4This assumption is valid for pricing purposes and market risk analysis, but can result in overstatement of exposure in credit risk
analysis.
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compounded LIBOR curve is the one shown in Figure 5.1. From Figure 5.1, the continuously compounded
zero LIBOR rates for three months, nine months, and fifteen months are interpolated to be 4.75%, 4.875%,
and 5.25%. Therefore, the value of the fixed leg is

Vf ix = 2.5e−0.0475×0.25 + 2.5e−0.04875×0.75 + (2.5 + 100)e−0.0525×1.25 = USD 100.87 million. (5.18)

Assume that the next coupon rate for the floating leg was set to be 6.0%. Using (5.17), we find the present
value of the floating leg to be

Vf loat = (100+ 3)e−0.0475×0.25 = USD 101.78 million. (5.19)

Therefore, the swap is worth

V = Vf loat − Vf ix = 101.78− 100.87 = USD 0.91 million (5.20)

5.2.2 Expansion of the framework

In the last two examples, the reference curves for setting coupon rates and discounting cash flows were the
same. As shown in (5.17), this feature results in a significant simplification of the calculation, and is used in
RiskMetrics Classicas the basis to price floating rate instruments.

Equation (5.17) is only valid when the reference and discount curves are the same. However, this is not
always the case. One exception is a LIBOR-based floating rate note issued by a U.S. corporate. Due to the
difference in credit standing, afuturecash flow of one dollar from a Baa-rated corporate is not worth as much
as one dollar from a bank which can borrow at LIBOR. The use of the LIBOR curve for discounting will end
up overpricing the FRN. In this case, the right discount curve is the U.S. corporate yield curve which reflects
the credit rating of the issuer. This type of floating instrument is incorporated into RiskMetrics by expanding
the original pricing framework to allow the specification of different reference and discount curves.

Example 5.5 U.S. corporate FRN

Let us consider a Baa-rated FRN issued by a U.S. corporate. The FRN pays six-month LIBOR and matures
in 1.25 years. From Figure 5.1, the zero LIBOR rates for three months, nine months, and fifteen months
are found to be 4.75%, 4.875%, and 5.25%. The forward six-month LIBOR rates (after conversion to
semiannually compounded rates) are 5.00% from three to nine months, and 5.90% from nine to 15 months.
Therefore, the implied coupon rates are 5.00% nine months from now and 5.90% 15 months from now.

From (5.17), if we assume the next coupon rate is 6.0%, then the present value of the FRN will be USD
101.78 (using LIBOR for discounting). Now, suppose the U.S. corporate Baa zero rates for three, nine, and
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15 months are 7.0%, 8.4%, and 8.6% respectively. Using the Baa curve for discounting, the price of the FRN
is calculated as5

3e−0.070×0.25 + 2.5e−0.084×0.75 + (2.95+ 100)e−0.086×1.25 = USD 97.752, (5.21)

which is much lower than the LIBOR-discounted value of USD 101.78.

Note that while (5.17) only depends on the short term interest rate, (5.21) depends on the interest rates up to
the time of maturity. Therefore, the price sensitivity to longer term interest rates is another important feature
that will be missed if one uses the same reference and discount curves in this example. Furthermore, we
have sensitivity to both the Baa and LIBOR curves, instead of the LIBOR curve only.

In a generic case, not only can the two curves be different, but also the principal (e.g. amortizing swap),
the payment date (e.g. spread-lock), the accrual period (e.g. LIBOR-in-arrears swap), and other elements
of cash flows can vary. These variations, along with the associated adjustments (e.g., convexity and timing),
are handled by the generalized pricing framework.

Example 5.6 Constant maturity Treasury (CMT) swap

A constant maturity Treasury (CMT) swap is an agreement to exchange LIBOR for a particular constant
maturity Treasury rate. A CMT rate is the par yield of a Treasury security with fixed maturity (e.g., five
years). In general, there is not a security in the market with the exact desired maturity, and hence the par
yield is often interpolated from a specified set of securities (usually the two closest to the desired maturity).
In practice, since it is difficult to track the specific issues, we obtain the par yield from a synthetic constant
maturity bond constructed from the Treasury yield curve.

As in a plain vanilla interest rate swap, the discount curve for the LIBOR leg and CMT leg is the same USD
swap curve. However, while the reference curve for the LIBOR leg is still the USD swap curve, the coupon
rate for the CMT leg is computed from the USD Treasury curve.

For illustration, consider a CMT swap paying three-month LIBOR and receiving ten-year CMT rates quarterly
on a notionalN . Suppose that there are(n + 1) payments at timesti (i = 0, 1, · · · , n), wheret0 is the next
payment date with known coupon rate.

Now, let us focus on the CMT-rate leg of the swap. Note that for this leg, the compounding frequency for the
reference curve is two, while the payment frequency is four. For the(i + 1)th (i > 0) payment, the coupon
rate for the CMT leg is taken as the ten-year CMT rate (yCMT

ti
) observed atti . The payment for the CMT leg

at timeti+1 is then

NyCMT
ti

1ti, (5.22)

5To make the calculation more precise, one has to consider small adjustments to account for the more subtle effects caused by
the difference in reference and discounting curves. For more information see Hull (1997).
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where1ti = ti+1 − ti = 0.25 is the accrual period for this payment.

Although the future CMT rateyCMT
ti

is not directly observable today, we can use current market information
to estimate itsexpectedvalue, an average of all possible future spot CMT rates. The immediate candidate
for the future CMT rate is the ten-year CMTforward rate (f CMT

ti
), that is, the implied par yield for a ten-year

Treasury note issued at timeti , which can be solved from:

1 =
20∑

k=1

f CMT
ti

2
exp(−f

Treasury

ti ,ti+0.5k · k

2
) + exp(−f

Treasury
ti ,ti+10 · 10), (5.23)

where the denominator 2 underf CMT
ti

is the compounding frequency for Treasury notes,f
Treasury

ti ,ti+0.5k is the
implied forward Treasury zero rate fromti to ti +0.5k (k = 1, 2, · · · ), which is in turn obtained from current
Treasury zero rates through (5.11).

However, the forward CMT rate is not the same as the expected CMT spot rate.6 A convexity adjustment
is necessary to account for the fact that the expected future yield is higher than the forward yield due to the
non-linearity (convexity) of the bond priceG(y) at timeti as a function of its yield (y),

G(y) =
20∑
i=1

f CMT
ti

/2

(1 + y/2)i
+ 100

(1 + y/2)20
. (5.24)

Another adjustment, called the timing adjustment, is also necessary to account for the fact that the rate is
set at timeti based on a reference curve, while the payment is made at timeti+1 and is discounted with a
different (LIBOR) curve.

Without going into details, theexpectedten-year CMT rate at timeti+1 can be approximated as

yCMT
ti

= f CMT
ti

+ 1

2
(f CMT

ti
)2(σCMT)

2 G′′(f CMT
ti

)

|G′(f CMT
ti

)| ti − f CMT
ti

f LIBOR
ti ,ti+1

σCMTσL
ρ1ti

1 + f LIBOR
ti ,ti+1

1ti
ti, (5.25)

wheref LIBOR
ti ,ti+1

is the implied forward three-month LIBOR rate between timeti andti+1, σCMT is the volatility
of the forward CMT rate which is implied from bond options,σ

L
is the volatility of the forward LIBOR rate

which is implied from caplet prices, andρ is the correlation between the forward CMT rate and forward
LIBOR rate. The second term on the right hand side of (5.25) is the convexity adjustment, while the third
term is the timing adjustment.

The expected payoff for the CMT leg at timeti+1 will then beNyCMT
ti

1ti . With the LIBOR leg priced as a
normal FRN according to (5.17), the present value of the swap is

N

n∑
i=0

yCMT
ti

1tie
−zL

i ti − N(1 + c01t0)e
−zL

0 t0, (5.26)

wherezL
i is the current zero swap rate for timeti .

6See, for example, Hull (1997).
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5.3 Equity, foreign exchange and commodities

In this section, we will show how RiskMetrics prices other basic financial instruments related to equities,
foreign exchange, commodities, and futures.

Example 5.7 Equity futures

Because the maintenance margins are marked-to-market daily, equity futures contracts are in effect closed
out and rewritten at new prices each day. Therefore, the daily gain or loss on a futures contract is the daily
change in the futures price, which means the present value of an equity futures position is

N(C − F0). (5.27)

whereN is the number of commodity units,C is the quoted futures price of the equity, andF0 is the futures
price at the time we entered the contract. If the quoted priceC is not available, the following formula can be
used for the present value of an equity futures position

NSe(zm−q)tm − NF0, (5.28)

wherezm is the discount rate for expiration timetm, q is the continuous dividend rate,F0 is the entry price,
andN is the contract size. Note that the first term in (5.28) is the current theoretical futures price.

Consider a long position of December (2000) S&P 500 index futures with an entry price of 1,400. On 1-Aug-
2000, the S&P 500 (cash) index is 1,438.10. There are 135 days between 1-Aug-2000 and the expiration day,
14-Dec-2000. Suppose the S&P 500 dividend yield is 1.1%, the financing costs or interest rates are 6.72%
for three months, and 6.895% for six months. The interest rate for 135 days is interpolated to be 6.80%.
Then the cash value of the futures contract is

USD 250× (1,438.10e(0.068−0.011)×135/365 − 1,400) = USD 17,185, (5.29)

where USD 250 is the multiplier for S&P 500 index futures contracts.

Example 5.8 FX forward

FX forwards are modeled as two discount bonds. The value of an FX forward is

N1S
FX
1 e−z1tm − N2S

FX
2 e−z2tm, (5.30)

whereN1 is the amount of foreign currency one that will be received with current exchange rateSFX
1 and

discount ratez1, andN2 is the amount of foreign currency two that will be received with current exchange
rateSFX

2 and discount ratez2. The discount rates used are risk free rates or money market rates for the given
currencies.
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Example 5.9 Commodity futures

The present value of a commodity futures contract is

N(C − F0), (5.31)

whereN is the number of commodity units,C is the quoted futures price of the commodity, andF0 is the
futures price at the time we enter the contract. Note that except for the definition ofC, (5.31) and (5.27) are
identical.

5.4 Nonlinear instruments and derivatives

Linearity and nonlinearity of instruments refer to the dependence of their values on underlying risk factor
changes. For example, the value of a FRA, as shown in (5.9), depends on the values of two zero-coupon
bonds maturing attf andtm. If we useB(t) to denote the value of a zero-coupon bond maturing att , then
(5.9) can be rewritten as

N B(tf ) + N [1 + rx(tm − tf )] B(tm). (5.32)

Equation (5.32) shows that FRAs are linear instruments with values proportional to the underlying zero-
coupon bond values.

In contrast, with the same notation, the value of an equity futures in (5.28) can be rewritten as

NSe−qtm

B(tm)
− NF0. (5.33)

Therefore, an equity futures is a nonlinear instrument as its value is inversely proportional to the value of a
zero-coupon bond. Another example of a nonlinear instrument is a foreign equity, whose pricing is discussed
in Example 2.1. Let us revisit the pricing formula

V = NSEQSFX, (5.34)

whereN is the number of shares,SEQ is the market price of the foreign equity, andSFX is the foreign
exchange rate.SEQ andSFX are the two involved risk factors. Since the coefficient for each risk factor is
not constant, a foreign equity is clearly a nonlinear instrument.

In this section, we will focus on the pricing of more nonlinear financial instruments. Although we have met
some of them before, by far the most common features of nonlinear financial instruments have to do with
options.
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5.4.1 Black-Scholes and option pricing

In 1973, Fischer Black and Myron Scholes published the first successful model for pricing stock options.7

The model turns a potential guesswork into a scientific and precise process, and the value of a stock option
can now be calculated with great accuracy.

The Black-Scholes formula for the price of a European call option on a non-dividend-paying stock, that is,
the right to buy a unit of stock at timeT for a priceX, is

c = S08(d1) − Xe−rT 8(d2), (5.35)

where8 is the cumulative normal distribution function,S0 is the current stock price,X is the option strike
price,T is the time until option expiration,r is the risk-free interest rate, and

d1 = ln(S0/X) + (r + σ 2/2)T

σ
√

T
, (5.36)

d2 = ln(S0/X) + (r − σ 2/2)T

σ
√

T
, (5.37)

whereσ is the stock price volatility. European put options, the right to sell a unit of stock at timeT for X,
can be priced as a call (struck atX) less a forward contract (with a forward price ofX). This relationship
between a call, a put, and a forward is called put-call parity.8

One key feature of the Black-Scholes option pricing model is that the option price does not depend on the
expected rates of return. Since expected rates of return reflect risk preferences by investors, risk preferences
are irrelevant in the pricing formula. Due to an arbitrage argument (see Black and Scholes (1973)), we can
assume that investors are risk neutral, and obtain a pricing formula that is still valid even in the presence of
risk aversion.

Note that when we use Monte Carlo simulation to gauge the risk of a decrease in value of an option, future
scenarios are first generated based on the “real world” distribution of returns (as explained in Chapter 2).
Then, the option is repriced on each scenario using the risk neutral distribution.

Example 5.10 Equity option

Consider a European call option on a stock with continuous dividend rateq. The value is

c = S0e
−qT 8(d1) − Xe−rT 8(d2), (5.38)

7See Black and Scholes (1973).
8For a discussion of put-call parity see Hull (1997).
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where

d1 = ln(S0/X) + (r − q + (σ 2/2))T

σ
√

T
(5.39)

d2 = ln(S0/X) + (r − q − (σ 2/2))T

σ
√

T
, (5.40)

Now suppose the current stock price is USD 50, the continuous dividend rate is 1%, the exercise price is
USD 50, the volatility is 30% per annum, the risk-free interest rate is 7% per annum, and the time to maturity
is three months. Then

d1 = ln(50/50) + (0.07− 0.01+ 0.32/2) × 0.25

0.3
√

0.25
= 0.175 (5.41)

d2 = ln(50/50) + (0.07− 0.01− 0.32/2) × 0.25

0.3
√

0.25
= 0.025, (5.42)

and the option price is calculated to be USD 3.35.

The one parameter in the Black-Scholes pricing formula that cannot be directly observed is the volatility
of the stock price. It is a pricing parameter that can be calibrated from the option price observed in the
market. The volatility obtained from the calibration is usually known as implied volatility. More discussion
on implied volatility as a risk factor will be covered in Section 5.5 of this chapter.9

The Black-Scholes model has been extended to value options on foreign exchange, options on indices, options
on futures contracts, and other derivative instruments and contingent claims. It has become such a popular
tool that the Black-Scholes volatility is now a common language for option pricing.

5.4.2 Black’s model and interest rate derivatives

A further extension of the Black-Scholes model is the Black model, which assumes that at the maturity of
the option, the value of the underlying asset is lognormal with its expected value equal to its forward value.10

The important feature of Black’s model is that the geometric Brownian motion assumption for the evolution
of the underlying asset price is not required.

Using Black’s model, the value of a European call option on a certain underlying asset is given by

c = e−rT [F8(d1) − X8(d2)], (5.43)

9See also Malz (2001a) and Malz (2001b).
10See Black (1976).
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where8 is the cumulative normal distribution function,F is the forward value of the underlying asset,X is
the option strike price,T is the time to expiry,r is the risk-free interest rate, and

d1 = ln(F/X) + σ 2T/2

σ
√

T
, (5.44)

d2 = ln(F/X) − σ 2T/2

σ
√

T
, (5.45)

whereσ is the volatility ofF .

Black’s model is used to value a wide range of European options, including interest rate derivatives, such as
bond options, interest rate caps and floors, and European swaptions.

Example 5.11 Bond option

A bond option is an option to buy or sell a particular bond by a certain date for a certain price. With the
lognormal assumption of the bond price at the maturity of the option, Black’s model can be used to price a
bond option. The bond forward price is given by

F = (B0 − c
T
)erT , (5.46)

whereB0 is the current bond price,c
T

is the present value of the coupons that will be paid before the option
maturity date, andr is the discount rate for timeT .

Consider a ten-month European call option on a 9.75-year bond with a face value of USD 1,000. Suppose that
the current cash bond price is USD 960, the strike price is USD 1,000 (clean price), the ten-month risk-free
rate is 10% per annum, and the annualized volatility of the forward bond price in ten months is 9%. The
bond pays a semiannual coupon of 10% and the coupon payments of USD 50 are expected in three months
and nine months. We assume that the three-month and nine-month risk-free interest rates are 9.0% and 9.5%,
respectively. Therefore, the present value of the coupon payment is

50e−0.25×0.09 + 50e−0.75×0.095 = 95.45. (5.47)

According to (5.46), the bond forward price is given by

F = (960− 95.45)e0.10× 10
12 = 939.68 (5.48)

From the specification of the contract, we know the rest of the parameters areX = 1,000,σ = 0.09,
T = 0.833, andr = 0.10. Using (5.43), we find the option price to be USD 9.49.
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5.4.3 Term structure model and interest rate trees

Although Black’s model can be used to value a wide range of instruments, it does not provide a description
of the stochastic evolution of interest rates and bond prices. Consequently, for interest rate derivatives whose
value depends on the exact paths of such stochastic processes, such as American-style swaptions, callable
bonds, and structured notes, Black’s model cannot be used. To value these instruments, RiskMetrics employs
models which describe the evolution of the yield curve. These models are known as term structure models.

One group of term structure models for instruments pricing are based on no-arbitrage arguments. This group
of models are consistent with today’s term structure of interest rates observed in the market, meaning that
market prices of bonds are recovered by the models. They take the initial term structure as input and define
how it evolves. The Ho-Lee model and Hull-White model are two examples in this group which are also
analytically tractable. Lognormal one-factor models, though not analytically tractable, have the advantage
that they avoid the possibility of negative interest rates.

In RiskMetrics, the Black-Derman-Toy (BDT) model is used to price some complex interest rate derivatives.11

The principal reason for using BDT model is its ease of calibration to the current interest rate and the implied
term structure of volatility.

The direct application of a BDT model is to construct interest rate trees from which complex instruments can
be priced. An interest rate tree is a representation of the stochastic process for the short rate in discrete time
steps. The tree is calibrated to current market interest rates and volatilities. Note that in an interest rate tree,
the discount rate varies from node to node. As an example, let us use a BDT model to build an interest tree,
and use it to price a callable bond.

Example 5.12 BDT tree calibration

A BDT tree is fully described by a vectorr = {ri0}, (i = 1, · · · , n) whose elements are the lowest values of
the short rate at time stepi, and by a vectorσ = {σi}, whose elements are the annualized volatilities of the
short rate from time stepi to time stepi + 1. Figure 5.3 shows an example of a calibrated BDT tree.

The BDT model in its discrete version can be stated as12

rij = ri0e
2σij

√
1t , (5.49)

where1t is the time step in years andj (0, 1, · · · , i − 1) is an index representing the state of the short rate
at each time step.

The first step for the calibration is to set each BDT volatilityσi equal to the implied volatility of a caplet
with the same maturity.13 The short rate vectorr = {ri0} is then calibrated so that the prices of the BDT

11See Black, Derman and Toy (1990).
12See Rebonato (1996).
13This is not theoretically correct because the forward rates in a BDT tree are only approximately lognormal. However, the

induced pricing errors are very small and the time savings in the volatility calibration justify this procedure. For a more detailed
discussion of calibration issues see Rebonato (1996).
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Figure 5.3: An example of BDT tree
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zero-coupon bonds corresponding to each of the nodes in the current yield curve exactly match the true bond
prices. To do this, we start with the short maturity of the yield curve and work our way to the longest maturity.

Suppose that we want to build a tree with a step length of three months, or1t = 0.25 years. Assume that
the market prices for three-month and six-month Treasury bills are USD 98.48 and USD 96.96 respectively,
and that the implied volatility of a caplet with expiry in six months is 15%. In the first step we findr10 by
solving

98.48 = 100

1 + r101t
= 100

1 + 0.25r10
, (5.50)

which gives the three-month yield to ber10 = 0.0617.

The price for six-month Treasury bills is an average discounted value over all paths out to six months. We
have the following relationship for the second step

96.96 =
(

1

1 + r101t

)
× 1

2

(
1

1 + r201t
+ 1

1 + r211t

)
× 100, (5.51)

where the first factor on the right hand side of the equation is the discount factor for the first period, and the
second factor is the average discount factor for the second period. With the relationship betweenr20 and
r21 given by (5.49), and the forward volatilityσ2 = 15%, r20 andr21 are found to be 0.0580 and 0.0674
respectively.
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If we repeat the process until maturity time of the instrument, we will have a calibrated BDT tree as illustrated
in Figure 5.4(a). We can then use it to value fixed income instruments with embedded options, including
callable bonds.

Figure 5.4: A coupon bond is valued as a portfolio of zero coupon bonds using a BDT tree.
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As an illustration of its application, let us use the calibrated BDT tree to price a simple fixed-coupon bond.
Consider a bond with a 10% coupon, and nine months left to maturity. It can be represented by a three-month
zero coupon bond with a USD 5 face value and a nine-month zero coupon bond with a USD 105 face value.
As illustrated in Figure 5.4(b) and (c), we start from the maturity date and discount back cash flows according
to the BDT short rates on each node. For example, in Figure 5.4(c), USD 102.96 is obtained by discounting
USD 105 by 7.94%, while USD 101.41 is obtained by taking the average of USD 102.96 and USD 103.27
and discounting it by 6.74%. The price of the zero coupon bonds is obtained at the end of the discounting
process when we reach time zero. Figure 5.4(d) shows the cash price of the bond is USD 105.05, which is
the sum of the three-month zero coupon bond and nine-month zero zero coupon bond prices.
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Example 5.13 Callable bond

A callable bond is a bond that the issuer can redeem before maturity on a specific date or set of dates (call
dates), at specific prices (call prices).

For a callable bond, we need to check in the discounting process if a date corresponding to a node is a call
date. If it is a call date and the future bond price on that node is greater than the call price, then we reset that
price to the call price before continuing the discounting process.

Figure 5.5: Valuation of a callable bond with BDT tree
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Consider a callable bond with the same specification as the plain vanilla bond in Example 5.12, except for
a provision which allows the issuer to call the bond three months from now at a call price (clean price) of
USD 101.50. We first need to convert this call price into a dirty price by adding the accrued interest of 5
USD (the full coupon because it falls on a coupon date), which means that the dirty price is USD 106.50. We
then compare this call price to the prices on the three-month nodes. Since one of the prices (USD 106.93) is
higher than the call price (USD 106.50), the bond on that node will be called, and as shown in Figure 5.5,
this price is replaced by the call price. The cash price of the bond is then found to be USD 104.84. We can
also conclude that the embedded call option is worth USD 0.21 today, which is the difference between the
price of the plain vanilla and callable bonds.

In the parametric VaR calculation, where the derivatives of the price with respect to its underlying risk factors
are required, trees can be used to compute these derivatives for complex instruments. In this case, a tree
is first calibrated to current market condition and the price of the considered instrument is computed from
this tree. Then a second tree is calibrated to a scenario with a small change in the risk factor. A new price
of the instrument is computed from the second tree. Finally, the derivative is taken as the ratio of the price
difference and the change of the risk factor.

Note that in Monte Carlo simulation, which involves the construction of interest rate trees, future scenarios
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of the term structure are generated using the methods described in Chapter 2. Then, in each scenario, the
trees must be calibrated again to the generated term structure.

5.4.4 Analytic approximations

With the analytic methodology we covered so far, most options can be valued in closed form. For some of the
exceptions whose exact analytic pricing formulas are not available, such as American options and average
rate options, closed form pricing formulas can still be obtained after some analytic approximations.

Example 5.14 Average Price Option

An average price call option is a type of Asian option whose payoff is max(0, S̄ −X), whereS̄ is the average
value of the underlying asset calculated over the life of the option, andX is the option strike price. If the
underlying asset priceS is assumed, as usual, to be lognormally distributed, the distribution of the arithmetic
averagēS does not have an analytic form. However, the distribution is found to be approximately lognormal
and good precision can be achieved by calculating the first two moments ofS̄ and using the standard risk-
neutral valuation.14 With the assumption that̄S is lognormally distributed, we can approximate the call onS̄

as a call option on a futures contract.

Note that there is more than one method for approximating the price of an arithmetic average price option. For
example, Curran’s approximation adds accuracy and flexibility in handling multiple averaging frequencies.15

In Monte CarloVaR calculations for instruments that have costly pricing functions, such as the callable bonds
discussed above, quadratic approximations can be applied to vastly improve the performance. The standard
simplification of complicated pricing functions is to approximate them by a second order Taylor expansion.
However, Taylor series expansions are only accurate for small changes in the risk factors, and since VaR is
concerned with large moves, the use of such approximations can lead to very large errors. The new method
is instead based on fitting a quadratic function to the true pricing function for a wide range of underlying risk
factor values. This approximation fits the range of interest rates using least square fitting techniques, and
ensures a high accuracy for VaR calculations based on the approximate pricing function.

Example 5.15 Quadratic approximation of callable bonds

The valuation of complex derivative exposures can be a computationally intensive task. For risk management
purposes, and particularly forVaR, we need hundreds of valuations to obtain the P&L distribution of a complex
instrument. It is often the case that closed form solutions do not exist, forcing the use of more expensive
numerical methods such as Monte Carlo simulation and finite difference schemes. As shown in Example 5.13,

14See Turnbull and Wakeman (1991).
15See Curran (1992).

RiskMetrics Group



5.5. PRICE CALIBRATION 61

a callable bond can be priced with a calibrated BDT tree. While BDT trees are very convenient for pricing
purposes, they are not very practical for VaR calculations.

As we know, callable bond prices depend on the entire term structure of interest rates, and to first order,
changes in the term structure are mostly captured by parallel shifts. As a simple illustration of quadratic
approximations, the parallel shift can be used as the only risk factor to describe the dynamics of the callable
bonds. The scenarios are then chosen with proper combination of the movements (in number of standard
deviation) of the risk factor. For example, if we sample at -3, -2, -1, 0, 1, 2, 3 standard deviations for the
risk factor, we need only to perform seven full valuations. The quadratic approximation is then fit to these
prices using least squares. Each subsequent evaluation for any realization of the risk factor will correspond
to a simple matrix multiplication. On the other hand, if we use full revaluation on each scenario, we would
need to calibrate the tree each time and then use the calibrated tree to obtain a new bond price.

We can divide the total cost of the full valuation and quadratic approximation methods in two parts. The
first is a fixed cost, and the second is the cost per simulation. Full valuation methods have no fixed cost and
a large cost per simulation (calibration of the tree and pricing of the bond), while quadratic approximations
have a modest fixed cost (seven full valuations plus the least squares to fit the quadratic function) and a very
small cost per simulation (a matrix multiplication). Therefore, as the number of simulations increases, the
time savings from using the quadratic approximation increases. In addition, if the pricing function is smooth
enough, the lost in accuracy from using a quadratic approximation is very small.16

5.5 Price calibration

Throughout this chapter, from the simple fixed cash flow instruments, to the more complex derivatives,
the emphasis has been on providing pricing functions that accurately capture the sensitivity to risk factor
movements. Provided that the risk factors we have identified from the outset are sufficient to describe price
changes in the instrument in question, this approach guarantees that we obtain the precise distribution of these
changes. However, given the current level of risk factors, the pricing functions will often produce results
inconsistent with market price levels. Thus, although the distribution of instrument price changes will be
accurate, the distribution will be anchored to the wrong current price level.17 To help approximate market
prices, we introduce the notion of price calibration.

The idea behind price calibration is to adjust some pricing parameters to ensure that the current price of an
instrument obtained through the pricing function will be consistent with the price observed in the market.
The value of this pricing parameter is then held constant during the Monte Carlo simulations. In this section,
we present two examples of price calibration: a corporate bond and an equity option. For the bond, we
calibrate a spread over a base discount curve to match an observed market price. For the option, we calibrate
the implied volatility in the pricing function to match an observed option premium.

16For more details about quadratic approximations refer to Mina (2000).
17For non-linear instruments, even the shape of the distribution will be different due to the non-linear effects.
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Example 5.16 Bond spread calibration

Suppose we have a corporate bond with the same coupon and maturity as the bond in Example 5.1. The
Treasury zero-coupon curve is also the same, as shown in Figure 5.1. We know the quoted (clean) market
price of the bond is USD 90. Assuming a parallel spreads over the given zero-coupon curve, the pricing
formula in Example 5.1 can be rewritten as:

90 = 2.5e−(0.0475+s)×0.5 + 2.5e−(0.05+s)×1 + 2.5e−(0.055+s)×1.5 + (2.5 + 100)e−(0.06+s)×2. (5.52)

After solving the above equation numerically, the spread is found to be 4.44%.

Example 5.17 Implied volatility calibration

Suppose we have an equity call option as specified in Example 5.10. Let us assume that we do not know
the volatility, but we know that its market price is USD 3. We can then numerically invert the option pricing
equation and back out the implied volatility as 26.47% per annum.

It is important to note that since the calibrated spreads and implied volatilities are held constant in Monte
Carlo simulation, no extra risks associated with the spreads or volatilities are introduced. Usually, data
questions preclude the use of implied volatilities as risk factors. However, considerable progress has been
made in this area. For further discussion refer to Malz (2001b).
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Chapter 6

Statistics

In this chapter we describe a number of risk statistics and explain their calculation through the simulation
and parametric methods described in Chapters 2 and 3. It is important to note that our list of statistics
is not exhaustive, but rather illustrative of some risk measures widely used in practice. We emphasize
that since every statistic has shortcomings, prudent risk management calls for the use of more than one
statistic in portfolio risk analysis. This analysis should be analogous to the description of other types of
distributions arising in different disciplines, where the mean, median, standard deviation, and percentiles
give complementary information about the shape of the distribution. In addition, we also need statistics to
help us understand the interaction between market variables. These statistics are analogous to the ones used
in multivariate statistical analysis.

VaR is widely perceived as a useful and valuable measure of total risk that has been used for internal risk
management as well as to satisfy regulatory requirements. In this chapter, we define VaR and explain its
calculation using three different methodologies: closed-form parametric solution, Monte Carlo simulation,
and historical simulation. However, in order to obtain a complete picture of risk, and introduce risk measures
in the decision making process, we need to use additional statistics reflecting the interaction of the different
pieces (positions, desks, business units) that lead to the total risk of the portfolio, as well as potential
changes in risk due to changes in the composition of the portfolio. Marginal and Incremental VaR are
related risk measures that can shed light on the interaction of different pieces of a portfolio. We will also
explain some of the shortcomings of VaR and introduce a family of “coherent” risk measures—including
Expected Shortfall—that fixes those problems. Finally, we present a section on risk statistics that measure
underperformance relative to a benchmark. These relative risk statistics are of particular interest to asset
managers.
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Figure 6.1:Defining VaR
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6.1 Value at Risk

Value-at-Risk (VaR) is one of the most important and widely used statistics that measure the potential risk
of economic losses. With VaR, financial institutions can get a sense for the likelihood that a loss greater than
a certain amount would be realized. In particular, VaR answers the question: What is the minimum amount
that I can expect to lose with a certain probability over a given horizon? For example, VaR can tell us that one
out of 20 days I can expect to realize a loss of at least 2% of the total value of my portfolio. In mathematical
terms, VaR corresponds to a percentile of the distribution of portfolio P&L, and can be expressed either as a
potential loss from the current value of the portfolio, or as the loss from the expected value at the horizon.
Figure 6.1 shows the portfolio P&L distribution. The expected P&L is GBP 15 and the first percentile is GBP
-140. Hence, we can either express 99% VaR as a loss from the current value (VaR = GBP 140), or as a loss
from the expected value (VaR = GBP 155). The decision to anchor the VaR calculation at the current value
or the expected value is arbitrary, and for the purposes of this document, we define VaR as the difference
between the corresponding percentile of the P&L distribution and the current value of the portfolio.

RiskMetrics Group



6.1. VALUE AT RISK 67

In this section we show how to calculate VaR using the tools developed in Part I. VaR estimates will
generally be different depending on whether we use the parametric method, Monte Carlo simulation, or
historical simulation. However, as we will explain in 6.1.1, the methods used to calculate VaR for Monte
Carlo and historical simulation are identical once the scenarios have been generated. In this sense, all
simulation methods are the same; the difference lies only in the assumptions used to generate scenarios.

6.1.1 Using simulation methods

In Part I we show how to obtain P&L scenarios for a portfolio using Monte Carlo and historical simulation.
In this section we show how one can use the generated scenarios to obtain risk measures. It is important to
keep in mind that the methodology used to generate scenarios does not make a difference in the calculation of
risk measures. In other words, once we have a set of scenarios, we can ignore whether they came from Monte
Carlo or historical simulation, and use the same procedure to calculate statistics. In the rest of this section,
we will not differentiate between methods to calculate statistics for the two simulation methodologies.

We can calculate VaR numbers using the simulated P&L values. Suppose that we have generated 1,000 P&L
scenarios, and that we want to calculate 95%VaR. In this case, since 95%VaR is defined as the fifth percentile
of the losses, we would simply calculate VaR as the 50th largest loss scenario.

In general, if we have generatedm P&L scenarios, and want to calculate VaR at anα confidence level, we
can sort them P&L scenarios in descending order, denote them by1V(1), 1V(2), . . . , 1V(m), and define VaR
as

VaR = −1V(k), (6.1)

wherek = mα.1

For example, if the generated P&L scenarios (in EUR) sorted in descending order are

1V(1) 1V(2) · · · 1V(932) · · · 1V(950) · · · 1V(968) · · · 1V(999) 1V(1000)

1250 1200 · · · −850 · · · −865 · · · −875 · · · −950 −1100
, (6.2)

then the 95% VaR is−1V(950) = EUR 865.

Confidence intervals

After describing how to calculate VaR using simulation methods, it is important to reflect upon the random
nature of the quantity we have estimated (e.g., if we calculated VaR using two different sets of random

1The ordered scenariosV(i) are also called order statistics.
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scenarios, we would obtain different VaR numbers). Assuming that the model used to generate scenarios is
correct, how can one decide how close our number is to the true quantity we are trying to estimate?

Let us try to gain some intuition with a simple example. If we were trying to assess whether or not a coin
is fair by flipping it 100 times and counting the proportion of heads that we got, we would observe that we
seldom obtain the same number of heads and tails even when the coin is indeed fair. Let us say that we
observe 36 heads. Do we have enough evidence to infer that the coin is not fair? One way of answering that
question is to construct a confidence interval around the number of heads that we would get with a certain
probability if the coin was fair. In our example, we can say that with a probability of 99%, we would observe
between 37 and 63 heads if the coin was fair. In other words, there is only a 1% probability that we would
observe fewer than 37 or more than 63 heads. Based on the evidence, we can say that the coin is not likely to
be fair. As the number of trials increases, we expect to obtain a better sense of whether or not the coin is fair.
For example, let us say that we now flip 1,000 times, and that we get 450 heads. What can we say here? The
proportion of heads obtained is 45%, much higher than the 36% obtained with 100 flips. However, as the
number of trials grows, our estimation error gets smaller, and now our 99% confidence interval is between
460 and 540 heads. In this case, we will also reject the hypothesis that the coin is fair.

Similarly, since we cannot run an infinite number of simulations, ourVaR estimates are likely to contain some
simulation error. One can calculate the confidence intervals around VaR. These confidence intervals can be
used to determine the number of simulations that we want to run. Since there is a tradeoff between accuracy
and computing time, we want to run the smallest number of simulations such that we are comfortable with
the width of the confidence interval.

We can express a(1 − p) confidence interval around VaR in terms of the P&L order statistics. That is, we
can say that VaR is between1V(r) and1V(s) with probability(1 − p), where

r = mα +√
mα(1 − α)zp

2
, and s = mα −√

mα(1 − α)zp
2
, (6.3)

andzp
2

is the corresponding percentile of the standard normal distribution (e.g.,zp
2

= −1.64 if p

2 = 0.05).2

For example, if we had run 1,000 simulations as in (6.2), and calculated 95% VaR as−1V(950) = EUR 865,
then, with a probability of 99%, we can say that the true value of VaR is between−1V(932) = EUR 850 and
−1V(968) = EUR 875. This means that we can expect the error in our VaR estimate to be around EUR 25.
If we are not comfortable with this error size, we can increase the number of simulations to reduce the width
of the confidence interval.

6.1.2 Using parametric methods

Based on the analysis from Section 2.3, we can compute risk statistics using parametric methods. An
important observation is that the average P&L when we use the parametric method is always equal to zero.

2For a discussion of how confidence intervals are derived see Gupton, Finger and Bhatia (1997) Appendix B.
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This property comes from the assumption that the relationship between the risk factors and the instrument
prices is linear.3

To calculate VaR using the parametric approach, we simply note that VaR is a percentile of the P&L distri-
bution, and that percentiles of the normal distribution are always multiples of the standard deviation. Hence,
we can use (2.31) to compute theT -day (1 -α)% VaR as

VaR = −zα

√
T δ>6δ, (6.4)

wherezα is the corresponding percentile of the standard normal distribution.

6.2 Marginal VaR

The Marginal VaR of a position with respect to a portfolio can be thought of as the amount of risk that the
position is adding to the portfolio. In other words, Marginal VaR tells us how the VaR of our portfolio would
change if we sold a specific position. Marginal VaR can be formally defined as the difference between the
VaR of the total portfolio and the VaR of the portfolio without the position:

Marginal VaR for a position= VaR of the total portfolio− VaR of the portfolio without the position.
(6.5)

According to this definition, Marginal VaR will depend on the correlation of the position with the rest of the
portfolio. For example, using the parametric approach, we can calculate the Marginal VaR of a positionp

with respect to portfolioP as:

VaR(P ) − VaR(P − p) =
√

VaR2(P − p) + VaR2(p) + 2ρVaR(P − p)VaR(p) − VaR(P − p)

= VaR(p)
1

ξ

(√
ξ2 + 2ρξ + 1 − 1

)
,

whereρ is the correlation between the positionp and the rest of the portfolioP −p, andξ = VaR(p)/VaR(P −
p) is the ratio of the VaR of the position to the VaR of the rest of the portfolio.

Note that Marginal VaR is an increasing function of the correlation between the position and the portfolio.
Marginal VaR will be positive whenρ ≥ 0, and negative whenρ < 0. In addition, when the VaR of the
position is much smaller than the VaR of the portfolio, Marginal VaR is approximately equal to the VaR of
the position timesρ. That is,

Marginal VaR→ VaR(p)ρ as ξ → 0. (6.6)

3The only way to obtain an average P&L different from zero under our model for factor returns, is to use a non-linear pricing
function of risk factors. This is done through Monte Carlo simulation.
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To get some intuition about Marginal VaR we will examine three extreme cases:

1. If ρ = 1, then the position behaves exactly like the portfolio and hence its contribution to the risk of
the portfolio is equal to the stand-alone VaR (VaR(p)).

2. If ρ = −1, the position behaves as the exact opposite of the portfolio, and thus decreases the risk of
the portfolio by an amount equal to its stand-alone VaR.

3. If the portfolio and the position are uncorrelated (ρ = 0), then the contribution to the total risk by the
position is always positive and equal to VaR(p)(

√
1 + ξ2 − 1)/ξ . Equation (6.6) implies that if we

add a small uncorrelated position to a portfolio the increase in risk will be negligible.

In a similar fashion, we can compute the Marginal VaR of a group of positions with respect to a portfolio.
For example, we could use Marginal VaR to identify the amount of risk contributed by each specific desk to
the global portfolio of an investment bank, or the amount of risk added by all the positions denominated in
a foreign currency.

6.3 Incremental VaR

In the previous section we explained how Marginal VaR can be used to compute the amount of risk added
by a position or a group of positions to the total risk of the portfolio. However, we are also interested in the
potential effect that buying or selling a relatively small portion of a position would have on the overall risk.
For example, in the process of rebalancing a portfolio, we often wish to decrease our holdings by a small
amount rather than liquidate the entire position. Since Marginal VaR can only consider the effect of selling
the whole position, it would be an inappropriate measure of risk contribution for this example.

Incremental VaR (IVaR) is a statistic that provides information regarding the sensitivity of VaR to changes
in the portfolio holdings. For example, if we have a portfolio of equities containing a position of USD 1,000
in IBM stock, and the IVaR of IBM within our portfolio is USD 100, we can say that if we increase our
holdings in IBM to USD 1,100, the VaR of our portfolio would increase by approximately (1,100 / 1,000 -
1) × USD 100 = USD 10. In a similar way, if we denote by IVaRi the Incremental VaR for each position
in the portfolio, and byθi the percentage change in size of each position, we can approximate the change in
VaR by

1VaR =
∑

θi IVaRi . (6.7)

Another important difference between IVaR and Marginal VaR is that the sum of the IVaRs of the positions
add up to the total VaR of the portfolio. In other words,

∑
IVaRi = VaR. This additive property of IVaR has

important applications in the allocation of risk to different units (desks, sectors, countries), where the goal is
to keep the sum of the risks equal to the total risk.
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To explain the calculation of IVaR, we need a more rigorous definition. Letwi be the amount of money
invested in instrumenti. We define the Incremental VaR of instrumenti as

IVaRi = wi

∂VaR

∂wi

. (6.8)

To verify that
∑

IVaRi = VaR we need to note that VaR is a homogeneous function of order one of the
total amount invested. This means that if we double the investments on each position, the VaR on the new
portfolio will be twice as large. That is, VaR(tw1, tw2, . . . , twn) = tVaR(w1, w2, . . . , wn). Then, by
Euler’s homogeneous function theorem we have that VaR= ∑

wi
∂VaR
∂wi

.

Calculation of IVaR

Parametric methods

Let us assume that we have an equity portfolio and want to calculate the Incremental VaR of each position.
Following (6.8), we need to evaluate the derivative of the VaR of the portfolio with respect to the size of each
position. Since the size of a position in equities (in currency terms) is equal to the delta equivalent for the
position, we can express the VaR of the portfolio in (6.4) as

VaR = −zα

√
w>6w. (6.9)

We can then calculate IVaR for the i-th position as:

IVaRi = wi

∂VaR

∂wi

(6.10)

= wi

(
−zα

∂
√

w>6w

∂wi

)
(6.11)

= wi

− zα√
w>6w

∑
j

wj6ij

 . (6.12)

Hence,

IVaRi = wi∇i , (6.13)

where

∇ = −zα

6w√
w>6w

. (6.14)

The vector∇ can be interpreted as the gradient of sensitivities of VaR with respect to the risk factors.
Therefore, (6.13) has a clear interpretation as the product of the exposures of the position with respect to
each risk factor(wi), and the sensitivity of the VaR of the portfolio with respect to changes in each of those
risk factors(∇).
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Simulation methods

The parametric method described above produces exact results for linear positions such as equities. However,
if the positions in our portfolio are not exactly linear, we need to use simulation methods to compute an exact
IVaR figure.

We might be tempted to compute IVaR as a numerical derivative of VaR using a predefined set of scenarios
and shifting the investments on each instrument by a small amount. While this method is correct in theory, in
practice the simulation error is usually too large to permit a stable estimate of IVaR. In light of this problem,
we will use a different approach to calculate IVaR using simulation methods. Our method is based on the
fact that we can write IVaR in terms of a conditional expectation. To gain some intuition, let us say that
we have calculated VaR using Monte Carlo simulation. Table 6.1 shows a few of the position scenarios
corresponding to the portfolio P&L scenarios in (6.2). In our example, since we have 1,000 simulations, the
95% VaR corresponds to the 950th ordered P&L scenario (−1V(950) = EUR 865). Note that VaR is the sum
of the P&L for each position on the 950th scenario. Now, if we increase our holdings in one of the positions
by a small amount while keeping the rest constant, the resulting portfolio P&L will still be the 950th largest
scenario and hence will still correspond to VaR. In other words, changing the weight of one position by a
small amount will not change the order of the scenarios. Therefore, the change in VaR given a small change
of sizeh in positioni is 1VaR = hxi , wherexi is the P&L of the position in the 950th scenario. Assuming
that VaR is realized only in the 950th scenario we can write:

wi

∂VaR

∂wi

= lim
h→0

wi

hxi

h
(6.15)

= wixi. (6.16)

We can then make a loose interpretation of Incremental VaR for a position as the position P&L in the scenario
corresponding to the portfolio VaR estimate. The Incremental VaR for the first position in the portfolio would
then be roughly equal to EUR 31 (its P&L on the 950th scenario).

Since VaR is in general realized in more than one scenario, we need to average over all the scenarios where
the value of the portfolio is equal to VaR. We can use (6.15) and apply our intuition to derive a formula for
IVaR:

IVaRi = E[wixi |w>x = VaR]. (6.17)

In other words, IVaRi is the expected P&L of instrumenti given that the total P&L of the portfolio is equal
to VaR.4

While this interpretation of IVaR is rather simple and convenient, there are two caveats. The first is that there
is simulation error around the portfolio VaR estimate, and the position scenarios can be sensitive to the choice

4Note that this derivation is not rigorous but it can be formalized by imposing some technical conditions on the portfolio
distribution function. We have chosen to provide only a heuristic argument.
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of portfolio scenario. The second problem arises when we have more than one position in a portfolio leading
to more than one scenario that produces the same portfolio P&L. For example, if we have two equities, we
can lose EUR 10 if the first equity drops EUR 10 and the second does not move, or if the first remains constant
and the second loses EUR 10. Therefore, a more robust estimate of IVaR results from averaging the position
P&L scenarios that lead to the portfolio VaR scenario.

Table 6.1: Incremental VaR as a conditional expectation

Scenario # 1 2 · · · 932 · · · 950 · · · 968 · · · 1000
P&L on position 1 37 35 · · · -32 · · · -31 · · · 28 · · · -12
P&L on position 2 -12 39 · · · -10 · · · 31 · · · 23 · · · -34

...
...

...
...

...
...

...

P&L on position N 60 -57 · · · 62 · · · -54 · · · 53 · · · -110
Total P&L 1250 1200 · · · -850 · · · -865 · · · -875 · · · -1100

6.4 Expected Shortfall

Up to this point, we have concentrated on VaR and related measures of risk (Marginal VaR and IVaR).
Although VaR is the most widely used statistic in the marketplace, it has a few shortcomings. The most
criticized drawback is that VaR is not a subadditive measure of risk. Subadditivity means that the risk of
the sum of subportfolios is smaller than the sum of their individual risks. Since this property is not satisfied
by VaR, it does not qualify as a “coherent” measure of risk as defined by Artzner, Delbaen, Eber and Heath
(1999). Another criticism ofVaR is that it does not provide an estimate for the size of losses in those scenarios
where the VaR threshold is indeed exceeded. For example, if 95% VaR is USD 100, then we know that 5%
of the time we will experience losses greater than USD 100, but we have no indication of how large those
losses would be.

Expected Shortfall is a subadditive risk statistic that describes how large losses are on average when they
exceed the VaR level, and hence it provides further information about the tail of the P&L distribution.5

Mathematically, we can define Expected Shortfall as the conditional expectation of the portfolio losses given
that they are greater than VaR. That is

Expected Shortfall= E[−1V | − 1V > VaR]. (6.18)

While Expected Shortfall is currently not as widely used as VaR, it is a useful statistic that provides valuable
additional information. In particular, Expected Shortfall allows the direct comparison of the tails of two

5This statistic is also called conditional VaR, mean excess loss, or tail VaR.
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distributions. We can think of Expected Shortfall as an average measure of how heavy the tail of the
distribution is.

Expected Shortfall also has some desirable mathematical properties thatVaR lacks. For example, under some
technical conditions, Expected Shortfall is a convex function of portfolio weights, which makes it extremely
useful in solving optimization problems when we want to minimize the risk subject to certain constraints.6

Expected Shortfall and VaR can be combined to provide a measure of the cost of insuring portfolio losses
beyond VaR at anα confidence level. That is,

Cost of Insurance = E[max(L − VaR, 0)] (6.19)

= E[max(L,VaR)] − VaR (6.20)

= E[L × 1L>VaR + VaR× 1L≤VaR] − VaR (6.21)

= (1 − α)(E[L|L > VaR] − VaR), (6.22)

where L= −1V are the portfolio losses.

The cost to insure losses is then interpreted as the expected loss minus VaR (because the contract pays for
excess losses beyond VaR) multiplied by the probability that losses are larger than VaR (because insurance
will pay only on that scenario).

We have said that Expected Shortfall has some desirable mathematical properties that make it a “well behaved”
risk measure. In the next section, we will introduce a “coherent” family of risk measures that share a specific
set of desirable properties and explain some of the inherent benefits of those properties.

6.5 Coherent risk measures

Artzner et al. (1999) define a family of risk measures that satisfy the following four properties:

1. Translation invariance. Adding cash to the portfolio decreases its risk by the same amount.7

2. Subadditivity. The risk of the sum of subportfolios is smaller or equal than the sum of their individual
risks.

3. Positive homogeneity of degree 1. If we double the size of every position in a portfolio, the risk of the
portfolio will be twice as large.

4. Monotonocity. If losses in portfolio A are larger than losses in portfolio B for all possible risk factor
return scenarios, then the risk of portfolio A is higher than the risk of portfolio B.

6See Rockafellar and Uryasev (2000).
7This property is intuitive only when we measure risk in terms of the final net worth and not in terms of changes in value.
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The subadditivity and homogeneity properties have interesting consequences in practical applications that
deserve some attention. Subadditivity is required in connection with aggregation of risks across desks,
business units, accounts, or subsidiary companies. The idea in general is that the risk of the total should not
be larger than the sum of the risks of the parts. This is important when different business units calculate their
risks independently and we want to get an idea of the total risk involved. If the risk measure is subadditive,
we are always guaranteed to have a conservative estimate of the total risk. Subadditivity could also be a
matter of concern for regulators, where firms might be motivated to break up into affiliates to satisfy capital
requirements.

While VaR does not always satisfy the subadditivity property, it is difficult to come up in practice with cases
where it is not satisfied. In addition, if our purpose is not to aggregate risks computed by independent units,
but rather to allocate risk, we can use the Incremental VaR measure described in Section 6.3.

In Section 6.3, we showed that homogeneity is the only property required for the construction of an Incre-
mental VaR measure. Similarly, we can use any homogeneous risk measure to define an incremental risk
measure and extend the notion of Incremental VaR to the general notion of incremental risk, where risk is
defined in terms of some homogeneous risk measure:

IRISKi = wi

∂RISK

∂wi

. (6.23)

We finalize this section by giving two examples of coherent risk measures. Our first example is the Expected
Shortfall presented in the previous section, which is arguably the most popular coherent risk measure. Our
second example of coherent risk measures is the maximum loss introduced by Studer (1999). The idea behind
maximum loss—as its name indicates—is to identify the maximum loss or worst possible outcome from a
set of scenarios called the “trust region”. The problem can be cast in mathematical terms as

Maximum Loss= min 1V (r ) (6.24)

subject to rεA,

where the trust regionA is a set with probabilityα that contains the return scenarior = 0.

It can be shown that if the P&L function (1V ) is continuous, maximum loss as defined above is a more
conservative risk measure than VaR.8 The main shortcoming of maximum loss is that it is difficult to estimate
for general P&L functions. If we approximate the P&L by a quadratic function, we can efficiently solve for
the maximum loss using standard nonlinear optimization methods.

6.6 Benchmarking and relative statistics

Asset managers are particularly concerned with the risk that their portfolio will underperform a benchmark.
In this case, the appropriate risk statistic is not the VaR of their portfolio, but rather the VaR of the deviations

8Some other technical conditions are required for this result. See Studer (1999).
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of their portfolio with respect to the benchmark. We can extend this concept beyond VaR, and apply the same
idea to obtain any statistic of the difference between the returns of a portfolio and its benchmark. Since these
statistics are relative to a benchmark, in the rest of this section we will refer to them by their name preceded
by the word “relative” (e.g., Relative VaR and Relative Expected Shortfall).

Risk managers use relative statistics to measure the potential underperformance of their portfolio against
their customized benchmark. By potential underperformance, we mean the forecast of worst case underper-
formance over a given horizon. By monitoring Relative VaR, we can determine if the portfolio is within the
risk tolerance level as prescribed by a mandate or an internal risk policy.

We can calculate relative statistics using the same methods described in this document, but applied to a new
portfolio created by going long the reference portfolio and shorting each position on the benchmark. In order
to make a relevant comparison of returns between the benchmark and the portfolio, we sometimes need to
scale the benchmark so that its present value equals the present value of the position. In order to scale the
benchmark, we simply multiply the number of units held in each position in the benchmark by the following
amount:

Multiplier = Present value of the portfolio

Present value of the benchmark
. (6.25)

Example 6.1 Relative VaR on a fixed income portfolio

Our example portfolio consists of government securities across five countries: Canada, Germany, the United
Kingdom, Japan, and the United States. These bonds are split in two groups: short-dated maturities ranging
from one to three years and long-dated maturities ranging from seven to ten years.

As a first step, the customized benchmark is defined. Investments are made in five countries from the JP
Morgan Global Bond Index according to a specific weighting plan and maturity range filtering. Table 6.2
describes the customized benchmark and presents the Relative VaR results.

In Table 6.2, we can see that the portfolio could potentially underperform the custom benchmark by 13 basis
points with a probability of 95%.9 At the country level, we see that the most conservative sectors of the
portfolio are Canada, Germany, and the U.S. (2 basis points) and the most aggressive sector is Japan (11
basis points). In addition, the longer maturity portfolios taken together could potentially underperform the
benchmark to a greater extent (10 basis points) than the shorter dated maturity portfolios (5 basis points).

An interesting property of Relative VaR is that it does not depend on the base currency. For example, if
the Relative VaR is USD 100 in USD terms, and the current exchange rate is JPY 100 per USD, then the
Relative VaR in JPY terms is JPY 10,000. In order to understand this property, we can think of VaR as an
special case of Relative VaR, where the benchmark is a cash position in the base currency with a value equal

9The Relative VaR numbers are calculated at the 95% confidence level.
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Table 6.2: Benchmark components and Relative VaR

Weights Relative VaR (bp)
1-3 yrs 7-10 yrs 1-3 yrs 7-10 yrs Total

Canada 5% 8% 1 1 2
Germany 6% 4% 1 1 2

Japan 10% 8.50% 1 10 11
United Kingdom 9% 2.50% 5 0 5

United States 28% 19% 2 2 2
Total 5 10 13

to the present value of the portfolio. Therefore, in the same way that VaR changes when we change the base
currency, Relative VaR only changes when we change the benchmark irrespective of the currency in which
both the benchmark and the portfolio are represented.

Tracking error vs Relative VaR

Tracking error is a relative risk measure commonly used by asset managers. It is defined as the standard
deviation of the excess returns (the difference between the portfolio returns and the benchmark returns), while
Relative VaR is defined as a percentile of the distribution of the excess returns. In the case that the excess
returns are normally distributed, the tracking error is equivalent to the Relative VaR with an 84% confidence
level.10

Since tracking error does not differentiate between positive and negative excess returns, it has a natural
interpretation only when the distribution of returns is symmetric. A portfolio (or a benchmark) containing
options will have a skewed distribution of excess returns, and hence the tracking error might not accurately
reflect the risk that returns on the portfolio could be significantly lower than the benchmark returns without
any corresponding upside. Standard deviation alone would not reveal this problem. This means that tracking
error represents only a subset of the information that can be extracted from Relative VaR.

In spite of the similarities between Relative VaR and tracking error, there is one fundamental difference: the
tracking error takes the historical differences of the actual portfolio with respect to the benchmark. In other
words, the change in the composition of the portfolio through time is taken into account. This means that
the tracking error is a good measure of the historical performance of the manager. However, tracking error is
not necessarily a good predictor of future excess returns. Relative VaR accomplishes this goal by forecasting
the deviations of the current portfolio from the benchmark using the historical returns for the assets (equity,
foreign exchange rates, interest rates).

10For a normal distribution the 0.8413 percentile corresponds to one standard deviation.
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For example, rising tracking errors over time could indicate either a drift towards a more aggressive portfolio
or a potential style change on the part of the portfolio manager. However, if a portfolio manager gradually
changes his style by taking new bets on the market, it would take some time to capture this information in
the corresponding tracking error. If we use Relative VaR instead of tracking error, we could monitor and
assess the risk of the portfolio as it is being changed. VaR measures can be monitored on a daily basis to
help identify a risk pattern for each portfolio manager. Monitoring of VaR over time allows for a timely
recognition of style changes.

This concludes our discussion of risk statistics. In the next chapter, we will present different ways of
constructing reports and presenting the information obtained through the risk statistics.
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Chapter 7

Reports

The main goal of risk reports is to facilitate the clear and timely communication of risk exposures from
the risk takers to senior management, shareholders, and regulators. Risk reports must summarize the risk
characteristics of a portfolio, as well as highlight risk concentrations.1 The objective of this chapter is to give
an overview of the basic ways in which we can visualize and report the risk characteristics of a portfolio using
the statistics described in Chapter 6. We will show how to study the risk attributes of a portfolio through its
distribution. We will also explain how to identify the existence of risk concentrations in specific groups of
positions. Finally, we illustrate ways to investigate the effect of various risk factors on the overall risk of the
portfolio.

7.1 An overview of risk reporting

At the most aggregate level, we can depict in a histogram the entire distribution of future P&L values for
our portfolio. We can construct a histogram using any of the methods described in Chapters 2 and 3 (i.e.,
Monte Carlo simulation, parametric, and historical simulation). The resulting distribution will depend on
the assumptions made for each method. Figure 7.1 shows the histograms under each method for a one sigma
out-of-the-money call option on the S&P 500.2 Note that the parametric distribution is symmetric, while the
Monte Carlo and historical distributions are skewed to the right. Moreover, the historical distribution assigns
positive probability to high return scenarios not likely to be observed under the normality assumption for
risk factor returns.

At a lower level of aggregation, we can use any of the risk measures described in Chapter 6 to describe
particular features of the P&L distribution in more detail. For example, we can calculate the 95% VaR and

1For a detailed explanation of risk reporting practices see Laubsch (1999).
2Since the parametric distribution is normal, it can be drawn directly without the use of a histogram.
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Figure 7.1:Histogram reports
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expected shortfall from the distributions in Figure 7.1. Table 7.1 shows the results. Note that historical
simulation provides the most conservative results, while Monte Carlo provides the lowest risk figures. The
difference between the risk measures from these two methods is entirely due to the fact that risk factors
have historically presented larger deviations than those implied by a normal distribution. This does not
necessarily mean that historical simulation gives more accurate results since some of the historical returns
could have been sampled from previous volatile periods that are no longer applicable to the current state of
the world. We can also see from Table 7.1 that parametric VaR and expected shortfall are larger than the
numbers obtained through Monte Carlo simulation, but smaller than the historical simulation figures. While
parametric methods assume that instrument prices are linear functions of the risk factors, Monte Carlo and
historical simulation do not make any assumptions regarding the pricing function (i.e., they use full pricing
functions). In addition to the linearity assumption, parametric methods also assume a normal distribution of
risk factor returns, which causes further discrepancies with the non-normal returns of historical simulation.
In our example, the normality assumption causes parametric VaR to be smaller than historical VaR, while the
linearity assumption removes the lower bounds imposed by the option payoff, causing parametric VaR to be
higher than Monte Carlo VaR.

Table 7.1: 95% VaR and Expected Shortfall

VaR Expected Shortfall
Parametric -39% -49%
Monte Carlo -34% -40%
Historical -42% -53%

The comparison of results from different methods is useful to study the effect of our distributional assumptions,
and estimate the potential magnitude of the error incurred by the use of a model. However, in practice, it is
often necessary to select from the parametric, historical, and Monte Carlo methods to facilitate the flow of
information and consistency of results throughout an organization.

The selection of the calculation method should depend on the specific portfolio and the choice of distribution
of risk factor returns. If the portfolio consists mainly of linear positions and we choose to use a normal
distribution of returns, then the best choice is the parametric method due to its speed and accuracy under
those circumstances. If the portfolio consists mainly of non-linear positions, then we need to use either
Monte Carlo or historical simulation depending on the desired distribution of returns. The selection between
the normal and empirical distributions is usually done based on practical considerations rather than through
statistical tests. The main reason to use the empirical distribution is to assign greater likelihood to large
returns which have a small probability of occurrence under the normal distribution. However, there are a few
drawbacks in the use of empirical distributions. The first problem is the difficulty of selecting the historical
period used to construct the distribution. The risk estimates from historical simulation could present large
differences based on the specific period chosen, and those differences could be difficult to explain when we
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have a large number of risk factors. In addition, the scarcity of historical data makes it difficult to extend the
analysis horizon beyond a few days.3

Table 7.2 shows the best calculation method for each combination of portfolio characteristics and distribution.
It is important to emphasize that Monte Carlo simulation also has the flexibility to incorporate non-normal
distributions of risk factor returns.4

Table 7.2: Selecting a methodology

Portfolio
Distribution Linear Non-linear
Normal Parametric Monte Carlo
Non-normal Historical Historical

When dealing with complex or large portfolios, we will often need finer detail in the analysis. We can use
risk measures to “dissect” risk across different dimensions and identify the sources of portfolio risk. This is
useful to identify risk concentrations by business unit, asset class, country, currency, and maybe even all the
way down to the trader or instrument level. For example, we can create a VaR table, where we show the risk
of every business unit across rows, and counterparties across columns. Each entry on Table 7.3 represents
the VaR of all the transactions made with a specific counterparty that we hold on a given portfolio. These
different choices of rows and columns are called “drilldown dimensions”. The total VaR of the portfolio is
USD 1,645,689.

Table 7.3: VaR by business unit and counterparty

Total JPMorgan Goldman Sachs Morgan Stanley Deutsche Bank
Fixed Income 279,521 555,187 279,521 90,818
Foreign Exchange 132,662 58,165 90,818
Global Equities 642,535 642,535
Proprietary Trading 1,145,659 269,394 749,180 555,241 189,413
Total 1,645,689 259,300 957,381 435,910 189,413

The next section describes drilldowns in detail and explains how to calculate statistics in each of the buckets
defined by a drilldown dimension.

3These issues are discussed in Chapter 3.
4In Appendix A we present a brief survey of the use of non-normal distributions in Monte Carlo methods.
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7.2 Drilldowns

We refer to the categories in which you can slice the risk of a portfolio as “drilldown dimensions”. Examples
of drilldown dimensions are: position, portfolio, asset type, counterparty, currency, risk type (e.g., foreign
exchange, interest rate, equity), and yield curve maturity buckets. We can divide drilldown dimensions in
two broad groups. Proper dimensions are groups of positions. For all proper dimensions, a position is
assigned to one, and only one, bucket. For example, a position corresponds to a single counterparty, a single
portfolio, and a single asset type. We can create generic proper drilldown dimensions by assigning labels to
each position. For example, we can create a label called “Region” having three values: Americas, Europe,
and Asia, and use it as a drilldown dimension to report VaR by geographical region.

Improper drilldown dimensions are groups of risk factors. For an improper dimension, a position might
correspond to more than one bucket. For example, an FX swap has both interest rate and FX risk. In
addition, an FX swap has exposure to two different yield curves. Hence, risk type and yield curve are
examples of improper dimensions.

Since proper drilldowns bucket positions into mutually exclusive sets, their calculation is rather straight-
forward: we simply construct subportfolios of positions for each drilldown dimension and calculate the
corresponding statistic for each subportfolio. This process is the same whether we are using simulation or
parametric methods. However, when we want to perform drilldowns on improper dimensions, simulation
and parametric methods use different techniques.

7.2.1 Drilldowns using simulation methods

To produce a drilldown report for any statistic, we have to simulate changes in the risk factors contained in
each bucket while keeping the remaining risk factors constant. In other words, for each scenario, we only
use the changes in the risk factors that correspond to the dimension that we are analyzing. Once we have the
change in value for each scenario on each bucket, we can calculate risk statistics using the1V information
per bucket. In the following example, we illustrate the calculation of1V per bucket for one scenario.

Example 7.1 Drilldown by risk type and currency

In this example, we will calculate the change in value for a specific scenario in a portfolio consisting of
a cash position of EUR one million, 13,000 shares of IBM, and a short position consisting of a one year
at-the-money call on 20,000 shares of IBM with an implied volatility of 45.65%.5

5This is the portfolio of Example 3.1.
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The current values and the new scenario for the risk factors are:

Current Values New Scenario
IBM USD 120 USD 130
EUR USD 0.88 USD 0.80
Discount Rate 6.0% 6.5%

Table 7.4 shows the original value of each instrument in the portfolio as well as their values under the new
scenario. The last column shows the change in value (1V ).

Table 7.4: Portfolio valuation under a new scenario

Original Value New Value 1V

Position (USD) (USD) (USD)
Cash 880,000 800,000 -80,000
Equity 1,560,000 1,690,000 130,000
Option -493,876 -634,472 -140,596
Total 1,946,123 1,855,527 -90,596

We can drilldown the value changes in Table 7.4 by risk type. To calculate the change in value due to equity
changes, we would simply price the portfolio under a USD 130 IBM price scenario keeping the rest of the risk
factors constant. This means that only the equity option and the equity will change. Similarly, for interest
rate risk, we would price the option using a discount rate of 6.5%, but we will keep the price of IBM at its
original value of USD 120. Table 7.5 shows1V drilled down by risk type. For example, if IBM gains USD
10, we gain USD 130,000 on our IBM position, but lose USD 134,581 on the option. This results on a loss
of USD 4,581 in the portfolio due to a USD 10 increase in the price of IBM. Note that the total P&L of the
portfolio is made up from the changes in value due to the equity, foreign exchange, and interest rate risk
factors.

Table 7.5: Drilldown by risk type and position

Foreign Interest
Total Equity Exchange Rate

Cash -80,000 -80,000
Equity 130,000 130,000
Option -140,596 -134,581 -5,227
Total -90,596 -4,581 -80,000 -5,227

RiskMetrics Group



7.2. DRILLDOWNS 85

We can also drilldown1V by risk type and currency by selecting the risk factors that would change for each
risk type/currency bucket. The risk factors that we would move to revalue the portfolio for each bucket are

Foreign Interest
Total Equity Exchange Rate

USD IBM and Discount Rate IBM None Discount Rate
EUR EUR/USD None EUR/USD None
Total All IBM EUR/USD Discount Rate

Table 7.6 shows a1V drilldown report by risk type and currency. We can see that the total portfolio loss of
USD 90,596 is made up of a loss of USD 10,596 due to changes in the USD denominated risk factors (IBM
and discount rate), and a loss of USD 80,000 due to changes in the EUR denominated factors (EUR/USD
exchange rate).

Table 7.6:1V drilldown by risk type and currency

Foreign Interest
Total Equity Exchange Rate

USD -10,596 -4,581 -5,227
EUR -80,000 -80,000
Total -90,596 -4,581 -80,000 -5,227

Example 7.1 shows how to obtain a drilldown report for a1V scenario on two improper dimensions. It
is easy to generalize this concept to any risk statistic by noting that all statistics are calculated from1V

scenarios. Hence, we can obtain a drilldown report for any statistic by operating on1V buckets. In other
words, we can think of Table 7.6 as giving us one1V scenario for each drilldown bucket. If we repeat
the same exercise on different risk factor scenarios, we can create a drilldown report on any of the statistics
described in Chapter 6. For example, let us say that we want to calculate VaR due to the fluctuations on
USD denominated risk factors. From Table 7.6, we can see that our first1V scenario on this bucket is USD
-10,596. This1V scenario resulted from a USD 130 price scenario for IBM and a 6.5% scenario for the
discount rate. By using a different scenario for IBM and the discount rate, we can arrive at another1V

scenario for the USD/Total bucket in Table 7.6, and by repeating this procedure we can generate a set of1V

scenarios for the bucket that can be used to calculate VaR as explained in Section 6.1.1.
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7.2.2 Drilldowns using parametric methods

Drilldowns using the parametric approach are based on delta equivalents rather than scenarios, that is, to
calculate a risk statistic for each bucket, we set the delta equivalents falling outside the bucket equal to zero,
and proceed to calculate the statistic as usual. This procedure is best explained with an example.

Example 7.2 Using delta equivalents in VaR drilldowns

In this example, we will use parametric methods to calculate a VaR report by risk type and currency for
the portfolio in Example 7.1. The risk factors for the portfolio are IBM, the EUR/USD exchange rate, and
a one-year zero-coupon bond. Table 7.7 shows the delta equivalents for the portfolio by position and risk
factor. The columns in Table 7.7 contain the delta equivalent vectors for each position, as well as the total
for the portfolio, while the rows contain the delta equivalents with respect to the corresponding risk factor
broken down by position. Note that the sum of the delta equivalent vectors of the individual positions is
equal to the delta equivalent vector of the portfolio, as explained in Section 2.3.

Table 7.7: Delta equivalents for the portfolio

Risk Factors Total Cash Equity Option
IBM 22,956 0 1,560,000 -1,537,043
EUR 880,000 880,000 0 0
1Y Bond 1,043,167 0 0 1,043,167

Let us assume that the covariance matrix of risk factor returns is:

6 =
92.13 −1.90 0.02

−1.90 55.80 −0.23
0.02 −0.23 0.09

× 10−6 (7.1)

From (6.4), we can calculate the one-day 95% VaR of the portfolio as 1.64
√

δ>6δ = USD 10,768, where

δ =
 22,956

880,000
1,043,167

 . (7.2)

To calculate the equity risk component of VaR, we simply create the modified delta equivalents vector

δEq =
22,956

0
0

 , (7.3)
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and calculate VaR as 1.64
√

T δ>
Eq6δEq = USD 362. This means that 95% of the days we would not lose

more than USD 362 in our portfolio due to changes in IBM equity. Similarly, if we wanted to obtain VaR for
the FX bucket, we would simply zero out the first and third entries ofδ and apply (6.4). Table 7.8 shows the
one-day 95% VaR drilled down by risk type and currency. The VaR for the USD portion (USD 625) can be
interpreted as the minimum amount we can expect to lose 1 out of 20 days—on average—due to fluctuations
in USD denominated risk factors. Note that the sum of the VaRs for the USD and EUR buckets is greater
than the total VaR of the portfolio due to diversification benefit (625 + 10,814 > 10,768).

Table 7.8: VaR drilldown by risk type and currency

Foreign Interest
Total Equity Exchange Rate

USD 625 362 506
EUR 10,814 10,814
Total 10,768 362 10,814 506

Since every statistic is calculated using delta equivalents under the parametric approach, we can always
use this method to report drilldowns for every dimension. For example, (6.13) allows us to compute IVaR
for arbitrary drilldown groups. Let us suppose that risk factors fall into one of the groups defined by the
drilldown. For example, if the drilldown is asset type by currency, all the risk factors corresponding to bonds
denominated in EUR will fall in one group. Then, we can define the delta equivalent vector for each group
as the vector of factors contained in the group (and zeros elsewhere) and apply (6.13) directly.6 Table 7.9
shows the one-day 95% incremental VaR drilled down by asset type and currency. Using this information,
we can identify the positions that most contribute to the risk of the portfolio. For example, we can see that
the largest contributor to risk in our portfolio are commodities, while the group of convertible bonds in our
portfolio is diversifying risk away. We can also see that the risk factors denominated in JPY account for
USD 283,728 of the total risk of the portfolio. Note that in this report we have combined a proper dimension
(asset type) with an improper one (currency).

Up to this point, we have presented some of the most common and effective ways of presenting the risk
information as well as the methods to break down the aggregate risk in different dimensions. We have also
emphasized the importance of looking at risk in many different ways in order to reveal potential exposures
or concentrations to groups of risk factors. In the following section, we present a case study that provides a
practical application of the reporting concepts we have introduced.

6We need to make sure that every risk factor corresponds to one and only one group.
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Table 7.9: Incremental VaR drill down by currency and asset type

Total AUD JPY USD
Bond 1,016 -79 1,095
Bond Option 7,408 7,408
Callable Bond 1,473 1,473
Cap -6,165 -6,165
Collar 18 18
Commodity 1,567,757 1,567,757
Convertible Bond -29,293 -29,293
Equity 490,454 283,806 206,647
Equity Option -462 -462
Floor 25 25
FRA 8,703 8,703
FRN 3 3
FX Option 3,712 2,659 1,054
Zero Coupon Bond 1,959 1,959
Total 2,046,609 10,067 283,728 1,752,814

7.3 Global bank case study

Risk reporting is one of the most important aspects of risk management. Effective risk reports help understand
the nature of market risks arising from different business units, countries, positions, and risk factors in order
to prevent or act effectively in crisis situations. This section presents the example of a fictitious bank,
ABC, which is structured in three organizational levels: corporate level, business units, and trading desks.7

Figure 7.2 presents the organizational chart of ABC bank. The format and content of each risk report is
designed to suit the needs of each organizational level.

At the corporate level, senior management needs a firmwide view of risk, and they will typically focus on
market risk concentrations across business units as well as global stress test scenarios. Figure 7.3 shows the
P&L distribution for the bank. Table 7.10 reports VaR by business unit and risk type. We can see that the
one-day 95% VaR is USD 2,247,902. Among the business units, proprietary trading has the highest VaR
level (USD 1,564,894), mainly as a result of their interest rate and equity exposures. However, the equity
exposures in proprietary trading offset exposures in global equities resulting in a low total equity risk for the
bank (USD 595,424). Similarly, the interest rate exposures taken by the proprietary trading unit are offsetting
exposures in the emerging markets, fixed income, and foreign exchange units. We can also observe that the

7The case presented in Section 7.3 is based on Section 5.5 of Laubsch (1999).

RiskMetrics Group



7.3. GLOBAL BANK CASE STUDY 89

Figure 7.2:Organizational chart of ABC Bank
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foreign exchange unit has a high interest rate risk reflecting the existence of FX forwards, futures, and options
in their inventory.

Table 7.10: Corporate level VaR report

Total FX Risk Interest Rate Risk Equity Risk Commodity Risk
Emerging Markets 758,248 758,348
Fixed Income 393,131 80,765 381,807
Foreign Exchange 181,207 124,052 79,449
Global Equities 877,660 877,660
Proprietary Trading 1,564,894 367,974 1,023,330 758,423 258,725
Total 2,247,902 396,756 1,307,719 595,424 258,725

Business units usually need to report risk by trading desk, showing more detail than the corporate reports.
For example, a report at the business unit level might contain information by trading desk and country or
currency. Table 7.11 reports VaR for the Foreign Exchange unit by trading desk and instrument type. For
each instrument type the risk is reported by currency. We can see that most of ABC’s FX risk is in cash
(USD 148,102) with the single largest exposure denominated in JPY (USD 85,435). Also note that the FX
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Figure 7.3:ABC’s P&L distribution
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Europe trading desk creates a concentration in EUR across cash, FX forward, and FX option instruments
which accounts for most of its USD 93,456 at risk.

Table 7.11: Foreign exchange business unit VaR report

Total FX Latin America FX Europe FX Asia Pacific
Cash 148,102
BRL 29,748
EUR 51,820
JPY 85,435
THB 8,453
FX Forward 61,568
AUD 18,502
EUR 18,499
GBP 11,781
MXP 19,265
FX Option 13,481
EUR 18,535
JPY 8,052
Total 181,207 41,456 93,456 109,678

At the trading desk level, risk information is presented at the most granular level. Trading desk reports
might include detailed risk information by trader, position, and drilldowns such as yield curve positioning.
Table 7.12 reports the VaR of the Government Bonds desk by trader and yield curve bucket. We can observe
that Trader A is exposed only to fluctuations in the short end of the yield curve, while Trader C is well
diversified across the entire term structure of interest rates. We can also see that trader B has a barbell
exposure to interest rates in the intervals from six months to three years and fifteen years to thirty years. Note
that the risk of the desk is diversified across the three traders. We can also see that the VaR of the Government
Bonds desk (USD 122,522) is roughly one third of the VaR for the Fixed Income unit (USD 393,131).

Table 7.12: Government bonds desk VaR

Total 0m-6m 6m-1y 1y-3y 3y-5y 5y-10y 10y-15y 15y-20y 20y-30y
Trader A 40,897 31,759 3,474 14,602
Trader B 61,198 0 6,578 19,469 19,374 21,305
Trader C 26,876 6,104 1,187 5,673 1,229 6,598 9,515 1,127 516
Total 122,522 35,969 10,676 37,756 1,167 6,268 9,040 19,475 20,729
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7.4 Conclusion

This document provides an overview of the methodology currently used by RiskMetrics in our market risk
management applications. Part I discusses the mathematical assumptions of the multivariate normal model
and the empirical model for the distribution of risk factor returns, as well as the parametric and simulation
methods used to characterize such distributions. In addition, Part I gives a description of stress testing
methods to complement the statistical models. Part II illustrates the different pricing approaches and the
assumptions made in order to cover a wide set of asset types. Finally, Part III explains how to calculate risk
statistics using the methods in Part I in conjunction with the pricing functions of Part II. We conclude the
document by showing how to create effective risk reports based on risk statistics.

The models, assumptions, and techniques described in this document lay a solid methodological foundation
for market risk measurement upon which future improvements will undoubtedly be made. We hope to
have provided a coherent framework for understanding and using risk modeling techniques. As always, in
the interest of improving and updating our methodologies, RiskMetrics appreciates and invites questions,
comments, and criticisms.
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Appendix A

Non-normal Distributions

A.1 The pros and cons of normal distributions

We have made extensive use of the normal distribution throughout this document. In fact, the models of
Chapter 2 are based on a normal distribution of returns. In this appendix, we compare the normal distribution
to some popular alternatives. We start by justifying the widespread practical use of normal distributions. It
is important to keep in mind that the arguments we present are based on the specific problem at hand: the
fast and accurate estimation of various risk statistics for a portfolio driven by a large number of risk factors.
While the normal distribution has its shortcomings, its practical advantages in fitting individual asset returns
and describing a dependence structure across many assets make it the best choice for our particular problem.
This of course does not preclude the possibility of a better model for a specific problem, such as 99% VaR
for an individual equity.

In Sections A.2 and A.3, we provide a brief survey of the most popular methods to model return distributions
and discuss their strengths and weaknesses from a practical point of view.1

Since every distributional model has to consider the stand-alone characteristics of the returns as well as their
dependence structure, we will divide the analysis in this section in two parts: univariate and multivariate.

A.1.1 Univariate normal distribution

The normal distribution has been widely used since the 18th century to model the relative frequency of
physical and social phenomena. The use of normal distributions can be justified in theory as well as in

1Note that historical simulation also provides an alternative to the normal distribution. Since we have provided a detailed account
of historical simulation in Chapter 3, we will not discuss it further in this appendix.
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practice. The theoretical justification is given by the Central Limit Theorem (CLT). The CLT states that the
distribution of a sum of a large number of independent and identically distributed variables is approximately
normal. For example, we can model the price evolution of a risk factor as a series of successive shocks applied
to the initial price. This implies that we can apply the CLT to logarithmic returns. A practical justification for
the normal distribution is the simplicity of its calibration. The univariate normal distribution can be described
by two parameters that are easy to calibrate: the mean and standard deviation. In Chapter 2, we discussed
the calibration of these parameters.

In practice, empirical evidence shows that the unconditional normality assumption for logarithmic returns is
not accurate. Many of the departures from normality can be explained by predictable changes in the dynamics
of the return process; for instance, in many cases, the distribution of returns is closer to the normal distribution
once time-varying volatility has been incorporated.2 However, even after fitting sophisticated time series
models to financial data, it is not uncommon to observe large events more frequently than predicted by the
normal distribution. This phenomenon, typically referred to as heavy tails, has prompted academics and
practitioners to investigate alternatives to the normal distribution. In the Section A.2, we provide a brief
description of some of these alternatives.

A.1.2 Multivariate normal distribution

The most important practical advantage of the multivariate normal distribution is that its dependence struc-
ture is uniquely defined by a correlation matrix. This property is only shared by the elliptical family of
distributions—those distributions for which the density function is constant on ellipsoids—which includes
the multivariate normal and student-t distributions. Under most conditions, the multivariate normal distribu-
tion holds up well empirically. See for example Lopez and Walter (2000).

One shortcoming of the multivariate normal distribution is that even with strong correlations, large events
seldom occur jointly for two assets. In fact, the distribution exhibits the property of asymptotic independence,
which is discussed in detail in Embrechts, McNeil and Straumann (1999). In practice, one does observe large
negative returns simultaneously for a variety of risk factors. To address this inadequacy of correlation
measures under extreme market conditions, practitioners typically opt for historical simulations and stress
testing.

A second shortcoming occurs when we consider univariate distributions outside the elliptical family. Here,
the marginal (that is, univariate) distributions and the correlation matrix are no longer sufficient to describe
the multivariate distribution of returns. Thus, correlation is not an adequate measure of dependence, meaning
that even if two random variables have a high dependence on one another, their correlation coefficient could
be low. For example, consider the case whereZ is a standard normal random variable, andX = exp[Z] and
Y = exp[σZ] are two lognormal random variables.3 Regardless of the value ofσ , X andY are perfectly

2See Morgan Guaranty Trust Company (1996).
3This example is taken from Embrechts, McNeil and Straumann (1999).
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Figure A.1:Correlation in the non-normal case
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dependent since one can be determined from the other with certainty. However, the correlation betweenX

andY depends on the value ofσ . In Figure A.1.2, we present two scatter plots ofX againstY . In the upper
plot, forσ = 1, the correlation itself is perfect; in the lower plot, forσ = 5, the correlation coefficient, which
is a measure only of linear dependence, is actually close to zero. The correlation coefficient is a deficient
measure of dependence in this case since the true dependence betweenX andY is non-linear. Outside of
the elliptical family of distributions, this type of dependence is common, and thus the familiar notion of
correlation can no longer serve as the sole dependence measure. Embrechts, McNeil and Straumann (1999)
provide a detailed account of the uses and misuses of linear correlation in risk management and describe
alternative dependence concepts.

A.2 Alternatives to the normal distribution

A.2.1 t distribution

The first alternative we will describe is the t distribution. The t distribution is an obvious first choice because it
shares some of the attractive properties of the normal distribution while possessing heavy tails. Glasserman,
Heidelberger and Shahabuddin (2000a) present a method to compute VaR using multivariate t distributions
including some extensions using copula functions. See Lopez and Walter (2000) and references therein for
further applications of the t distribution to VaR.
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The univariate t distribution is described by only one parameter (the degrees of freedom) and is relatively easy
to calibrate to market data. Koedjik, Huisman and Pownall (1998) suggest that the estimation of the degrees
of freedom concentrate on the data in the tail of the distribution. The multivariate t distribution belongs to
the elliptical family, meaning that it can be described by a correlation matrix.

One shortcoming of the multivariate t distribution is that all the marginal distributions must have the same
degrees of freedom, which implies that every risk factor has equally heavy tails. The model can be extended
to allow each risk factor to have different tails, however at the expense of abandoning the elliptical family.
As mentioned before, outside the elliptical family there are many possible multivariate distributions with t
marginal distributions. Hence, the cost of having different tails for each marginal is the additional task of
specifying the multivariate distribution. In Section A.3 we present copula functions as a way of building a
multivariate distribution from arbitrary desired marginal distributions.

A.2.2 Mixture distributions

Mixture distributions are used to model situations where the data can be viewed as arising from two or more
distinct populations. In a risk management context, a mixture model is based on the observation that typically
returns are moderate (quiet days), but from time to time are unusually large (hectic days). Under a mixture
model, we specify the probability that a given day is quiet or hectic. We then specify that conditionally,
returns are normally distributed, but with a low volatility on quiet days and a high volatility on hectic days.
The resulting unconditional distribution, the mixture normal distribution, exhibits heavy tails due to the
random nature of the volatility.

In order to fit a mixture normal distribution, we need to estimate five parameters: two means, two standard
deviations, and the probability of having a hectic day. We can reduce the problem to the estimation of three
parameters by setting both means to zero. The calibration in the multivariate case is more difficult, as we
must estimate two covariance matrices corresponding to the quiet and hectic days, as well as the probability
of a quiet day occurring. In general, the likelihood function for a mixture distribution has multiple maxima,
making calibration difficult. In fact, there are special cases where the likelihood function is unbounded. For
a reference on the calibration of mixture models see McLachlan and Basford (1987).

Practical applications of mixture models in risk management can be found in Zangari (1996), who uses a
mixture normal to incorporate fat tails in the VaR calculation, and Finger and Kim (2000), who use a mixture
model to assess correlation levels in stress situations.

A.2.3 Extreme Value Theory

Extreme Value Theory (EVT) provides a mathematical framework for the study of rare events. In the last
few years, the potential application of EVT in risk management has received a fair amount of attention.
In a nutshell, EVT provides the theory for describing extremes (maxima and minima) of random events.
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In contrast to the CLT, which relates to the limit distribution of averages, EVT gives the limit distribution
of maxima of independent, identically distributed random variables. For a detailed treatment of EVT, see
Embrechts, Kl̈uppelberg and Mikosch (1997).

EVT is supported by a solid theoretical ground, but its use has been limited due to practical considerations.
The main advantage of EVT is that it can produce more accurate VaR estimates at high confidence levels. In
addition, since EVT treats the upper and lower tails separately, it permits skewness of the return distribution.
The practical limitations of EVT are that calibration is difficult and requires at least several years of daily
observations. Further, the theory only allows for the treatment of low dimensional problems (e.g., portfolios
with a very small number of risk factors). It is also important to note that EVT only provides information
about extreme events and does not describe the middle part of the distribution.

See Embrechts (2000) for a discussion of the potential and limitations of EVT in risk management, and
Embrechts, de Haan and Huang (1999) for a description of the multivariate problem.

To illustrate the differences between the normal, t, mixture normal, and generalized extreme value (GEV)
distribution, we fit each of these distributions to daily returns from 1994 to 2000 for the JPY/USD exchange
rate. Figure A.2.3 shows the cumulative distribution functions. We see that the largest deviations from the
normal distribution are observed deep in the tails—at probability levels of 0.5% and smaller. It is important
to note that the t and GEV distributions are calibrated only to the tails of the distribution and hence do not
capture the behavior of more common returns. On the other hand, the mixture normal is fit to the entire
distribution. In Figure A.2.3 we can observe that below the first percentile, the t, GED and mixture normal
distributions are very similar. The mixture normal distribution suggests, however, that the phenomenon of
heavy tails is only evident for returns beyond two standard deviations.

We have mentioned before that conditional volatility estimates can explain much of the non-normal behavior
of asset returns. Thus, we also examine the JPY returns standardized by each day’s RiskMetrics volatility
forecast. The cumulative distribution functions for these conditional returns are displayed in Figure A.2.3.
Deep into the tails, we can still observe large differences between the normal and other distributions. Nonethe-
less, the conditional distributions are closer than the unconditional distributions, particularly near the 95%
VaR level.

A.3 Dependence and copulas

In Section A.1 we showed that outside the elliptical family of distributions, the linear correlation measure no
longer provides an adequate indicator of dependence. Where linear correlation is lacking, there are several
alternatives. One approach is to specify a more complex relationship between two random variables, such as
the power law that linksX andY in our prior example. A second approach is to describe dependence through
quantiles—that is, ifX takes on a high value according to its marginal distribution, describe the likelihood
thatY will take on a high value according to its marginal distribution. This class of measures, including rank
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Figure A.2:Unconditional cumulative distribution function for JPY returns
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Figure A.3:Conditional cumulative distribution function for JPY returns

−4.5 −4 −3.5 −3 −2.5 −2 −1.5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

# of standard deviations

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty
 (

%
)

Normal            
t                 
Mixture of Normals
EVT               

RiskMetrics Group



A.3. DEPENDENCE AND COPULAS 101

correlation measures are more robust than measures that stipulate a particular functional relationship (such as
linear correlation); for instance, a measure of rank correlation describes the perfect dependence between the
aforementionedX andY . See Embrechts, McNeil and Straumann (1999) for further discussion of alternative
dependence measures.

More concerning than how well a measure characterizes a dependence relationship is how to specify a
multivariate distribution. While the measures we have discussed may be useful as descriptors, they only
describe pairs of random variables. Outside the elliptical family, this is not sufficient information to specify
the multivariate distribution. In general, for a set of random variablesX1, . . . , Xn, it is necessary to specify
their joint distribution function

F(x1, . . . , xn) = P[X1 ≤ x1, . . . , Xn ≤ xn]. (A.1)

For arbitrary marginal distributions, the problem of specifyingF directly is intractable.

Copula functions provide a way to separate the joint distribution in two pieces: the dependence structure and
the marginal return distributions. LetF1, . . . , Fn denote the marginal distributions forX1, . . . , Xn. We can
express the joint distribution function as

F(x1, . . . , xn) = P[F1(X1) ≤ F1(x1), . . . , Fn(Xn) ≤ Fn(xn)] (A.2)

= C(F1(x1), . . . , Fn(xn)). (A.3)

Here, we observe that the random variablesF1(X1), . . . , Fn(Xn) are each uniformly distributed. The function
C—which is called the copula function—is a joint distribution function for a set of uniform random variables.
Thus, given a set of random variables with known marginal distributions, the specification of their multivariate
distribution reduces to the specification of the copula functionC.

The copula framework fits naturally into Monte Carlo applications. For example, to generate realizations of
X1, . . . , Xn using a normal copula, we proceed as follows:

1. Generate normal random variablesZ1, . . . , Zn with mean zero and correlation matrix6.

2. Transform the normal random variables to uniform random variables by applying the standard normal
distribution function:

Ui = 8(Zi), for i = 1, . . . , n. (A.4)

3. Transform the uniform random variables according to the desired marginal distribution functions:

Xi = F−1
i (Ui), for i = 1, . . . , n. (A.5)
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The first two steps produce correlated uniform random variables and accounts for the dependence structure.
The third step accounts for the particular marginal distributions. Though we do not use it explicitly here, the
copula function for this framework is

C(u1, . . . , un) = 8n(8
−1(u1), . . . , 8−1(un); 6), (A.6)

where8n(·; 6) is the distribution function for the multivariate normal distribution with mean zero and
correlation matrix6.

Though extremely flexible, the copula approach does have practical limitations in a Monte Carlo setting.
The generation of correlated uniform random variables, particularly with copula functions other than the
normal, and the inversion of the distribution functions in (A.5) are both computationally taxing. For further
references, see Frees and Valdez (1998) and Nelsen (1999).
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Appendix B

RiskMetrics Publications

Throughout this document we make extensive references to various RiskMetrics publications. The purpose
of this appendix is to provide a roadmap to RiskMetrics research publications in order to facilitate their use.
Figure B shows the chronological evolution of our publications. All of our publications are available for
download athttp://www.riskmetrics.com/research

The seminal work was the first edition of theRiskMetrics Technical Documentin 1994. In the next two
years, we published another three editions of the Technical Document, the last of which is still available for
download. The fourth edition of the Technical Document (RiskMetrics Classic) addresses the RiskMetrics
methodology, data, and practical applications.

In 1995, a quarterly publication called RiskMetrics Monitor was created as a discussion forum to treat subjects
of interest in market risk management. The Monitor reviewed issues affecting the users of RiskMetrics, from
updates to the methodology, to reviews on how to evaluate market risk for specific instruments.

A parallel research effort in credit risk started in 1996, finally leading to the publication of the CreditMetrics
Technical Document inApril 1997. In 1998, our second periodical publication was created with an analogous
purpose in the credit risk field. The CreditMetrics Monitor included the views of a wide range of contributors
and encouraged open discussion of the methodology.

In 1999, we published three large documents. Our Practical Guide addresses the basic issues risk managers
face when implementing a risk management process. The Guide is an extremely practical resource that
discusses the methodology, the main reporting issues, and the analysis of the results. The CorporateMetrics
Technical Document discusses the application of risk measurement techniques in non-financial corporations.
In particular, CorporateMetrics is concerned with the potential impact of market rate fluctuations on a
company’s financial results. In the LongRun Technical Document, we present a framework to generate
long-term market price and rate scenarios to measure risk over long horizons.

As a result of the increasing overlap in market and credit risk research, the RiskMetrics and CreditMetrics
Monitors were merged in 2000. The new periodical was called RiskMetrics Journal. The aim of the Journal

103



104 APPENDIX B. RISKMETRICS PUBLICATIONS

is to present advances in risk management and carry forward RiskMetrics’ commitment to the transparency
of our methodologies.

Here is a list of the RiskMetrics periodical publications from 1995 to 2000

RiskMetrics Journal

• November 2000

– Calculating VaR through Quadratic Approximations

– Hypothesis Test of Default Correlation and Application to Specific Risk

– A Comparison of Stochastic Default Rate Models

• May 2000

– Toward a Better Estimation of Wrong-Way Credit Exposure

– Do Implied Volatilities Provide Early Warning for Market Stress?

– A Stress Test to Incorporate Correlation Breakdown

CreditMetrics Monitor

• April 1999

– Conditional Approaches for CreditMetrics Portfolio Distributions

– The Valuation of Basket Credit Derivatives

– An Analytic Approach for Credit Risk Analysis Under Correlated Defaults

• Third Quarter 1998

– Extended “Constant Correlations” in CreditManager 2.0

– Treating Collateral and Guarantees in CreditManager 2.0

– Credit Derivatives in CreditMetrics

– Commercial Paper Defaults and Rating Transitions, 1972 - 1998

– A One-Parameter Representation of Credit Risk and Transition Matrices

• First Quarter 1998

– Managing Credit Risk with CreditMetrics and Credit Derivatives

– The Effect of Systematic Credit Risk on Loan Portfolio Value-at-Risk and Loan Pricing

– Syndicated Bank Loan Recovery
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– Uses and Abuses of Bond Default Rates

– Errata to the first edition of CreditMetrics Technical Document

RiskMetrics Monitor

• Special Edition 1998

– How the Formation of the EMU Will Affect RiskMetrics

– Overview of EMU, Resulting Changes in the RiskMetrics Methodology, and a Tool to Conduct
Stress Testing on EMU-Related Scenarios

• Fourth Quarter 1997

– A Methodology to Stress Correlations

– What Risk Managers Should Know about Mean Reversion and Jumps in Prices

• Third Quarter 1997

– An Investigation into Term Structure Estimation Methods for RiskMetrics

– When is a Portfolio of Options Normally Distributed?

• Second Quarter 1997

– A Detailed Analysis of a Simple Credit Exposure Calculator

– A General Approach to Calculating VaR without Volatilities and Correlations

• First Quarter 1997

– On Measuring Credit Exposure

– The Effect of EMU on Risk Management

– Streamlining the Market Risk Measurement Process

• Fourth Quarter 1996

– Testing RiskMetrics Volatility Forecasts on Emerging Markets Data

– When is Non-normality a Problem? The Case of 15 Time Series from Emerging Markets

• Third Quarter 1996

– Accounting for Pull to Par and Roll Down for RiskMetrics Cashflows

– How Accurate is the Delta-Gamma Methodology?
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– VaR for Basket Currencies

• Second Quarter 1996

– An Improved Methodology for Measuring VaR that Allows for a More Realistic Model of Finan-
cial Return Tail Distributions

– A Value-at-Risk Analysis of Currency Exposures

– Underscoring the Limitations of Standard VaR When Underlying Market Return Distributions
Deviate Significantly from Normality

– Estimating Index Tracking Error for Equity Portfolios

• First Quarter 1996

– A Look at Two Methodologies which Use a Basic Delta-Gamma Parametric VaR Precept but
Achieve Similar Results to Simulation

– Basel Committee Revises Market Risk Supplement to 1988 Capital Accord

• Fourth Quarter 1995

– ExploringAlternativeVolatility Forecasting Methods for the Standard RiskMetrics Monthly Hori-
zon

– How Accurate are the Risk Estimates in Portfolios which Contain Treasury Bills Proxied by
LIBOR Data?

– A Solution to the Standard Cash Flow Mapping Algorithm which Sometimes Leads to Imaginary
Roots

• Third Quarter 1995

– Mapping and Estimating VaR in Interest Rate Swaps

– Adjusting Correlation from Nonsynchronous Data
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Figure B.1:Chronology of RiskMetrics publications
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