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This 

 

Technical Document

 

 provides a detailed description of RiskMetrics

 



 

, a set of techniques and data 
to measure market risks in portfolios of fixed income instruments, equities, foreign exchange, commod-
ities, and their derivatives issued in over 30 countries. This edition has been expanded significantly from 
the previous release issued in May 1995.

We make this methodology and the corresponding RiskMetrics

 



 

 data sets available for three reasons:

1. We are interested in promoting greater transparency of market risks. Transparency is the key to 
effective risk management.

2. Our aim has been to establish a benchmark for market risk measurement. The absence of a common 
point of reference for market risks makes it difficult to compare different approaches to and mea-
sures of market risks. Risks are comparable only when they are measured with the same yardstick.

3. We intend to provide our clients with sound advice, including advice on managing their market 
risks. We describe the RiskMetrics

 



 

 methodology as an aid to clients in understanding and eval-
uating that advice.

Both J.P. Morgan and Reuters are committed to further the development of RiskMetrics

 



 

 as a fully 
transparent set of risk measurement methods. We look forward to continued feedback on how to main-
tain the quality that has made RiskMetrics

 



 

 the benchmark for measuring market risk.

RiskMetrics

 



 

 is based on, but differs significantly from, the risk measurement methodology developed 
by J.P. Morgan for the measurement, management, and control of market risks in its trading, arbitrage, 
and own investment account activities. 

 

We remind our readers that no amount of sophisticated an-
alytics will replace experience and professional judgment in managing risks

 

. RiskMetrics

 



 

 is noth-
ing more than a high-quality tool for the professional risk manager involved in the financial markets and 
is not a guarantee of specific results.

• J.P. Morgan and Reuters have teamed up to enhance RiskMetrics

 



 

. Morgan will continue to be 
responsible for enhancing the methods outlined in this document, while Reuters will control the 
production and distribution of the RiskMetrics

 



 

 data sets.
• Expanded sections on methodology outline enhanced analytical solutions for dealing with nonlin-

ear options risks and introduce methods on how to account for non-normal distributions.
• Enclosed diskette contains many examples used in this document. It allows readers to experiment 
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This book

 

This is the reference document for RiskMetrics

 



 

. It covers all aspects of RiskMetrics and super-
sedes all previous editions of the 

 

Technical Document

 

. It is meant to serve as a reference to the 
methodology of statistical estimation of market risk, as well as detailed documentation of the ana-
lytics that generate the data sets that are published daily on our Internet Web sites.

This document reviews

1. The conceptual framework underlying the methodologies for estimating market risks.

2. The statistics of financial market returns.

3. How to model financial instrument exposures to a variety of market risk factors.

4. The data sets of statistical measures that we estimate and distribute daily over the Internet 
and shortly, the Reuters Web.

Measurement and management of market risks continues to be as much a craft as it is a science. 
It has evolved rapidly over the last 15 years and has continued to evolve since we launched 
RiskMetrics in October 1994. Dozens of professionals at J.P. Morgan have contributed to the 
development of this market risk management technology and the latest document contains entries 
or contributions from a significant number of our market risk professionals.

We have received numerous constructive comments and criticisms from professionals at Central 
Banks and regulatory bodies in many countries, from our competitors at other financial institu-
tions, from a large number specialists in academia and last, but not least, from our clients. Without 
their feedback, help, and encouragement to pursue our strategy of open disclosure of methodology 
and free access to data, we would not have been as successful in advancing this technology as 
much as we have over the last two years.

 

What is RiskMetrics?

 

RiskMetrics is a set of tools that enable participants in the financial markets to estimate their expo-
sure to market risk under what has been called the “Value-at-Risk framework”. RiskMetrics has 
three basic components:

• A set of market risk measurement methodologies outlined in this document.

• Data sets of volatility and correlation data used in the computation of market risk.

• Software systems developed by J.P.Morgan, subsidiaries of Reuters, and third party vendors 
that implement the methodologies described herein.

With the help of this document and the associated line of products, users should be in a position 
to estimate market risks in portfolios of foreign exchange, fixed income, equity and commodity 
products.

 

J.P. Morgan and Reuters team up on RiskMetrics

 

In June 1996, J.P. Morgan signed an agreement with Reuters to cooperate on the building of a new 
and more powerful version of RiskMetrics. Since the launch of RiskMetrics in October 1994, we 
have received numerous requests to add new products, instruments, and markets to the daily vola-
tility and correlation data sets. We have also perceived the need in the market for a more flexible 
VaR data tool than the standard matrices that are currently distributed over the Internet. The new 
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partnership with Reuters, which will be based on the precept that both firms will focus on their 
respective strengths, will help us achieve these objectives.

 

Methodology

 

J.P. Morgan will continue to develop the RiskMetrics set of VaR methodologies and publish them 
in the quarterly 

 

RiskMetrics Monito

 

r and in the annual 

 

RiskMetrics—Technical Document

 

.

 

RiskMetrics data sets

 

Reuters will take over the responsibility for data sourcing as well as production and delivery of the 
risk data sets. The current RiskMetrics data sets will continue to be available on the Internet free of 
charge and will be further improved as a benchmark tool designed to broaden the understanding of 
the principles of market risk measurement. 

When J.P. Morgan first launched RiskMetrics in October 1994, the objective was to go for broad 
market coverage initially, and follow up with more granularity in terms of the markets and instru-
ments covered. This over time, would reduce the need for proxies and would provide additional 
data to measure more accurately the risk associated with non-linear instruments. 

The partnership will address these new markets and products and will also introduce a new cus-
tomizable service, which will be available over the Reuters Web service. The customizable 
RiskMetrics approach will give risk managers the ability to scale data to meet the needs of their 
individual trading profiles. Its capabilities will range from providing customized covariance matri-
ces needed to run VaR calculations, to supplying data for historical simulation and stress-testing 
scenarios.

More details on these plans will be discussed in later editions of the 

 

RiskMetrics Monitor

 

.

 

Systems

 

Both J.P. Morgan and Reuters, through its Sailfish subsidiary, have developed client-site 
RiskMetrics VaR applications. These products, together with the expanding suite of third party 
applications will continue to provide RiskMetrics implementations.

 

What is new in this fourth edition?

 

In terms of content, the Fourth Edition of the 

 

Technical Document

 

 incorporates the changes and 
refinements to the methodology that were initially outlined in the 1995–1996 editions of the 

 

RiskMetrics Monitor

 

:

•

 

Expanded framework:

 

  We have worked extensively on refining the analytical framework 
for analyzing options risk without having to perform relatively time consuming simulations 
and have outlined the basis for an improved methodology which incorporates better informa-
tion on the tails of distributions related to financial asset price returns; we’ve also developed a 
data synchronization algorithm to refine our volatility and correlation estimates for products 
which do not trade in the same time zone;

•

 

New markets:

 

  We expanded the daily data sets to include estimated volatilities and correla-
tions of additional foreign exchange, fixed income and equity markets, particularly in South 
East Asia and Latin America.

•

 

Fine-tuned methodology:

 

  We have modified the approach in a number of ways. First, we’ve 
changed our definition of price volatility which is now based on a total return concept; we’ve 
also revised some of the algorithms used in our mapping routines and are in the process of 
redefining the techniques used in estimating equity portfolio risk.
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•

 

RiskMetrics products:

 

  While we have continued to expand the list of third parties providing 
RiskMetrics products and support, this is no longer included with this document. Given the 
rapid pace of change in the availability of risk management software products, readers are 
advised to consult our Internet web site for the latest available list of products. This list, 
which now includes FourFifteen

 



 

, J.P. Morgan’s own VaR calculator and report generating 
software, continues to grow, attesting to the broad acceptance RiskMetrics has achieved.

•

 

New tools to use the RiskMetrics data sets:

 

  We have published an Excel add-in function 
which enables users to import volatilities and correlations directly into a spreadsheet. This 
tool is available from our Internet web site.

The structure of the document has changed only slightly. As before, its size warrants the following 
note:  One need not read and understand the entire document in order to benefit from RiskMetrics. 
The document is organized in parts that address subjects of particular interest to many readers.

Part I: Risk Measurement Framework

This part is for the general practitioner. It provides a practical framework on how to 
think about market risks, how to apply that thinking in practice, and how to interpret the 
results. It reviews the different approaches to risk estimation, shows how the calcula-
tions work on simple examples and discusses how the results can be used in limit man-
agement, performance evaluation, and capital allocation.

Part II: Statistics of Financial Market Returns

This part requires an understanding and interest in statistical analysis. It reviews the 
assumptions behind the statistics used to describe financial market returns and how dis-
tributions of future returns can be estimated. 

Part III: Risk Modeling of Financial Instruments

This part is required reading for implementation of a market risk measurement system. 
It reviews how positions in any asset class can be described in a standardized fashion 
(foreign exchange, interest rates, equities, and commodities). Special attention is given 
to derivatives positions. The purpose is to demystify derivatives in order to show that 
their market risks can be measured in the same fashion as their underlying.

Part IV: RiskMetrics Data Sets

This part should be of interest to users of the RiskMetrics data sets. First it describes the 
sources of all daily price and rate data. It then discusses the attributes of each volatility 
and correlation series in the RiskMetrics data sets. And last, it provides detailed format 
descriptions required to decipher the data sets that can be downloaded from public or 
commercial sources. 

Appendices

This part reviews some of the more technical issues surrounding methodology and regu-
latory requirements for market risk capital in banks and demonstrates the use of Risk-
Metrics with the example diskette provided with this document. Finally, Appendix H 
shows you how to access the RiskMetrics data sets from the Internet.
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RiskMetrics examples diskette

This diskette is located inside the back cover. It contains an Excel workbook that 
includes some of the examples shown in this document. Such examples are identified by 
the icon shown here.

 

Future plans

 

We expect to update this 

 

Technical Document

 

 annually as we adapt our market risk standards to 
further improve the techniques and data to meet the changing needs of our clients. 

RiskMetrics is a now an integral part of J.P. Morgan’s Risk Management Services group which 
provides advisory services to a wide variety of the firm’s clients. We continue to welcome any sug-
gestions to enhance the methodology and adapt it further to the needs of the market. All sugges-
tions, requests and inquiries should be directed to the authors of this publication or to your local 
RiskMetrics contacts listed on the back cover.
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Chapter 4. Statistical and probability foundations

 

Peter Zangari
Morgan Guaranty Trust Company
Risk Management Research
(1-212) 648-8641

 

zangari_peter@jpmorgan.com

 

This chapter presents the statistical and probability underpinnings of the RiskMetrics model. It 
explains the assumptions commonly applied to forecast the distribution of portfolio returns and 
investigates the empirical validity of these assumptions. While we have tried to make this chapter 
self-contained, its subject matter does require a thorough grasp of elementary statistics. We have 
included many up-to-date references on specific topics so that the interested reader may pursue 
further study in these areas.

This chapter is organized as follows:

• Section 4.1 presents definitions of financial price returns and explains the type of returns 
applied in RiskMetrics. 

• Section 4.2 describes the basic random walk model for financial prices to serve as background 
to introducing the RiskMetrics model of returns.

• Section 4.3 looks at some observed time series properties of financial returns in the context of 
the random walk model.

• Section 4.4 summarizes the results presented in Sections 4.1 through 4.3.

• Section 4.5 reviews some popular models of financial returns and presents a review of the 
normal and lognormal distributions.

• Section 4.6 presents the RiskMetrics model as a modified random walk. This section lists the 
assumptions of the RiskMetrics model—that is, what RiskMetrics assumes about the evolu-
tion of financial returns over time and the distribution of returns at any point in time.

• Section 4.7 is a chapter summary.

 

4.1  Definition of financial price changes and returns

 

1

 

Risk is often measured in terms of price changes. These changes can take a variety of forms such 
as absolute price change, relative price change, and log price change. When a price change is 

 

defined relative to some initial price, it is known as a return.

 

 RiskMetrics measures change in 
value of a portfolio (often referred to as the adverse price move) in terms of log price changes 
also known as continuously-compounded returns. 

 

Next, we explain different definitions of 
price returns.

 

4.1.1  One-day (single period) horizon

 

Denote by  the price of a security at date 

 

t

 

. In this document, 

 

t

 

 is taken to represent one business 
day. 

The absolute price change on a security between dates 

 

t

 

 and 

 

t 

 

− 

 

1 (i.e., one day) is defined as

[4.1]

 

 

 

1

 

References for this section are, Campbell, Lo and MacKinley (1995) and Taylor, S. J. (1987). 

Pt

Dt Pt Pt 1––=
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The relative price change, or percent return

 

2

 

, , for the same period is 

[4.2]

If the gross return on a security is just , then the log price change (or continuously-com-
pounded return), , of a security is defined to be the natural logarithm of its gross return. That is,

[4.3]

where  is the natural logarithm of .

In practice, the main reason for working with returns rather than prices is that returns have more 
attractive statistical properties than prices, as will be shown below. Further, returns (relative and 
log price changes) are often preferred to absolute price changes because the latter do not measure 
change in terms of the 

 

given

 

 price level.

To illustrate the different results that different price changes can yield, Table 4.1 presents daily 
USD/DEM exchange rates for the period 28-Mar-96 through 12-Apr-96 and the corresponding 
daily absolute, relative, and log price changes.

As expected, all three series of price changes have the same sign for any given day. Also, notice 
the similarity between the log and relative price changes. In fact, we should expect these two 
return series to be similar to one another for small changes in the underlying prices. In contrast, the 
absolute change series is quite different from the other two series.

 

2

 

Although it is called “percent return,” the relative price change is expressed as a decimal number.

 

Table 4.1

 

Absolute, relative and log price changes* 

 

Date
 Price 

(USD/DEM), P

 

t

 

 Absolute price 
change (%), D

 

t

 

 Relative price 
change (%), R

 

t

 

 Log price 
change (%,) r

 

t

 

28-Mar-96 0.67654 0.427 0.635 0.633
29-Mar-96 0.67732 0.078 0.115 0.115
1-Apr-96 0.67422

 

−

 

0.310

 

−

 

0.458

 

−

 

0.459
2-Apr-96 0.67485 0.063 0.093 0.093
3-Apr-96 0.67604 0.119 0.176 0.176
4-Apr-96 0.67545

 

−

 

0.059

 

−

 

0.087

 

−

 

0.087
5-Apr-96 0.67449

 

−

 

0.096

 

−

 

0.142 -0.142
8-Apr-96 0.67668 0.219 0.325 0.324
9-Apr-96 0.67033

 

−

 

0.635

 

−

 

0.938

 

−

 

0.943
10-Apr-96 0.66680

 

−

 

0.353

 

−

 

0.527

 

−

 

0.528
11-Apr-96 0.66609

 

−

 

0.071

 

−

 

0.106

 

−

 

0.107
12-Apr-96 0.66503

 

−

 

0.106

 

−

 

0.159

 

−

 

0.159

* RiskMetrics foreign exchange series are quoted as USD per unit foreign currency given that 
the datasets are standardized for users whose base currency is the USD. This is the inverse of 
market quotation standards for most currency pairs.
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To further illustrate the potential differences between absolute and log price changes, Chart 4.1 
shows daily absolute and log price changes for the U.S. 30-year government bond over the first 
quarter of 1996.

 

Chart 4.1

 

Absolute price change and log price change in U.S. 30-year government bond

 

Chart 4.1 shows that movements of the two changes over time are quite similar although the mag-
nitude of their variation is different. This latter point and the results presented in Table 4.1 should 
make it clear that it is important to understand the convention chosen for measuring price changes.

 

4.1.2  Multiple-day (multi-period) horizon

 

The returns  and  described above are 1-day returns. We now show how to use them to com-
pute returns for horizons greater than one day.

Multiple-day percent returns over the most recent 

 

k

 

 days, , are defined simply as

[4.4]

In terms of 1-day returns, the multiple-day 

 

gross

 

 return  is given by the product of 
1-day gross returns. 

[4.5]

Note that in Eq. [4.5] the 

 

k

 

-day return is a discretely compounded return. For continuously com-
pounded returns, the multiple-day return  is defined as

[4.6]
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The continuously-compounded return  is the sum of 

 

k

 

 continuously-compounded 1-day 
returns. To see this we use the relation . The return  can then be 
written as

[4.7]

Notice from Eq. [4.7] that compounding, a multiplicative operation, is converted to an additive 
operation by taking logarithms. Therefore, multiple day returns based on continuous compounding 
are simple sums of one-day returns.

As an example of how 1-day returns are used to generate a multiple-day return, we use a 1-month 
period, defined by RiskMetrics as having 25 business days. Working with log price changes, the 
continuously compounded return over one month is given by 

[4.8]

That is, the 1-month return is the sum of the last 25 1-day returns.

 

4.1.3  Percent and continuous compounding in aggregating returns

 

When deciding whether to work with percent or continuously compounded returns it is important 
to understand how such returns aggregate both across time and across individual returns at any 
point in time.

In the preceding section we showed how multiple-day returns can be constructed from 1-day 
returns by aggregating the latter across time. This is known as temporal aggregation. However, 
there is another type of aggregation known as cross-section aggregation. In the latter approach, 
aggregation is across individual returns (each corresponding to a specific instrument) at a particu-
lar point in time. For example, consider a portfolio that consists of three instruments. Let  and 

   be the continuously compounded and percent returns, respectively and let  
represent the portfolio weights. (The parameter  represents the fraction of the total portfolio 
value allocated to the 

 

i

 

th instrument with the condition that—assuming no short positions—
). If the initial value of this portfolio is  the price of the portfolio one period 

later with continuously compounded returns is

[4.9]

Solving Eq. [4.9] for the portfolio return, , we get

[4.10]

The price of the portfolio one period later with discrete compounding, i.e., using percent returns, is

[4.11]

The percent portfolio return, , is given by

[4.12]
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Equation [4.12] is the expression often used to describe a portfolio return—as a weighted sum of 
individual returns.

Table 4.2 presents expressions for returns that are constructed from temporal and cross-section 
aggregation for percent and continuously compounded returns.

The table shows that when aggregation is done across time, it is more convenient to work with 
continuously compounded returns whereas when aggregation is across assets, percent returns offer 
a simpler expression.

As previously stated, log price changes (continuously compounded returns) are used in 
RiskMetrics as the basis for all computations. In practice, RiskMetrics assumes that a port-
folio return is a weighted average of continuously compounded returns. That is, a portfolio 
return is defined as follows 

[4.13]  

As will be discussed in detail in the next section, when 1-day returns are computed using , then 
a model describing the distribution of 1-day returns extends straightforwardly to returns greater 
than one day.3 

In the next two sections (4.2 and 4.3) we describe a class of time series models and investigate the 
empirical properties of financial returns. These sections serve as important background to under-
standing the assumptions RiskMetrics applies to financial returns.

4.2  Modeling financial prices and returns

A risk measurement model attempts to characterize the future change in a portfolio’s value. Often, 
it does so by making forecasts of each of a portfolio’s underlying instrument’s future price 
changes, using only past changes to construct these forecasts. This task of describing future price 
changes requires that we model the following; (1) the temporal dynamics of returns, i.e., model the 
evolution of returns over time, and (2) the distribution of returns at any point in time. 

A widely used class of models that describes the evolution of price returns is based on the notion 
that financial prices follow a random walk.

3 There are two other reasons for using log price changes. The first relates to “Siegel’s paradox,” Meese, R.A. and 
Rogoff, K. (1983). The second relates to preserving normality for FX cross rates. Simply put, when using log price 
changes, FX cross rates can be written as differences of base currency rates. (See Section 8.4 for details.)

Table 4.2 
Return aggregation

Aggregation Temporal Cross-section
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4.2.1  Random walk model for single-price assets

In this section we present a model for a security with a single price. Such a model applies naturally 
to assets such as foreign exchange rates, commodities, and equities where only one price exists per 
asset. The fundamental model of asset price dynamics is the random walk model, 

[4.14]

where IID stands for “identically and independently distributed”4, and N  stands for the nor-
mal distribution with mean 0 and variance 1. Eq. [4.14] posits the evolution of prices and their dis-
tribution by noting that at any point in time, the current price  depends on a fixed parameter µ, 
last period’s price , and a normally distributed random variable, . Simply put, µ and σ 
affect the mean and variance of ’s distribution, respectively.

The conditional distribution of , given , is normally distributed.5 An obvious drawback of 
this model is that there will always be a non-zero probability that prices are negative.6 One way to 
guarantee that prices will be non-negative is to model the log price  as a random walk with nor-
mally distributed changes.

[4.15]

Notice that since we are modeling log prices, Eq. [4.15] is a model for continuously compounded 
returns, i.e., . Now, we can derive an expression for prices,  given last period’s 
price  from Eq. [4.15]:

[4.16]

where  and e ≅ 2.718.

Since both  and  are non-negative, we are guaranteed that  will never be 
negative. Also, when  is normally distributed,  follows a lognormal distribution.7

Notice that both versions of the random walk model above assume that the change in (log) prices 
has a constant variance (i.e.,  does not change with time). We can relax this (unrealistic) assump-
tion, thus allowing the variance of price changes to vary with time. Further, the variance could be 
modeled as a function of past information such as past variances. By allowing the variance to vary 
over time we have the model

[4.17]

4 See Section 4.3 for the meaning of these assumptions.

5 The unconditional distribution of Pt is undefined in that its mean and variance are infinite. This can easily be seen 
by solving Eq. [4.14] for Pt as a function of past εt’s.

6 This is because the normal distribution places a positive probability on all points from negative to positive infinity. 
See Section 4.5.2 for a discussion of the normal distribution.

7 See Section 4.5.3 for a complete description of the lognormal distribution.
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This version of the random walk model is important since it will be shown below that 
RiskMetrics assumes that log prices evolve according to Eq. [4.17] with the parameter µ set 
to zero. 

4.2.2  Random walk model for fixed income instruments

With fixed income instruments we observe both prices and yields. When prices and yields exist, 
we must decide whether to model the log changes in the yields or in the prices. For example, for 
bonds, a well documented shortcoming of modeling price returns according to Eq. [4.15] is that 
the method ignores a bond’s price pull to par phenomenon. That is, a bond has the distinct fea-
ture that as it approaches maturity, its price converges to its face value. Consequently, the bond 
price volatility will converge to zero.

Therefore, when modeling the dynamic behavior of bonds (and other fixed income instruments), 
the bond yields rather than the bond prices are often modeled according to the lognormal distribu-
tion. That is, if  denotes the yield on a bond at period t, then  is modeled as

[4.18]

(Note that similar to Eq. [4.17] we can incorporate a time-varying variance into Eq. [4.18]). In 
addition to accounting for the pull to par phenomenon, another important reason for modeling the 
yield rather than the price according to Eq. [4.18] is that positive yields are guaranteed. In the con-
text of bond option pricing, a strong case can often be made for modeling yields as lognormal.8

4.2.3  Time-dependent properties of the random walk model

Each of the random walk models presented in Sections 4.2.1 and 4.2.2 imply a certain movement 
in financial prices over time. In this section we use Eq. [4.15]—the random walk model in log 
prices, —to explain some important properties of price dynamics implied by the random walk 
model. Specifically, we discuss the properties of stationary (mean-reverting) and nonstationary 
time series. 

A stationary process is one where the mean and variance are constant and finite over time.9 In 
order to introduce the properties of a stationary time series we must first generalize Eq. [4.15] to 
the following model.

[4.19]

where c is a parameter. Here, a stationary time series is generated when . For example, 
if we set c = 0.5, we can simulate a stationary time series using

[4.20]  

8 For a discussion on the potential advantages of modeling yield levels as lognormal, see Fabozzi (1989, Chapter 3).

9 Stationarity also requires that the (auto-)covariance of returns at different times is only a function of the time 
between the returns, and not the times at which they occur. This definition of stationarity is known as weak or 
covariance stationarity. 
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Chart 4.2 shows the simulated stationary time series based on 500 simulations.

Chart 4.2
Simulated stationary/mean-reverting time series

Chart 4.2 shows how a stationary series fluctuates around its mean, which in this model is 0.02. 
Hence, stationary series are mean-reverting since, regardless of the fluctuations’ amplitudes, the 
series reverts to its mean.

Unlike a mean-reverting time series, a nonstationary time series does not fluctuate around a fixed 
mean. For example, in Eq. [4.15] the mean and variance of the log price  conditional on some 
original observed price, say , are given by the following expressions

[4.21]

where E0[ ] and V0[ ] are the expectation and variance operators taken at time 0. Eq. [4.21] shows 
that both the mean and variance of the log price are a function of time such that, as time t 
increases, so does pt’s conditional mean and variance. The fact that its mean and variance change 
with time and “blow-up” as time increases is a characteristic of a nonstationary time series. 

To illustrate the properties of a nonstationary time series, we use the random walk model, 
Eq. [4.15], to simulate 500 data points. Specifically, we simulate a series based on the following 
model,

[4.22]
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The simulated series is shown in Chart 4.3.

Chart 4.3
Simulated nonstationary time series

Notice how this series has a positive drift that grows with time, representing the term µt in 
Eq. [4.21]. This is a typical feature of a nonstationary time series. 

In the preceding examples, notice that the difference between these stationary and nonstationary 
series is driven by the coefficient on last period’s log price . When this coefficient is 1, as in 
Eq. [4.22], the process generating log prices is known to have a “unit root”. As should be 
expected, given the differences between stationary and non-stationary times series and their impli-
cations for statistical analysis, there is a large body of literature devoted to testing for the presence 
of a unit root.10

Real world examples of stationary and nonstationary series are shown in Charts 4.4 and 4.5. For 
the same period, Chart 4.4 plots the USD 30-year rate, a stationary time series.

Chart 4.4
Observed stationary time series 
USD 30-year yield

10 A common statistical test for a unit root is known as the augmented Dickey-Fuller test. See Greene, (1993). 
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Notice how the 30-year rates fluctuate around the sample average of 7.30%, signifying that the 
time series for this period is mean-reverting.

Chart 4.5 plots the S&P 500 index for the period January 4, 1993 through June 28, 1996.

Chart 4.5
Observed nonstationary time series
S&P 500 index

Notice that the S&P 500 index does not fluctuate around the sample mean of 504, but rather has a 
distinct trend upwards. Comparing the S&P 500 series to the simulated nonstationary data in 
Chart 4.3, we see that it has all the markings of a nonstationary process.

4.3  Investigating the random-walk model

Thus far we have focused on a simple version of the random walk model (Eq. [4.15]) to demon-
strate some important time series properties of financial (log) prices. Recall that this model 
describes how the prices of financial assets evolve over time, assuming that logarithmic price 
changes are identically and independently distributed (IID). These assumptions imply:

1. At each point in time, t, log price changes are distributed with a mean 0 and variance  
(identically distributed). This implies that the mean and variance of the log price changes 
are homoskedastic, or unchanging over time.

2. Log price changes are statistically independent of each other over time (independently dis-
tributed). That is to say, the values of returns sampled at different points are completely 
unrelated 

In this section we investigate the validity of these assumptions by analyzing real-world data. We 
find evidence that the IID assumptions do not hold.11

11  Recent (nonparametric) tests to determine whether a time series is IID are presented in Campbell and Dufour 
(1995).
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4.3.1  Is the distribution of returns constant over time?

Visual inspection of real-world data can be a useful way to help understand whether the assump-
tions of IID returns hold. Using a time series of returns, we investigate whether the first assump-
tion of IID, identically distributed returns, is indeed valid. We find that it is violated and present 
the following data as evidence.

Charts 4.6 and 4.7 show time series plots of continuously compounded returns for the USD/DEM 
and USD/FRF exchange rates, respectively.12

Chart 4.6
USD/DEM returns

Chart 4.7
USD/FRF returns

These time series show clear evidence of volatility clustering. That is, periods of large returns are 
clustered and distinct from periods of small returns, which are also clustered. If we measure such 
volatility in terms of variance (or its square root, i.e., the standard deviation), then it is fair to think 
that variance changes with time, reflecting the clusters of large and small returns. In terms of the 
model in Eq. [4.15], this means that  is changing with time (t). In statistics, changing variances 
are often denoted by the term heteroscedasticity.

12 This notation (i.e., USD per DEM) is not necessarily market convention.
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In Charts 4.6 and 4.7 we also notice not only the individual volatility clustering, but the correlation 
of the clusters between return series. For example, note that periods of high volatility in 
USD/DEM returns coincide with high volatility in USD/FRF returns. Such correlation between 
returns series motivates the development of multivariate models, that is, models of returns that 
measure not only individual series variance (volatility), but also the correlation between return 
series. 

4.3.2  Are returns statistically independent over time?

Having established, albeit informally, the possibility of time-varying variances, and consequently, 
a violation of the identically distributed assumption, we now investigate the validity of the inde-
pendence assumption, i.e., the second assumption of IID. From our methods and the data that we 
present in the following sections (4.3.2.1 through 4.3.2.3), we conclude that returns in a given 
series are not independent of each other.

In Charts 4.6 and 4.7, the persistence displayed by the volatility clusters shows some evidence of 
autocorrelation in variances. That is, the variances of the series are correlated across time. If 
returns are statistically independent over time, then they are not autocorrelated. Therefore, a natu-
ral method for determining if returns are statistically independent is to test whether or not they are 
autocorrelated. In order to do so, we begin by defining correlation and a method of testing for 
autocorrelation.

4.3.2.1  Autocorrelation of daily log price changes
For a given time series of returns, the autocorrelation coefficient measures the correlation of 
returns across time. In general, the standard correlation coefficient between two random variables 
X and Y is given by the covariance between X and Y divided by their standard deviations:

[4.23]

where  represents the covariance between X and Y. A simple way to understand what covari-
ance measures is to begin with the definition of variance. The variance of a random variable X is a 
measure of the variation of X around its mean, . The mathematical expression for variance is 

[4.24]

where the term E[ ] is the mathematical expectation—or more simply, the average. Whereas the 
variance measures the magnitude of variation of one random variable (in this case X), covariance 
measures the covariation of two random variables (say, X and Y). It follows that if the variance of 
X is the expected value of times , then the covariance of X and Y is the 
expected value of  times , or 

[4.25]

Now, for a time series of observations , the kth order autocorrelation coefficient ρ(k) 
is defined as: 

[4.26]
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Notice that since ρ(k) operates on just one series the subscripts on the covariance and standard 
deviation refer to the time index on the return series. For a given sample of returns, , 
we can estimate Eq. [4.26] using the sample autocorrelation coefficient which is given by:

[4.27]

where k = number of lags (days), and , is the sample mean.

If a time series is not autocorrelated then estimates of  will not be significantly different from 

0. In fact, when there is a large amount of historical returns available, we can calculate a 95% con-

fidence band around 0 for each autocorrelation coefficient13 as .

Charts 4.8 and 4.9 show the sample autocorrelation coefficient plotted against different lags k 
(measured in days), along with the 95% confidence band around zero for USD/DEM foreign 
exchange and S&P 500 log price changes, respectively, for the period January 4, 1990 to June 24, 
1996. These charts are known as correlograms. The dashed lines represent the upper and lower 
95% confidence bands . If there is no autocorrelation, that is, if the series are purely ran-
dom, then we expect only one in twenty of the sample autocorrelation coefficients to lie outside 
the confidence bands. 

Chart 4.8
Sample autocorrelation coefficients for USD/DEM foreign exchange returns

13 This an asymptotic test statistic since it relies on a large value of T, say, T > 1000. See Harvey (p. 43, 1993).
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Chart 4.9
Sample autocorrelation coefficients for USD S&P 500 returns

Overall, both charts show very little evidence of autocorrelation in daily log price changes. Even 
in the cases where the autocorrelations are outside the confidence bands, the autocorrelation coef-
ficients are quite small (less than 10%). 

4.3.2.2  Box-Ljung statistic for daily log price changes
While the above charts are useful for getting a general idea about the level of autocorrelation of 
log price changes, there are more formal methods of testing for autocorrelation. An often cited 
method is the Box-Ljung (BL) test statistic,14 defined as

[4.28]  

Under the null hypothesis that a time series is not autocorrelated, BL ( p ), is distributed chi-
squared with p degrees of freedom. In Eq. [4.28], p denotes the number of autocorrelations used to 
estimate the statistic. We applied this test to the USD/DEM and S&P 500 returns for p = 15. In this 
case, the 5% chi-squared critical value is 25. Therefore, values of the BL(10) statistic greater than 
25 implies that there is statistical evidence of autocorrelation. The results are shown in Table 4.3. 

14 See West and Cho (1995) for modifications to this statistic.

Table 4.3
Box-Ljung test statistic

Series

USD/DEM 15

S&P 500 25
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We also applied this test to the daily log price changes of a selected series of commodity futures 
contracts because, when plotted against time, these series appear autocorrelated. In these tests we 
chose p = 10 which implies a critical value of 18.31 at the 95% confidence level. Table 4.4 pre-
sents the results along with the first order autocorrelation coefficient, .

The preceding tests show little evidence of autocorrelation for some daily log price change series. 
The fact that the autocorrelation is not strong agrees with previous research. It is often found that 
financial returns over the short-run (daily) are autocorrelated but the magnitudes of the autocorre-
lation are too small (close to zero) to be economically significant.15 For longer return horizons 
(i.e., beyond a year), however, there is evidence of significant negative autocorrelation (Fama and 
French, 1988). 

4.3.2.3  Autocorrelation of squared daily log price changes (returns)
As previously stated, although returns (log price changes) are uncorrelated, they may not be inde-
pendent. In the academic literature, such dependence is demonstrated by the autocorrelation of the 
variances of returns. Alternatively expressed, while the returns are not autocorrelated, their 
squares are autocorrelated. And since the expected value of the squared returns are variances16, 
autocorrelation in the squared returns implies autocorrelation in variances. The relationship 
between squared returns and variances is evident from the definition of variance, .

[4.29]  

Assuming that the mean of the returns is zero, i.e., , we get .

15 In other words, it would be very difficult to form profitable trading rules based on autocorrelation in daily log price 
changes (Tucker, 1992). Also, more recent work has shown that over short horizons, autocorrelation in daily 
returns may be the result of institutional factors rather than purely inefficient markets (Boudoukh, Richardson and 
Whitelaw, 1994).

16 This is true if the expected values of returns are zero.The plausibility of assuming a mean of zero for daily returns 
will be discussed in Section 5.3.1.1.

Table 4.4
Box-Ljung statistics

Contract*
Maturity
(mths.)

WTI 1 −0.0338 5.24

3 −0.0586 7.60

6 −0.0927 13.62

12 −0.1323 25.70

LME

Copper 3 −0.0275 8.48

15 −0.0900 19.04

27 −0.1512 16.11

* Note that the higher autocorrelation associated with con-
tracts with longer maturities may be due to the fact that such 
contracts are less liquid than contracts with short maturities.
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Charts 4.10 and 4.11 show time series of squared returns for the USD/DEM exchange rate and for 
the S&P 500 index. 

 

Chart 4.10

 

USD/DEM returns squared

 

Chart 4.11

 

S&P 500 returns squared

 

Notice the clusters of large and small spikes in both series. These clusters represent periods of high 
and low volatility recognized in Section 4.2.1. To analyze the autocorrelation structure of the 
squared returns, as in the case of log price changes, we compute sample autocorrelation coeffi-
cients and the Box-Ljung statistic. Charts 4.12 and 4.13 present correlograms for the squared 
return series of USD/DEM foreign exchange and S&P 500, respectively.
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Chart 4.12
Sample autocorrelation coefficients of USD/DEM squared returns

Chart 4.13
Sample autocorrelation coefficients of S&P 500 squared returns

1 12 23 34 45 56 67 78 89 100
-0.04

-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Autocorrelation

Lag (days)

1 12 23 34 45 56 67 78 89 100
-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Autocorrelation

Lag (days)



62 Chapter 4.  Statistical and probability foundations

RiskMetrics  —Technical Document
Fourth Edition

Comparing the correlograms (Charts 4.8 and 4.9) based on daily log price changes to those based 
on the squared daily log price changes (Charts 4.12 and 4.13), we find the autocorrelation coeffi-
cients of the squared log price changes are larger and more persistent than those for log price 
changes. In fact, much of the significant autocorrelation in the squared log price changes is posi-
tive and well above the asymptotic 95% confidence band of 4.7%.17 The Box-Ljung statistics for 
the squared log price change series are presented in Table 4.5.

This table shows the dramatic effect that the squared log price changes has on the BL test. For all 
three series we reject the null hypothesis that the variances of daily returns are not autocorre-
lated.18

4.3.3  Multivariate extensions

Thus far, we have focused our attention on the empirical properties of individual returns time 
series. It appears that the variances of returns that were analyzed vary with time and are autocorre-
lated. As stated in Section 4.3.1, returns appear correlated (through their variances, at least) not 
only across time but also across securities. The latter finding motivates a study of the empirical 
properties of correlation, or more precisely, covariance between two return series. 

We investigate whether covariances are autocorrelated by using the same logic applied to vari-
ances. Recall that we determined whether variances are autocorrelated by checking whether 
observed squared returns are autocorrelated. We used Eq. [4.29] to show the relation between vari-
ances and squared returns. Now, suppose we are interested in the covariance between two return 
series  and . We can derive a relationship between the covariance, , and observed 
returns as follows. We begin with a definition of covariance between  and . 

[4.30]

Assuming that the mean of the returns is zero for both return series, we get 

[4.31]

In words, Eq. [4.31] states that the covariance between  and  is the expectation of the 
cross-product of returns minus the product of the expectations. In models explaining variances, the 
focus is often on squared returns because of the presumption that for daily returns, squared 
expected returns are small. Focusing on cross-products of returns can be justified in the same way. 

17 Note that this confidence band may not be appropriate due to the fact that the underlying data are not returns, but 
squared returns.

18 For a discussion on tests of autocorrelation on squared returns (residuals) see McLeod and Li (1983) and Li and 
Mak (1994).

Table 4.5
Box-Ljung statistics on squared log price changes (cv = 25)

Series

USD/DEM 153

S&P 500 207
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Chart 4.14 presents a time series of the cross product (  times ) of the returns on USD/DEM 
and USD/FRF exchange rates. This series is a proxy for the covariance between the returns on the 
two exchange rates.

Chart 4.14
Cross product of USD/DEM and USD/FRF returns

Chart 4.14 shows that the covariance (correlation) between the returns on the two exchange rates 
is positive over a large segment of the sample period. Time series generated from the cross product 
of two return series not only offers insight into the temporal dynamics of correlation but also can 
be used in a regression context to determine the stability of correlations over time.

Similar to the correlogram of squared returns, the correlogram of the cross product of returns on 
the two exchange rates can be used to determine whether the covariance of these two series are 
autocorrelated. Chart 4.15 shows the autocorrelations of the cross-products of returns on USD/
DEM and USD/FRF exchange rates plotted against 50 daily lags.

Chart 4.15
Correlogram of the cross product of USD/DEM and USD/FRF returns
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The BL(10) test associated with the cross product of returns on the two exchange rate series is 37, 
which is statistically significant (i.e., there is evidence of autocorrelation) at the 95% confidence 
level. 

4.4  Summary of our findings

Up to this point, Chapter 4 focused on the dynamic features of daily continuously compounded 
returns, otherwise known as log price changes, and developed the topic as follows:

• We introduced three versions of the random walk model to describe how financial prices 
evolve over time. We used a particular version of this model (Eq. [4.15]) to highlight the dif-
ferences between stationary (mean-reverting) and nonstationary time series.

• We investigated the assumptions that log price changes are identically and independently dis-
tributed.

– To determine whether the distribution that generates returns is identical over time, we plot-
ted log price changes against time. From time series plots of returns and their squares we 
observed the well documented phenomenon of “volatility clustering” which implies that the 
variance of daily log price changes vary over time (i.e., they are heteroscedastic), thus vio-
lating the identical assumption.19

– To test independence, we analyzed the autocorrelation coefficients of both log price 
changes and squared log price changes. We found that while daily log price changes have 
small autocorrelations, their squares often have significant autocorrelations.

Much of this analysis has focused on short-horizon (daily) returns. In general, however, observed 
distributions of returns with longer horizons, such as a month or a quarter, are often different from 
distributions of daily returns.20

From this point, Chapter 4 reviews how returns are assumed to be distributed at each point in time. 
Specifically, we describe the normal distribution in detail. In RiskMetrics, it is assumed that 
returns are distributed according to the conditional normal distribution.

4.5  A review of historical observations of return distributions

As shown in Eq. [4.15] and Eq. [4.17], returns were assumed to follow, respectively, an uncondi-
tional and conditional normal distribution. The implications of the assumption that financial 
returns are normally distributed, at least unconditionally, has a long history in finance. Since the 
early work of Mandelbrot (1963) and Fama (1965), researchers have documented certain stylized 
facts about the statistical properties of financial returns. A large percentage of these studies focus 
on high frequency or daily log price changes. Their conclusions can be summarized in four basic 
observations:

• Financial return distributions have “fat tails.” This means that extreme price movements 
occur more frequently than implied by a normal distribution.

• The peak of the return distribution is higher and narrower than that predicted by the normal 
distribution. Note that this characteristic (often referred to as the “thin waist”) along with fat 
tails is a characteristic of a leptokurtotic distribution.

19 See for example, Engle and Bollerslev (1986).

20 See, for example, Richardson and Smith (1993)
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• Returns have small autocorrelations.

• Squared returns often have significant autocorrelations.

Chart 4.16 illustrates a leptokurtotic distribution of log price changes in USD/DEM exchange rates 
for the period 28-Mar-96 through 12-Apr-96 and compares it to a normal distribution. In this chart, 
the leptokurtotic distribution can be thought of as a smoothed histogram, since it is obtained 
through a smoothing process known as “kernel density estimation.”21 A kernel density estimate of 
the histogram, rather than the histogram itself, is often used since it produces a smooth line that is 
easier to compare to the true density function (normal, in this example).

Chart 4.16
Leptokurtotic vs. normal distribution

4.5.1  Modeling methods

Having documented the failure of the normal distribution to accurately model returns, researchers 
started looking for alternative modeling methods, which have since evolved into two classes:  
unconditional (time-independent) and conditional distributions (time-dependent) of returns.

Models in the class of unconditional distribution of returns assume that returns are independent of 
each other and that the return-generating process is linear with parameters that are independent of 
past realizations. An example of a model that falls into this class is the standard normal distribu-
tion with mean  and variance  (note there is no time subscript). Other examples of uncondi-
tional distribution models include infinite-variance symmetric and asymmetric stable Paretian 
distributions, and finite variance distributions including the t-distribution, mixed-diffusion-jump 
model, and the compound normal model.

21 See Silverman (1986).
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The second class of models, the conditional distribution of returns, arises from evidence that 
refutes the identically and independently distributed assumptions (as presented in Sections 4.3.1 
and 4.3.2). Models in this category, such as the GARCH and Stochastic Volatility, treat volatility 
as a time-dependent, persistent process. These models are important because they account for vol-
atility clustering, a frequently observed phenomenon among return series. 

The models for characterizing returns are presented in Table 4.6 along with supporting references. 

It is important to remember that while conditional and unconditional processes are based on differ-
ent assumptions, except for the unconditional normal model, models from both classes generate 
data that possess fat tails.22

4.5.2  Properties of the normal distribution

All of the models presented in Table 4.6 are parametric in that the underlying distributions depend 
on various parameters. One of the most widely applied parametric probability distribution is the 
normal distribution, represented by its “bell shaped” curve.

This section reviews the properties of the normal distribution as they apply to the RiskMetrics 
method of calculating VaR. Recall that the VaR of a single asset (at time t) can be written as 
follows:

[4.32]

or, using the common approximation

[4.33]

where  is the marked-to-market value of the instrument and  is the standard deviation 
of continuously compounded returns for time t made at time t−1.

22 For a specific comparison between time-dependent and time-independent processes, see Ghose and Kroner (1993). 

Table 4.6
Model classes

Distribution Model Reference

Unconditional 
(time independent)

Infinite variance: symmetric stable Paretian Mandelbrot (1963)

asymmetric stable Paretian Tucker (1992)

Finite variance: Normal Bachelier (1900)

Student t Blattberg & Gonedes (1974)

Mixed diffusion jump Jorion (1988)

Compound normal Kon (1988)

Conditional
(time dependent)

GARCH: Normal Bollerslev (1986)

Student t Bollerslev (1987)

Stochastic 
Volatility:

Normal Ruiz (1994)

Student t Harvey et. al (1994)

Generalized error distribution Ruiz (1994)

VaRt 1 exp 1.65σt t 1––( )–[ ] Vt 1–=

VaRt   1.65σt t 1– Vt 1–≅

Vt 1– σt t 1–
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4.5.2.1  Mean and variance
If it is assumed that returns are generated according to the normal distribution, then it is believed 
that the entire distribution of returns can be characterized by two parameters:  its mean and vari-
ance. Mathematically, the normal probability density function for a random variable  is23

[4.34]

where 

Note that the normal distribution as shown in Eq. [4.34] is an unconditional distribution since the 
mean and variance parameters are not time-dependent and, therefore, do not have time subscripts. 

Chart 4.17 shows how the mean and variance affect the shape of the normal distribution. 

Chart 4.17 
Normal distribution with different means and variances

Now that we have an understanding of the role of the mean and variance in the normal distribution 
we can present their formulae. The mathematical expression for the mean and variance of some 
random variable rt, are as follows:

[4.35]

23 Note that we are abusing notation since rt represents both a random variable and observed return. We hope that by 
the context in which rt is used it will be clear what we are referring to.
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where E[ ] denotes the mathematical expectation. Two additional measures that we will make ref-
erence to within this document are known as skewness and kurtosis. Skewness characterizes the 
asymmetry of a distribution around its mean. The expression for skewness is given by 

[4.36]

For the normal distribution skewness is zero. In practice, it is more convenient to work with the 
skewness coefficient which is defined as

[4.37]

Kurtosis measures the relative peakedness or flatness of a given distribution. The expression for 
kurtosis is given by 

[4.38]

As in the case of skewness, in practice, researchers frequently work with the kurtosis coefficient 
defined as 

[4.39]  

For the normal distribution, kurtosis is 3. This fact leads to the definition of excess kurtosis which 
is defined as kurtosis minus 3. 

4.5.2.2  Using percentiles to measure market risk
Market risk is often measured in terms of a percentile (also referred to as quantile) of a portfo-
lio’s return distribution. The attractiveness of working with a percentile rather than say, the vari-
ance of a distribution, is that a percentile corresponds to both a magnitude (e.g., the dollar amount 
at risk) and an exact probability (e.g., the probability that the magnitude will not be exceeded). 

The pth percentile of a distribution of returns is defined as the value that exceeds p percent of the 
returns. Mathematically, the pth percentile (denoted by α) of a continuous probability distribution, 
is given by the following formula

[4.40]  

where f (r) represents the PDF (e.g., Eq. [4.34])

So for example, the 5th percentile is the value (point on the distribution curve) such that 95 per-
cent of the observations lie above it (see Chart 4.18).

When we speak of percentiles they are often of the percentiles of a standardized distribution, 
which is simply a distribution of mean-centered variables scaled by their standard deviation. For 
example, suppose the log price change rt is normally distributed with mean µt and variance . 
The standardized return  is defined as

s
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[4.41]  

Therefore, the distribution of  is normal with mean 0 and variance 1. An example of a standard-
ized distribution is presented above (µ = 0, σ = 1). Chart 4.18 illustrates the positions of some 
selected percentiles of the standard normal distribution.24 

Chart 4.18
Selected percentile of standard normal distribution

We can use the percentiles of the standard distribution along with Eq. [4.41] to derive the percen-
tiles of observed returns. For example, suppose that we want to find the 5th percentile of , under 
the assumption that returns are normally distributed. We know, by definition, that

[4.42a]

[4.42b]

From Eq. [4.42b], re-arranging terms yields

[4.43]

According to Eq. [4.43], there is a 5% probability that an observed return at time t is less than 
−1.65 times its standard deviation plus its mean. Notice that when , we are left with the 
standard result that is the basis for short-term horizon VaR calculation, i.e., 

[4.44]  

24 Note that the selected percentiles above (1%, 5%, and 10%) reside in the tails of the distribution. Roughly, the tails 
of a distribution are the areas where less then, say, 10% of the observations fall.
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4.5.2.3  One-tailed and two-tailed confidence intervals
Equation [4.44] is very important as the basis of VaR calculations in RiskMetrics. It should be rec-
ognized, however, that there are different ways of stating the confidence interval associated with 
the same risk tolerance. For example, since the normal distribution is symmetric, then

[4.45]

Therefore, since the entire area under the probability curve in Chart 4.18 is 100%, it follows that 

[4.46a]  

[4.46b]

Charts 4.19 and 4.20 show the relationship between a one-tailed 95% confidence interval and a 
two-tailed 90% confidence interval. Notice that the statements in Eqs. [4.46a] and [4.46b] are 
consistent with Eq. [4.45], a 5% probability that the return being less than −1.65 standard 
deviations.25

Chart 4.19
One-tailed confidence interval

25 The two statements are not equivalent in the context of formal hypothesis testing. See DeGroot (1989, chapter 8).
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Chart 4.20
Two-tailed confidence interval

Table 4.7 shows the confidence intervals that are prescribed by standard and BIS-compliant 
versions of RiskMetrics, and at which the one-tailed and two-tailed tests yield the same VaR 
figures.26

4.5.2.4   Aggregation in the normal model
An important property of the normal distribution is that the sum of normal random variables is 
itself normally distributed.27 This property is useful since portfolio returns are the weighted sum 
of individual security returns.

As previously stated (p. 49) RiskMetrics assumes that the return on a portfolio, , is the 
weighted sum of N underlying returns (see Eq. [4.12]). For practical purposes we require a model 
of returns that not only relates the underlying returns to one another but also relates the distribu-
tion of the weighted sum of the underlying returns to the portfolio return distribution. To take an 
example, consider the case when N = 3, that is, the portfolio return depends on three underlying 
returns. The portfolio return is given by 

[4.47]

26 For ease of exposition we ignore time subscripts.

27 These random variables must be drawn from a multivariate distribution.

Table 4.7
VaR statistics based on RiskMetrics and BIS/Basel requirements

Confidence interval
RiskMetrics method One-tailed Two-tailed

Standard 95%
(−1.65σ)

90%
(−/+1.65σ )

BIS/Basel Regulatory 99%
(−2.33σ)

98%
(−/+2.33σ)
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We can model each underlying return as a random walk that is similar to Eq. [4.17]. This yields

[4.48a]

[4.48b]

[4.48c]

Now, since we have three variables we must account for their movements relative to one another. 
These movements are captured by pairwise correlations. That is, we define measures that quantify 
the linear association between each pair of returns. Assuming that the εt’s are multivariate nor-
mally (MVN) distributed we have the model

[4.49] , or more succinctly, 

where parameter matrix  represents the correlation matrix of . Therefore, if we 
apply the assumptions behind Eq. [4.49] (that the sum of MVN random variables is normal) to the 
portfolio return Eq. [4.47], we know that rpt is normally distributed with mean µp,t and variance 

. The formulae for the mean and variance are

[4.50a]  

[4.50b]

where the terms  represent the covariance between returns i and j. In general, these results 
hold for ( ) underlying returns. Since the underlying returns are distributed conditionally 
multivariate normal, the portfolio return is univariate normal with a mean and variance that are 
simple functions of the underlying portfolio weights, variances and covariances.

4.5.3  The lognormal distribution

In Section 4.2.1 we claimed that if log price changes are normally distributed, then price, , con-
ditional on  is lognormally distributed. This statement implies that , given , is drawn 
from the probability density function

[4.51]

where  follows a lognormal distribution with a mean and variance given by 
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Chart 4.21 shows the probability density function for the lognormal random variable  when 
 and . 

Chart 4.21
Lognormal probability density function

Unlike the normal probability density function, the lognormal PDF has a lower bound greater than 
zero and is skewed to the right. 

4.6  RiskMetrics model of financial returns:  A modified random walk

We can now use the results of the last four sections to write down a model of how returns are gen-
erated over time. Our analysis has shown that:

• Return variances are heteroscedastic (change over time) and autocorrelated.

• Return covariances are autocorrelated and possess dynamic features.

• The assumption that returns are normally distributed is useful because of the following:

(i) only the mean and variance are required to describe the entire shape of the distribution28

(ii) the sum of multivariate normal returns is normally distributed. This fact facilitates the 
description of portfolio returns, which are the weighted sum of underlying returns. 

Given these points, we can now state the assumptions underlying the RiskMetrics variance/covari-
ance methodology. Consider a set of N securities, i = 1…, N. The RiskMetrics model assumes that 
returns are generated according to the following model

[4.54]

28 The covariances are also required when there is more than one return series.
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where  is an NxN time-dependent correlation matrix. The variance of each return,  and the 
correlation between returns, , are a function of time. The property that the distribution of 
returns is normal given a time dependent mean and correlation matrix assumes that returns follow 
a conditional normal distribution—conditional on time. Notice that in Eq. [4.54] we excluded term 

. As will be discussed in more detail in Section 5.3.1.1, the mean return represented by  is set 
to zero.

In Appendix A we propose a set of statistical tests to assess whether observed financial returns fol-
low a conditional normal distribution. In Appendix B we discuss alternative distributions that 
relax the normality assumption.

4.7  Summary

In this chapter, we presented the statistical and probability assumptions on the evolution and distri-
bution of financial returns in some simple models. This discussion served as background to the 
specification of the assumptions behind the RiskMetrics VaR methodology. 

In review, this chapter covered the following subjects. The chapter began by outlining a simple 
version of the VaR calculation. We then:

• Defined absolute price change, relative price change, log price change, and returns.

• Showed the importance of understanding the use of different price change definitions. 

• Established that RiskMetrics measures changes in portfolio value in terms of continuously-
compounded returns.

• Introduced temporal aggregation and cross-section aggregation to show the implications of 
working with relative and log returns.

• Introduced the random walk model for:29

– Single-price assets
– Fixed income instruments

• Found evidence that contradicts the assumption that returns are IID (identically and indepen-
dently) normal. In reality, continuously compounded returns are:

– Not identical over time. (The variance of the return distribution changes over time)

– Not statistically independent of each other over time. (Evidence of autocorrelation between 
return series and within a return series.)

• Explained the properties of the normal distribution, and, lastly,

• Presented the RiskMetrics model as a modified random walk that assumes that returns are 
conditionally normally distributed.

29 While the random walk model serves as the basis for many popular models of returns in finance, another class of 
models that has received considerable attention lately is based on the phenomenon of long-range dependence. 
Briefly, such models are built on the notion that observations recorded in the distant past are correlated to observa-
tions in the distant future. (See Campbell, et. al (1995) for a review of long-range dependence models.)
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In this chapter we present a methodology for forecasting the parameters of the multivariate condi-
tional normal distribution, i.e., variances and covariances of returns whose empirical properties 
were examined in Chapter 4, “Statistical and probability foundations.” The reason for forecasting 
variances and covariances of returns is to use them to forecast a portfolio’s change in value over a 
given horizon, which can run over one day to several months. 

This chapter is organized as follows:

• Section 5.1 briefly explains why RiskMetrics forecasts of variances and covariances are gen-
erated from historical data rather than derived from option prices.

• Section 5.2 describes the RiskMetrics forecasting methodology, i.e., 

– Use of the exponentially weighted moving average (EWMA) model to produce forecasts of 
variances and covariances. This includes an explanation as to why the EWMA is preferred 
to the simple moving average model.

– How to compute forecasts over longer time horizons, such as one month. 

Section 5.2 also discusses alternative, more advanced methods for forecasting variances and 
covariances.

• Section 5.3 explains two important implementation issues involving the RiskMetrics fore-
casts:  (1) the reliability of the forecasts in relation to the number of historical data points used 
to produce them, and (2) the choice of the “decay factor” used in the EWMA model.

• Section 5.4 concludes the chapter with a review of the RiskMetrics forecasting model.

Finally, practitioners often refer to the term “volatility” when speaking of movements in financial 
prices and rates. In what follows we use the term volatility to mean the standard deviation of con-
tinuously compounded financial returns. 

 

5.1  Forecasts from implied versus historical information 

 

RiskMetrics forecasts are based on historical price data, although in theory, they may be derived 
from option prices.

From a practical point of view, implied forecasts introduce a number of problems. For example, an 
implied volatility (IV) is based entirely on expectations given a particular option pricing model. 
Therefore, as noted in Kroner, Kneafsey and Claessens (1995), since most option pricing models 
assume that the standard deviation is constant, the IV becomes difficult to interpret and will not 
lead to good forecasts if the option formula used to derive it is not correctly specified. Moreover, 
IV forecasts are associated with a fixed forecast horizon. For example, the implied volatility 
derived from a 3 month USD/DEM option is exclusively for a 3 month forecast horizon. However, 
a risk manager may be interested in the VaR of this option over the next day.

If RiskMetrics were to use implied statistics, it would require observable options prices on all 
instruments that compose a portfolio. Currently, the universe of consistently observable options 
prices is not large enough to provide a complete set of implied statistics; generally only exchange-
traded options are reliable sources of prices. In particular, the number of implied correlations that 
can be derived from traded option prices is insignificant compared to the number of correlations 
required to estimate risks in portfolios consisting of many types of assets.
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Academic research has compared the forecasting ability of implied and historical volatility mod-
els. The evidence of the superior forecasting ability of historical volatility over implied volatility 
is mixed, depending on the time series considered. For example, Xu and Taylor (1995, p. 804) note 
that, “prior research concludes that volatility predictors calculated from options prices are better 
predictors of future volatility than standard deviations calculated from historical asset price data.” 
Kroner, Kneafsey and Claessens (1995, p. 9), on the other hand, note that researchers are begin-
ning to conclude that GARCH (historical based) forecasts outperform implied volatility forecasts. 
Since implied standard deviation captures market expectations and pure time series models rely 
solely on past information, these models can be combined to forecast the standard deviation of 
returns.

 

5.2  RiskMetrics forecasting methodology

 

RiskMetrics uses the exponentially weighted moving average model (EWMA) to forecast vari-
ances and covariances (volatilities and correlations) of the multivariate normal distribution. This 
approach is just as simple, yet an improvement over the traditional volatility forecasting method 
that relies on moving averages with fixed, equal weights. This latter method is referred to as the 
simple moving average (SMA) model.

 

5.2.1  Volatility estimation and forecasting

 

1

 

One way to capture the dynamic features of volatility is to use an exponential moving average of 
historical observations where the latest observations carry the highest weight in the volatility esti-
mate. This approach has two important advantages over the equally weighted model. First, volatil-
ity reacts faster to shocks in the market as recent data carry more weight than data in the distant 
past. Second, following a shock (a large return), the volatility declines exponentially as the weight 
of the shock observation falls. In contrast, the use of a simple moving average leads to relatively 
abrupt changes in the standard deviation once the shock falls out of the measurement sample, 
which, in most cases, can be several months after it occurs. 

For a given set of 

 

T

 

 returns, Table 5.1 presents the formulae used to compute the equally and expo-
nentially weighted (standard deviation) volatility.

In comparing the two estimators (equal and exponential), notice that the exponentially weighted 
moving average model depends on the parameter 

 

λ 

 

(0 < 

 

λ 

 

<1) which is often referred to as the 

 

decay factor

 

. This parameter determines the relative weights that are applied to the observations 
(returns) and the effective amount of data used in estimating volatility. Ways of estimating 

 

λ

 

 are 
discussed in detail in Section 5.3.2.

 

1

 

In this section we refer loosely to the terms estimation and forecast. The reader should note, however, that these 
terms do have distinct meanings.

 

Table 5.1

 

Volatility estimators*

Equally weighted Exponentially weighted

 

* In writing the volatility estimators we intentionally do not use time 
subscripts.

σ 1
T
--- rt r–( ) 2

t 1=

T

∑= σ = 1 λ–( ) λ t 1–
rt r–( )

2

t 1=

T

∑
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We point out that in writing the EWMA estimator in Table 5.1 we applied the approximation

[5.1]

These two expressions are equivalent in the limit, i.e., as . Moreover, for purpose of com-
parison to the equally weighted factor 1/

 

T

 

, the more appropriate version of the EWMA is 

[5.2]

rather than . Also, notice that when , Eq. [5.2] collapses to 1/

 

T

 

. 

Charts 5.1 and 5.2 highlight an important difference between equally and exponentially weighted 
volatility forecasts using as an example the GBP/DEM exchange rate in the fall of 1992. In late 
August of that year, the foreign exchange markets went into a turmoil that led a number of 
Europe’s currencies to leave the ERM and be devalued. The standard deviation estimate using an 
exponential moving average rapidly reflected this state of events, but also incorporated the decline 
in volatility over subsequent months. The simple 6-month moving average estimate of volatility 
took longer to register the shock to the market and remained higher in spite of the fact that the for-
eign exchange markets calmed down over the rest of the year. 

 

Chart 5.1 

 

DEM/GBP exchange rate
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Chart 5.2

 

Log price changes in GBP/DEM and VaR estimates (1.65

 

σ

 

)

 

This example would suggest that EWMA is more satisfactory, given that when combined with fre-
quent updates, it incorporates external shocks better than equally weighted moving averages, thus 
providing a more realistic measure of current volatility.

Although the exponentially weighted moving average estimation ranks a level above simple mov-
ing averages in terms of sophistication, it is not complex to implement. To support this point, 
Table 5.2 presents an example of the computation required to estimate equally and exponentially 
weighted moving average volatilities. Volatility estimates are based on 20 daily returns on the 
USD/DEM exchange rate. We arbitrarily choose

 

 λ

 

 = 0.94 and keep matters simple by setting the 
sample mean, , to zero. 
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Notice that the difference between the two estimated standard deviations results from the different 
weighting schemes. Whereas the equally weighted approach weights each squared return by 5%, 
the exponentially weighted scheme applies a 6% weight to the most recent squared return and 
1.9% weight to the most distant observation.

An attractive feature of the exponentially weighted estimator is that it can be written in 

 

recursive

 

 
form which, in turn, will be used as a basis for making volatility forecasts. In order to derive the 
recursive form, it is assumed that an infinite amount of data are available. For example, assuming 
again that the sample mean is zero, we can derive the period 

 

t 

 

+

 

 1 variance forecast, given data 
available at time 

 

t

 

 (one day earlier) as

[5.3]

 

The 1-day RiskMetrics volatility forecast is given by the expression

 

[5.4]

 

Table 5.2

 

Calculating equally and exponentially weighted volatility

Date

A B C D Volatility

Return
USD/DEM 

(%)

Return 
squared

(%)
Equal weight

(

 

T

 

 = 20)
Exponential weight

(

 

λ

 

 = 0.94)

Equally 
weighted,

B 

 

× 

 

C

Exponentially 
weighted,

B 

 

× 

 

D

 

28-Mar-96 0.634 0.402 0.05 0.019 0.020 0.007

29-Mar-96 0.115 0.013 0.05 0.020 0.001 0.000

1-Apr-96 -0.460 0.211 0.05 0.021 0.011 0.004

2-Apr-96 0.094 0.009 0.05 0.022 0.000 0.000

3-Apr-96 0.176 0.031 0.05 0.024 0.002 0.001

4-Apr-96 -0.088 0.008 0.05 0.025 0.000 0.000

5-Apr-96 -0.142 0.020 0.05 0.027 0.001 0.001

8-Apr-96 0.324 0.105 0.05 0.029 0.005 0.003

9-Apr-96 -0.943 0.889 0.05 0.030 0.044 0.027

10-Apr-96 -0.528 0.279 0.05 0.032 0.014 0.009

11-Apr-96 -0.107 0.011 0.05 0.034 0.001 0.000

12-Apr-96 -0.160 0.026 0.05 0.037 0.001 0.001

15-Apr-96 -0.445 0.198 0.05 0.039 0.010 0.008

16-Apr-96 0.053 0.003 0.05 0.041 0.000 0.000

17-Apr-96 0.152 0.023 0.05 0.044 0.001 0.001

18-Apr-96 -0.318 0.101 0.05 0.047 0.005 0.005

19-Apr-96 0.424 0.180 0.05 0.050 0.009 0.009

22-Apr-96 -0.708 0.501 0.05 0.053 0.025 0.027

23-Apr-96 -0.105 0.011 0.05 0.056 0.001 0.001

24-Apr-96 -0.257 0.066 0.05 0.060 0.003 0.004

Standard deviation: Equally weighted 0.393

 Exponentially weighted 0.333

σ1 t, 1 t+
2 λσ1 t, t 1–

2
1 λ–( ) r1 t,

2
+=

σ1 t, 1 t+ λσ1 t, t 1–
2

1 λ–( ) r1 t,
2

+=
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The subscript “

 

t 

 

+

 

 1|

 

t

 

” is read “the time 

 

t 

 

+

 

 1 forecast given information up to and including time 

 

t.

 

” The subscript “

 

t

 

|

 

t

 

 

 

− 

 

1” is read in a similar fashion. This notation underscores the fact that we are 
treating the variance (volatility) as time-dependent. The fact that this period’s variance forecast 
depends on last period’s variance is consistent with the observed autocorrelation in squared returns 
discussed in Section 4.3. We derive Eq. [5.3] as follows.

[5.5]

Using daily returns, Table 5.3 presents an example of how Eq. [5.3] can be used in practice to 
produce a 1-day volatility forecast on USD/DEM returns for the period March 28 through 
April 24, 1996.

The volatility forecast made on April 24 for the following day is the square root of 0.224% (the 
variance) which is 0.473%. 

 

5.2.1.1  Covariance and correlation estimation and forecasts

 

We use the EWMA model to construct covariance and correlation forecasts in the same manner as 
we did volatility forecasts except that instead of working with the square of one series, we work 
with the product of two different series. Table 5.4 presents covariance estimators based on equally 
and exponentially weighted methods.

 

Table 5.3

 

Applying the recursive exponential weighting scheme to compute volatility

 

Daily returns on USD/DEM

 

Date

A B

Date

A B

Return
USD/DEM Recursive variance

Return
USD/DEM Recursive variance

 

28-Mar-96 0.633 0.401 11-Apr-96

 

−

 

0.107 0.296

29-Mar-96 0.115 0.378 12-Apr-96

 

−

 

0.159 0.280

1-Apr-96

 

−

 

0.459 0.368 15-Apr-96

 

−

 

0.445 0.275

2-Apr-96 0.093 0.346 16-Apr-96 0.053 0.258

3-Apr-96 0.176 0.327 17-Apr-96 0.152 0.244

4-Apr-96

 

−

 

0.087 0.308 18-Apr-96

 

−

 

0.318 0.236

5-Apr-96

 

−

 

0.142 0.291 19-Apr-96 0.424 0.232

8-Apr-96 0.324 0.280 22-Apr-96

 

−

 

0.708 0.248

9-Apr-96

 

−

 

0.943 0.316 23-Apr-96

 

−

 

0.105 0.234

10-Apr-96

 

−

 

0.528 0.314 24-Apr-96

 

−

 

0.257 0.224

 

*Initial variance forecast = initial return squared. Figures following this number are obtained by applying the recursive formula.
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Analogous to the expression for a variance forecast (Eq. [5.3]), the covariance forecast can also be 
written in recursive form. For example, the 1-day covariance forecast between any two return 
series, r1,t and r2,t made at time t is

[5.6]

We can derive Eq. [5.6] as follows.

[5.7]

In order to derive correlation forecasts we apply the corresponding covariance and volatility fore-
cast. Recall that correlation is the covariance between the two return series, say, r1,t and r2,t, 
divided by the product of their standard deviations. Mathematically, the one-day RiskMetrics 
prediction of correlation is given by the expression

[5.8]

Table 5.5 presents an example of how to compute recursive covariance and correlation forecasts 
applied to the USD/DEM exchange rate and S&P 500 return series. 

Table 5.4
Covariance estimators

Equally weighted Exponentially weighted

σ12
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T
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Note that the starting points for recursion for the covariance is 0.634 × 0.005. From Table 5.5 we 
can see that the correlation prediction for the period 24-Apr-96 through 25-Apr-96 is −12.4%.

5.2.2  Multiple day forecasts

Thus far, we have presented 1-day forecasts which were defined over the period t through t + 1, 
where each t represents one business day. Risk managers, however, are often interested in forecast 
horizons greater than one-day. We now demonstrate how to construct variance (standard devia-
tion) and covariance (correlation) forecasts using the EWMA model over longer time horizons. 
Generally speaking, the T-period (i.e., over T days) forecasts of the variance and covariance are, 
respectively, 

[5.9]

and

[5.10]

Equations [5.9] and [5.10] imply that the correlation forecasts remain unchanged regardless of the 
forecast horizon. That is,

Table 5.5
Recursive covariance and correlation predictor

Date

Returns
USD/DEM

(%)

Returns 
S&P 500

(%)

Recursive 
variance

USD/DEM

Recursive 
variance
S&P 500

Recursive 
covariance
(λ = 0.94)

Recursive 
correlation
(λ = 0.94)

28-Mar-96 0.634 0.005 0.402 0.000 0.003 1.000

29-Mar-96 0.115 −0.532 0.379 0.017 −0.001 −0.011

1-Apr-96 -0.460 1.267 0.369 0.112 −0.036 −0.176

2-Apr-96 0.094 0.234 0.347 0.109 −0.032 −0.166

3-Apr-96 0.176 0.095 0.328 0.103 −0.029 −0.160

4-Apr-96 -0.088 −0.003 0.309 0.097 −0.028 −0.160

5-Apr-96 -0.142 −0.144 0.291 0.092 −0.025 −0.151

8-Apr-96 0.324 −1.643 0.280 0.249 −0.055 −0.209

9-Apr-96 -0.943 −0.319 0.317 0.240 −0.034 −0.123

10-Apr-96 -0.528 −1.362 0.315 0.337 0.011 0.035

11-Apr-96 -0.107 −0.367 0.296 0.325 0.013 0.042

12-Apr-96 -0.160 0.872 0.280 0.351 0.004 0.012

15-Apr-96 -0.445 0.904 0.275 0.379 −0.020 −0.063

16-Apr-96 0.053 0.390 0.259 0.365 −0.018 −0.059

17-Apr-96 0.152 −0.527 0.245 0.360 −0.022 −0.073

18-Apr-96 -0.318 0.311 0.236 0.344 −0.026 −0.093

19-Apr-96 0.424 0.227 0.233 0.327 −0.019 −0.069

22-Apr-96 -0.708 0.436 0.249 0.318 −0.036 −0.129

23-Apr-96 -0.105 0.568 0.235 0.319 −0.038 −0.138

24-Apr-96 -0.257 −0.217 0.224 0.302 −0.032 −0.124

σ1 t, T t+
2

Tσ1 t, 1 t+
2

   or  σ1 t, T t+ Tσ1 t, 1 t+  ==

σ12 t, T t+
2

Tσ12 t, 1 t+
2

=
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[5.11]

Notice that multiple day forecasts are simple multiples of one-day forecasts. For example, if we 
define one month to be equivalent to 25 days, then the 1-month variance and covariance forecasts 
are 25 times the respective 1-day forecasts and the 1-month correlation is the same as the one-day 
correlation.2 We now show how we arrive at Eq. [5.9] and Eq. [5.10].

Recall that RiskMetrics assumes that log prices  are generated according to the model

[5.12]

Recursively solving Eq. [5.12] and writing the model in terms of returns, we get

[5.13]

Taking the variance of Eq. [5.13] as of time t implies the following expression for the forecast 
variance

[5.14]

Similar steps can be used to find the T days-ahead covariance forecast, i.e., 

[5.15]

Now, we need to evaluate the right-hand side of Eq. [5.14] and Eq. [5.15]. To do so, we work with 
the recursive form of the EWMA model for the variance and covariance. To make matters con-
crete, consider the case where we have two (correlated) return series, r1 ,t and r2,t. In vector form3, 
let’s write the 1-day forecast of the two variances and covariance as follows:

2 In RiskMetrics, 1-day and 1-month forecasts differ because we use different decay factors when making the fore-
casts.

3 We use the “vec representation” as presented in Engle and Kroner (1995).
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[5.16]

Using the expectation operator at time t, write the forecast over S days as 

[5.17]

Evaluating the expectations of the squared returns and their cross product yields

[5.18]

That is, the variance forecasts for two consecutive periods are the same. Consequently, the 
T-period forecast is defined as 

[5.19]

so that the T-period forecast of the variance/covariance vector is 

[5.20]

This leads to the “square root of time” relationship for the standard deviation forecast
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[5.21]

Having found that volatility and covariance forecasts scale with time, a few points are worth not-
ing about Eq. [5.21]. Typically, the “square root of time rule” results from the assumption that 
variances are constant. Obviously, in the above derivation, volatilities and covariances vary with 
time.   Implicitly, what we are assuming in modeling the variances and covariances as exponen-
tially weighted moving averages is that the variance process is nonstationary. Such a model has 
been studied extensively in the academic literature (Nelson 1990, Lumsdaine, 1995) and is 
referred to as the IGARCH model.4

In practice, scaling up volatility forecasts may sometimes lead to results that do not make much 
sense. Three instances when scaling up volatility estimates prove problematic are:

• When rates/prices are mean-reverting (see Section 4.2.3)

• When boundaries limit the potential movements in rates and prices 

• When estimates of volatilities optimized to forecast changes over a particular horizon are 
used for another horizon (jumping from daily to annual forecasts, for example).

Take the simple example of the Dutch guilder to Deutsche mark exchange rate. On March 22, 
1995, the cross rate as quoted at London close of business was 1.12048 NLG/DEM. The 
RiskMetrics daily volatility estimate was 0.1648%, which meant that over the next 24 hours, the 
rate was likely to move within a 1.1186 to 1.1223 range with 90% probability (the next day’s rate 
was 1.1213 NLG/DEM).

The Netherlands and Germany have maintained bilateral 2.25% bands within the ERM so scaling 
up a daily volatility estimate can quickly lead to exchange rate estimates which are extremely 
unlikely to occur in reality. An example of this is shown by Chart 5.3: 

Chart 5.3
NLG/DEM exchange rate and volatility

4 Note that whereas we essentially arrive at a model that reflects an IGARCH (without an intercept), our motivation 
behind its derivation was more “bottom up” in the sense that we wanted to derive a model that is generally consis-
tent with observed returns while being simple to implement in practice. The formal approach to IGARCH is more 
“top down” in that a formal statistical model is written down which then maximum likelihood estimation is used to 
estimate its parameters.
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Applying the square root of time rule with caution does not apply exclusively to exchange rates 
that are constrained by political arrangements. Suppose you had been trying to forecast the S&P 
500’s potential annual volatility on April 5, 1994. The index stood at 448.3 and its previous 
declines had increased the daily volatility estimate to 1.39%. Chart 5.4 extends this daily volatility 
estimate out to the end of the first quarter of 1995 using the square root of time rule. The chart 
shows how a short term increase in daily volatility would bias an estimate of volatility over any 
other time horizon, for example, a year. 

Chart 5.4
S&P 500 returns and VaR estimates (1.65σ)

The preceding two examples underscore the importance of understanding how volatility estimates 
for horizons longer than a day are calculated. When daily volatility forecasts are scaled, nonsensi-
cal results may occur because the scale factor does not account for real-world restrictions.

5.2.3  More recent techniques 

Research in finance and econometrics has devoted significant efforts in recent years to come up 
with more formal methods to estimate standard deviations and correlations. These are often 
referred to as volatility models. The methods range from extreme value techniques (Parkinson, 
1980) and two step regression analysis (Davidian and Carroll, 1987), to more complicated nonlin-
ear modelling such as GARCH (Bollerslev, 1986), stochastic volatility (Harvey et. al, 1994) and 
applications of chaotic dynamics (LeBaron, 1994). Among academics, and increasingly among 
practitioners, GARCH-type models have gained the most attention. This is due to the evidence that 
time series realizations of returns often exhibit time-dependent volatility. This idea was first for-
malized in Engle’s (1982) ARCH (Auto Regressive Conditional Heteroscedasticity) model which 
is based on the specification of conditional densities at successive periods of time with a time-
dependent volatility process.

Of the methods just mentioned, the least computationally demanding procedures for estimating 
volatility are the extreme value and regression methods. Extreme value estimators use various 
types of data such as high, low, opening and closing prices and transaction volume. While this 
approach is known for its relative efficiency (i.e., small variance), it is subject to bias. On the other 
hand, the two step regression method treats the underlying volatility model as a regression involv-
ing the absolute value of returns on lagged values. Applications of this method to monthly volatil-
ity can be found in Schwert (1989) and Pagan and Schwert (1990). 

Since the introduction of the basic ARCH model, extensions include generalized ARCH 
(GARCH), Integrated GARCH (IGARCH), Exponential GARCH (EGARCH) and Switching 
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Regime ARCH (SWARCH), just to name a few. Numerous tests of GARCH-type models to for-
eign exchange and stock markets have demonstrated that these relatively sophisticated approaches 
can provide somewhat better estimates of volatility than simple moving averages, particularly over 
short time horizons such as a day or a week.

More recent research on modeling volatility involves Stochastic Volatility (SV) models. In this 
approach, volatility may be treated as an unobserved variable, the logarithm of which is modeled 
as a linear stochastic process, such as an autoregression. Since these models are quite new, their 
empirical properties have yet to be established. However, from a practical point of view, an 
appealing feature of the SV models is that their estimation is less daunting than their counterpart 
EGARCH models.5

In a recent study, West and Cho (1995) found that GARCH models did not significantly outper-
form the equally weighted standard deviation estimates in out-of-sample forecasts, except for very 
short time horizons. In another study on foreign exchange rates and equity returns, Heynen and 
Kat (1993) showed that while GARCH models have better predictive ability for foreign exchange, 
the advantage over a simple random walk estimator disappears when the outlook period chosen is 
more than 20 days.

We have elected to calculate the volatilities and correlations in the RiskMetrics data set using 
exponential moving averages. This choice is viewed as an optimal balance given the constraints 
under which most risk management practitioners work.

Since the GARCH models are becoming more popular among practitioners, we demonstrate the 
behavior of the daily volatility estimator by comparing its forecasts to those produced by a 
GARCH(1,1) volatility model with normal disturbances. If  represents the time t daily return, 
then the return generating process for the GARCH(1,1) volatility model is given by

[5.22]

This model is parameterized according to the results produced in Ruiz (1993). They were esti-
mated from daily return data for the British pound. The following graph shows variance forecasts 
produced by this model and the exponential estimator with the decay factor set to 0.94. The fore-
casts from the EWMA are based on the following equation:

[5.23]

5 Bayesian SV models, on the other hand, are computationally intensive. 

rt

rt σtεt          εt IID N 0 1,( )∼=

σt
2

0.0147 0.881σt 1–
2

0.0828rt 1–
2

+ +=

σt 1+ t
2

0.94σt t 1–
2

0.06rt
2

+=



90 Chapter 5.  Estimation and forecast

RiskMetrics  —Technical Document
Fourth Edition

Chart 5.5
GARCH(1,1)-normal and EWMA estimators
GBP parameters

Notice from Chart 5.5, the dynamics of the exponential model's forecasts closely mimic those pro-
duced by the GARCH(1,1) model. This should not be surprising given our findings that the expo-
nential model is similar in form to the IGARCH model.

A natural extension of univariate GARCH and Stochastic Volatility models has been to model con-
ditional covariances and correlations. With the ability to estimate more parameters of the return 
generating process comes growing computational complexity.6 Often, to make models tractable, 
restrictions are placed on either the process describing the conditional covariance matrix or the 
factors that explain covariance dynamics. Recent discussion and applications of multivariate 
GARCH models include Engle and Kroner (1995), Karolyi (1995), King, Sentena and Wadhwani 
(1994). Harvey (1993) presents work on multivariate extensions to the stochastic volatility 
models.

5.3  Estimating the parameters of the RiskMetrics model

In this section we address two important issues that arise when we estimate RiskMetrics volatili-
ties and correlations. The first issue concerns the estimation of the sample mean. In practice, when 
we make volatility and correlation forecasts we set the sample mean to zero. The second issue 
involves the estimation of the exponential decay factor which is used in volatility and correlation 
forecasts.

5.3.1  Sample size and estimation issues

Whenever we must estimate and/or forecast means, standard deviations and correlations, we 
would like to be reasonably confident in the results. Here, confidence is measured by the standard 
error of the estimate or forecast; in general, the smaller the standard error, the more confident we 
are about its value. It is important, therefore, to use the largest samples available when computing 
these statistics. We illustrate the relationship between sample size and confidence intervals next. 
For ease of exposition we use equally weighted statistics. The results presented below carry over 
to the case of exponentially weighted statistics as well.

6 With respect to the required computation of the bivariate EGARCH model, Braun, Nelson and Sunier (1991) note 
that, “ease of computation is, alas, not a feature even of the bivariate model. For, example, the FORTRAN code for 
computing the analytic derivatives … ran to forty pages.”
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5.3.1.1  The sample mean
Table 5.6 shows that the mean estimates for USD/DEM foreign exchange returns and S&P 500 
returns are −0.114 and −0.010 percent, respectively. To show the variability of the sample mean, 
Chart 5.6 presents historical estimates of the sample mean for USD/DEM exchange rate returns. 
Each estimate of the mean is based on a 74-day rolling window, that is, every day in the sample 
period we estimate a mean based on returns over the last 74 days.

Table 5.6
Mean, standard deviation and correlation calculations
USD/DEM and S&P500 returns

Date

Returns

USD/DEM S&P 500

28-Mar-96 0.634 0.005

29-Mar-96 0.115 −0.532

1-Apr-96 −0.460 1.267

2-Apr-96 0.094 0.234

3-Apr-96 0.176 0.095

4-Apr-96 −0.088 −0.003

5-Apr-96 −0.142 −0.144

8-Apr-96 0.324 −1.643

9-Apr-96 −0.943 −0.319

10-Apr-96 −0.528 −1.362

11-Apr-96 −0.107 −0.367

12-Apr-96 −0.160 0.872

15-Apr-96 −0.445 0.904

16-Apr-96 0.053 0.390

17-Apr-96 0.152 −0.527

18-Apr-96 −0.318 0.311

19-Apr-96 0.424 0.227

22-Apr-96 −0.708 0.436

23-Apr-96 −0.105 0.568

24-Apr-96 −0.257 −0.217

Mean −0.114 0.010

Standard deviation 0.393 0.688

Correlation −0.180
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Chart 5.6
USD/DEM foreign exchange

Chart 5.6 shows how the estimates of the mean of returns on USD/DEM fluctuate around zero. An 
interesting feature of the equally weighted sample mean estimator is that the mean estimate does 
not depend directly on the number of observations used to construct it. For example, recall that the 
1-day log return is defined as . Now, the sample mean of returns 
for the period t = 1,…, T is 

[5.24]  

Hence, we see that the sample mean estimator depends only on the first and last observed prices; 
all other prices drop out of the calculation.   Since this estimator does not depend on the number of 
observed prices between t = 0 and t = T but rather on the length of the sample period, neither does 
its standard error. The implication of this effect can best be demonstrated with a simple example.7

Suppose a price return has a standard deviation of 10 percent and we have 4 years’ of historical 
price data. The standard deviation of the sample mean is  percent. So, if the average 
annual return were 20 percent over the 4-year sample (which consists of over 1000 data points), a 
95 percent confidence region for the true mean would range from 10 percent to 30 percent. 

In addition, recall that the variance of a returns series, , can be written as 

. Jorion (1995) notes that with daily data the “average term  

dominates the term  by a typical factor of 700 to one. Therefore, ignoring expected 

returns is unlikely to cause a perceptible bias in the volatility estimate.”

To reduce the uncertainty and imprecision of the estimated mean, it may be more accurate to set 
the mean to some value which is consistent with financial theory. In RiskMetrics, we assume 
that the mean value of daily returns is zero. That is, standard deviation estimates are cen-

7 This example is adapted from Figlewski, (1994).
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tered around zero, rather than the sample mean. Similarly, when computing the covariance, 
deviations of returns are taken around zero rather than the sample mean.

5.3.1.2  Volatility and correlation
Volatility and correlation forecasts based on the EWMA model requires that we choose an appro-
priate value of the decay factor λ. As a practical matter, it is important to determine the effective 
number of historical observations that are used in the volatility and correlation forecasts. 

We can compute the number of effective days used by the variance (volatility) and covariance 
(correlation) forecasts. To do so, we use the metric 

[5.25]

Setting  equal to a value —the tolerance level ( )— we can solve for K, the effective 
number of days of data used by the EWMA. The formula for determining K is

[5.26]  

Equation [5.26] is derived as follows

[5.27]

which implies

[5.28]

Solving Eq. [5.28] for K we get Eq. [5.26].

Table 5.7 shows the relationship between the tolerance level, the decay factor, and the effective 
amount of data required by the EWMA.
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For example, setting a tolerance level to 1% and the decay factor to 0.97, we see the EWMA uses 
approximately 151 days of historical data to forecast future volatility/correlation. Chart 5.7 depicts 
the relationship between the tolerance level and the amount of historical data implied by the decay 
factor

Chart 5.7
Tolerance level and decay factor

Table 5.7
The number of historical observations used by the EWMA model
daily returns

Decay factor

Days of historical data at tolerance level: 

0.001% 0.01% 0.1% 1 %
0.85 71 57 43 28

0.86 76 61 46 31

0.87 83 66 50 33

0.88 90 72 54 36

0.89 99 79 59 40

0.9 109 87 66 44

0.91 122 98 73 49

0.92 138 110 83 55

0.93 159 127 95 63

0.94 186 149 112 74

0.95 224 180 135 90

0.96 282 226 169 113

0.97 378 302 227 151

0.98 570 456 342 228

0.99 1146 916 687 458
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Chart 5.8 shows the relationship between the number of days of data required by EWMA and var-
ious values of the decay factor.

Chart 5.8
Relationship between historical observations and decay factor

For a different perspective on the relationship between the number of data points used and differ-
ent values of the decay factor, consider Chart 5.9. It shows the weights for different decay factors 
over a fixed window size of T = 100 (approximately 6 months’ of data).

Chart 5.9
Exponential weights for T = 100
decay factors = 1, .99, .97, .95, .93

Note that while the decay factor of 0.93 weighs the most recent data more than the factor 0.99, 
after 40 days, the weight associated with the decay factor of 0.93 is below the weight of 0.99.   
Hence, the closer the decay factor is to 1, the less responsive it is to the most recent data.
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Now we consider the effect of sample size on volatility and correlation forecasts. Chart 5.10 pre-
sents two historical time series of 1-day volatility forecasts on the returns series in USD/DEM 
exchange rate. One volatility series was constructed with a decay factor of 0.85, the other used 
0.98. (Refer to Table 5.7 for the relationship between the decay factor and the amount of data 
used).

Chart 5.10
One-day volatility forecasts on USD/DEM returns
λ = 0.85 (black line), λ = 0.98 (gray line)

As expected, the volatility forecasts based on more historical observations are smoother than those 
that rely on much less data. 

One-day forecasts of correlation between the returns on the USD/DEM foreign exchange rate and 
S&P 500 for two different decay factors are presented in Chart 5.11.

Chart 5.11
One-day correlation forecasts for returns on USD/DEM FX rate and on S&P500
λ = 0.85 (black line), λ = 0.98 (gray line) 

Again, the time series with the higher decay factor produces more stable (though not necessarily 
more accurate) forecasts.
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5.3.2  Choosing the decay factor

In this section we explain how we determine the decay factors (λ’s) that are used to produce the 
RiskMetrics volatility and correlation forecasts. We begin by describing the general problem of 
choosing ‘optimal’  λ’s for volatilities and correlations that are consistent with their respective 
covariance matrix. We then discuss how RiskMetrics chooses its two optimal decay factors; one 
for the daily data set (λ = 0.94), and the other for the monthly data set (λ = 0.97).

RiskMetrics produces volatility and correlation forecasts on over 480 time series. This requires 
480 variance forecasts and 114,960 covariance forecasts. Since these parameters comprise a cova-
riance matrix, the optimal decay factors for each variance and covariance forecast are not indepen-
dent of one another. We explain this concept with a simple example that consists of two return 
series,  and . The covariance matrix associated with these returns is given by

[5.29]  

We write each parameter explicitly as a function of its decay factor. As we can see from Eq. [5.29], 
the covariance matrix, , is a function of 3 decay factors, ,  and . Now, , to be properly 
defined must contain certain properties. For example,  must be such that the following three con-
ditions are met:

• The variances,  and , cannot be negative

• The covariances  and  must be equal (i.e.,  is symmetric)

• The correlation between  and  has the range . (Recall the definition of cor-
relation, , .

It follows then that decay factors must be chosen such that they not only produce good forecasts of 
future variances and covariances, but that the values of these decay factors are consistent with the 
properties of the covariance matrix to which they belong.

In theory, while it is possible to choose optimal decays factors that are consistent with their respec-
tive covariance matrix, in practice this task is exceedingly complex for large covariance matrices 
(such as the kind that RiskMetrics produces that has 140,000 elements). Therefore, it becomes 
necessary to put some structure (restrictions) on the optimal λ’s.

RiskMetrics applies one optimal decay factor to the entire covariance matrix. That is, we use one 
decay factor for the daily volatility and correlation matrix and one for the monthly volatility and 
correlation matrix. This decay factor is determined from individual variance forecasts across 450 
time series (this process will be discussed in Section 5.3.2.2).

Recently, Crnkovic and Drachman (1995)8 have shown that while it is possible to construct a 
covariance matrix with different decay factors that is positive semi-definite, this matrix is subject 
to substantial bias.9

We now describe a measure applied by RiskMetrics to determine the optimal decay factor, i.e., that 
decay factor that provides superior forecast accuracy.

8 From personal communication.

9 See Section 8.3 for an explanation of positive semi-definite and its relationship to covariance matrices.
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5.3.2.1  Root mean squared error (RMSE) criterion10

The definition of the time t + 1 forecast of the variance of the return, , made one period earlier 

is simply , i.e., the expected value of the squared return one-period earlier. 

Similarly, the definition of the time t + 1 forecast of the covariance between two return series, 

 and  made one period earlier is . In general, these 

results hold for any forecast made at time t + j, . 

Now, if we define the variance forecast error as  it then follows that the 

expected value of the forecast error is zero, i.e., . Based on 

this relation a natural requirement for choosing λ is to minimize average squared errors. When 

applied to daily forecasts of variance, this leads to the (daily) root mean squared prediction error 

which is given by 

[5.30]  (variance)

where the forecast value of the variance is written explicitly as a function of λ.

In practice we find the optimal decay factor λ* by searching for the smallest RMSE over different 
values of λ. That is, we search for the decay factor that produces the best forecasts (i.e., minimizes 
the forecast measures). 

Although RiskMetrics does not assess the accuracy of covariance forecasts, similar results to those 

for the variance can be derived for covariance forecasts, i.e., the covariance forecast error is 

 such that  

and 

[5.31]  (covariance)

The measures presented above are purely statistical in nature. For risk management purposes, this 
may not be optimal since other factors come into play that determine the best forecast. For exam-
ple, the decay factor should allow enough stability in the variance and covariance forecasts so that 
these forecasts are useful for risk managers who do not update their systems on a daily basis.11

Next, we explain how we determine the two RiskMetrics optimal decay factors, one for daily and 
one for monthly forecasts.

10 See Appendix C for alternative measures to assess forecast accuracy.

11 West, Edison and Cho (1993) suggested that an interesting alternative basis for comparing forecasts is to calculate 
the utility of an investor with a particular utility function investing on the basis of different variance forecasts. We 
plan to pursue this idea from a risk management perspective in future research.
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5.3.2.2  How RiskMetrics chooses its optimal decay factor
RiskMetrics currently processes 480 time series, and associated with each series is an optimal 
decay factor that minimizes the root mean squared error of the variance forecast (i.e., Eq. [5.30]). 
We choose RMSE as the forecast error measure criterion.12 Table 5.8 presents optimal decay fac-
tors for return series in five series.

For the daily and monthly data sets we compute one optimal decay factor from the 480+ time 
series. Denote the ith optimal decay factor by  and let N (i = 1, 2,…, N) denote the number of 
time series in the RiskMetrics database. Also, let  denote the ith RMSE associated with , i.e., 

 is the minimum RMSE for the ith time series. We derive the one optimal decay factor as fol-
lows:

1. Find , the sum of all N minimal RMSE’s, ’s:

[5.32]  .

2. Define the relative error measure:

12  We have chosen this criterion because it penalizes large forecast errors more severely, and provides more useful 
results than other common accuracy statistics.

Table 5.8 
Optimal decay factors based on volatility forecasts
based on RMSE criterion 

Country Foreign exchange 5-year swaps 10-year zero prices Equity indices 1-year money market rates

Austria 0.945 — — — —

Australia 0.980 0.955 0.975 0.975 0.970

Belgium 0.945 0.935 0.935 0.965 0.850

Canada 0.960 0.965 0.960 — 0.990

Switzerland 0.955 0.835 — 0.970 0.980

Germany 0.955 0.940 0.960 0.980 0.970

Denmark 0.950 0.905 0.920 0.985 0.850

Spain 0.920 0.925 0.935 0.980 0.945

France 0.955 0.945 0.945 0.985 —

Finland 0.995 — — — 0.960

Great Britain 0.960 0.950 0.960 0.975 0.990

Hong Kong 0.980 — — — —

Ireland 0.990 — 0.925 — —

Italy 0.940 0.960 0.935 0.970 0.990

Japan 0.965 0.965 0.950 0.955 0.985

Netherlands 0.960 0.945 0.950 0.975 0.970

Norway 0.975 — — — —

New Zealand 0.975 0.980 — — —

Portugal 0.940 — — — 0.895

Sweden 0.985 — 0.980 — 0.885

Singapore 0.950 0.935 — — —

United States — 0.970 0.980 0.980 0.965

ECU — 0.950 — — —

λ̂ i
τ i λ̂ i

τ i

Π τ i

Π τ i

i 1=

N

∑=



100 Chapter 5.  Estimation and forecast

RiskMetrics  —Technical Document
Fourth Edition

[5.33]  

3. Define the weight :

[5.34]

where 

4. The optimal decay factor  is defined as

[5.35]  

That is, the optimal decay factor applied by RiskMetrics is a weighted average of individual 
optimal decay factors where the weights are a measure of individual forecast accuracy.

Applying this methodology to both daily and monthly returns we find that the decay factor 
for the daily data set is 0.94, and the decay factor for the monthly data set is 0.97.

5.4  Summary and concluding remarks

In this chapter we explained the methodology and practical issues surrounding the estimation of 
the RiskMetrics volatilities and correlations. Table 5.9 summarizes the important results about the 
RiskMetrics volatility and correlation forecasts. 

Table 5.9
Summary of RiskMetrics volatility and correlation forecasts

Forecast Expression*
Decay 
factor

# of daily returns 
used in production

Effective # of daily returns 
used in estimation†

1-day volatility 0.94 550 75

1-day correlation 0.94 550 75

1-month volatility 0.97 550 150

1-month correlation 0.97 550 150

* Note that in all calculations the sample mean of daily returns is set to zero.

† This number is a dependent of the decay factor explained in Section 5.3.1.2.
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Part II:  Statistics of Financial Market Returns

Lastly, recall from Chapter 4 that RiskMetrics assumes that returns are generated according to the 
model

[5.36]

Now, given the recursive form of the EWMA model, a more complete version of the RiskMetrics 
model for any individual time series is

[5.37]

Since Eq. [5.37] describes a process by which returns are generated, we can determine whether 
this model (evaluated at the optimal decay factor) can replicate the distinctive features of the 
observed data as presented in Chapter 4. We do so by generating a time series of daily returns from 
Eq. [5.37] for a given value of λ. A simulated time series from Eq. [5.37] with λ = 0.94 is shown in 
Chart 5.12. 

Chart 5.12
Simulated returns from RiskMetrics model

Chart 5.12 shows that the RiskMetrics model can replicate the volatility clustering feature noted in 
Chapter 4 (compare Chart 5.12 to Charts 4.6 and 4.7).
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