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This 

 

Technical Document

 

 provides a detailed description of RiskMetrics

 



 

, a set of techniques and data 
to measure market risks in portfolios of fixed income instruments, equities, foreign exchange, commod-
ities, and their derivatives issued in over 30 countries. This edition has been expanded significantly from 
the previous release issued in May 1995.

We make this methodology and the corresponding RiskMetrics

 



 

 data sets available for three reasons:

1. We are interested in promoting greater transparency of market risks. Transparency is the key to 
effective risk management.

2. Our aim has been to establish a benchmark for market risk measurement. The absence of a common 
point of reference for market risks makes it difficult to compare different approaches to and mea-
sures of market risks. Risks are comparable only when they are measured with the same yardstick.

3. We intend to provide our clients with sound advice, including advice on managing their market 
risks. We describe the RiskMetrics

 



 

 methodology as an aid to clients in understanding and eval-
uating that advice.

Both J.P. Morgan and Reuters are committed to further the development of RiskMetrics

 



 

 as a fully 
transparent set of risk measurement methods. We look forward to continued feedback on how to main-
tain the quality that has made RiskMetrics

 



 

 the benchmark for measuring market risk.

RiskMetrics

 



 

 is based on, but differs significantly from, the risk measurement methodology developed 
by J.P. Morgan for the measurement, management, and control of market risks in its trading, arbitrage, 
and own investment account activities. 

 

We remind our readers that no amount of sophisticated an-
alytics will replace experience and professional judgment in managing risks

 

. RiskMetrics

 



 

 is noth-
ing more than a high-quality tool for the professional risk manager involved in the financial markets and 
is not a guarantee of specific results.

• J.P. Morgan and Reuters have teamed up to enhance RiskMetrics

 



 

. Morgan will continue to be 
responsible for enhancing the methods outlined in this document, while Reuters will control the 
production and distribution of the RiskMetrics

 



 

 data sets.
• Expanded sections on methodology outline enhanced analytical solutions for dealing with nonlin-

ear options risks and introduce methods on how to account for non-normal distributions.
• Enclosed diskette contains many examples used in this document. It allows readers to experiment 

with our risk measurement techniques.
• All publications and daily data sets are available free of charge on J.P. Morgan’s Web page on the 
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http://www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html
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This book

 

This is the reference document for RiskMetrics

 



 

. It covers all aspects of RiskMetrics and super-
sedes all previous editions of the 

 

Technical Document

 

. It is meant to serve as a reference to the 
methodology of statistical estimation of market risk, as well as detailed documentation of the ana-
lytics that generate the data sets that are published daily on our Internet Web sites.

This document reviews

1. The conceptual framework underlying the methodologies for estimating market risks.

2. The statistics of financial market returns.

3. How to model financial instrument exposures to a variety of market risk factors.

4. The data sets of statistical measures that we estimate and distribute daily over the Internet 
and shortly, the Reuters Web.

Measurement and management of market risks continues to be as much a craft as it is a science. 
It has evolved rapidly over the last 15 years and has continued to evolve since we launched 
RiskMetrics in October 1994. Dozens of professionals at J.P. Morgan have contributed to the 
development of this market risk management technology and the latest document contains entries 
or contributions from a significant number of our market risk professionals.

We have received numerous constructive comments and criticisms from professionals at Central 
Banks and regulatory bodies in many countries, from our competitors at other financial institu-
tions, from a large number specialists in academia and last, but not least, from our clients. Without 
their feedback, help, and encouragement to pursue our strategy of open disclosure of methodology 
and free access to data, we would not have been as successful in advancing this technology as 
much as we have over the last two years.

 

What is RiskMetrics?

 

RiskMetrics is a set of tools that enable participants in the financial markets to estimate their expo-
sure to market risk under what has been called the “Value-at-Risk framework”. RiskMetrics has 
three basic components:

• A set of market risk measurement methodologies outlined in this document.

• Data sets of volatility and correlation data used in the computation of market risk.

• Software systems developed by J.P.Morgan, subsidiaries of Reuters, and third party vendors 
that implement the methodologies described herein.

With the help of this document and the associated line of products, users should be in a position 
to estimate market risks in portfolios of foreign exchange, fixed income, equity and commodity 
products.

 

J.P. Morgan and Reuters team up on RiskMetrics

 

In June 1996, J.P. Morgan signed an agreement with Reuters to cooperate on the building of a new 
and more powerful version of RiskMetrics. Since the launch of RiskMetrics in October 1994, we 
have received numerous requests to add new products, instruments, and markets to the daily vola-
tility and correlation data sets. We have also perceived the need in the market for a more flexible 
VaR data tool than the standard matrices that are currently distributed over the Internet. The new 
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partnership with Reuters, which will be based on the precept that both firms will focus on their 
respective strengths, will help us achieve these objectives.

 

Methodology

 

J.P. Morgan will continue to develop the RiskMetrics set of VaR methodologies and publish them 
in the quarterly 

 

RiskMetrics Monito

 

r and in the annual 

 

RiskMetrics—Technical Document

 

.

 

RiskMetrics data sets

 

Reuters will take over the responsibility for data sourcing as well as production and delivery of the 
risk data sets. The current RiskMetrics data sets will continue to be available on the Internet free of 
charge and will be further improved as a benchmark tool designed to broaden the understanding of 
the principles of market risk measurement. 

When J.P. Morgan first launched RiskMetrics in October 1994, the objective was to go for broad 
market coverage initially, and follow up with more granularity in terms of the markets and instru-
ments covered. This over time, would reduce the need for proxies and would provide additional 
data to measure more accurately the risk associated with non-linear instruments. 

The partnership will address these new markets and products and will also introduce a new cus-
tomizable service, which will be available over the Reuters Web service. The customizable 
RiskMetrics approach will give risk managers the ability to scale data to meet the needs of their 
individual trading profiles. Its capabilities will range from providing customized covariance matri-
ces needed to run VaR calculations, to supplying data for historical simulation and stress-testing 
scenarios.

More details on these plans will be discussed in later editions of the 

 

RiskMetrics Monitor

 

.

 

Systems

 

Both J.P. Morgan and Reuters, through its Sailfish subsidiary, have developed client-site 
RiskMetrics VaR applications. These products, together with the expanding suite of third party 
applications will continue to provide RiskMetrics implementations.

 

What is new in this fourth edition?

 

In terms of content, the Fourth Edition of the 

 

Technical Document

 

 incorporates the changes and 
refinements to the methodology that were initially outlined in the 1995–1996 editions of the 

 

RiskMetrics Monitor

 

:

•

 

Expanded framework:

 

  We have worked extensively on refining the analytical framework 
for analyzing options risk without having to perform relatively time consuming simulations 
and have outlined the basis for an improved methodology which incorporates better informa-
tion on the tails of distributions related to financial asset price returns; we’ve also developed a 
data synchronization algorithm to refine our volatility and correlation estimates for products 
which do not trade in the same time zone;

•

 

New markets:

 

  We expanded the daily data sets to include estimated volatilities and correla-
tions of additional foreign exchange, fixed income and equity markets, particularly in South 
East Asia and Latin America.

•

 

Fine-tuned methodology:

 

  We have modified the approach in a number of ways. First, we’ve 
changed our definition of price volatility which is now based on a total return concept; we’ve 
also revised some of the algorithms used in our mapping routines and are in the process of 
redefining the techniques used in estimating equity portfolio risk.
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•

 

RiskMetrics products:

 

  While we have continued to expand the list of third parties providing 
RiskMetrics products and support, this is no longer included with this document. Given the 
rapid pace of change in the availability of risk management software products, readers are 
advised to consult our Internet web site for the latest available list of products. This list, 
which now includes FourFifteen

 



 

, J.P. Morgan’s own VaR calculator and report generating 
software, continues to grow, attesting to the broad acceptance RiskMetrics has achieved.

•

 

New tools to use the RiskMetrics data sets:

 

  We have published an Excel add-in function 
which enables users to import volatilities and correlations directly into a spreadsheet. This 
tool is available from our Internet web site.

The structure of the document has changed only slightly. As before, its size warrants the following 
note:  One need not read and understand the entire document in order to benefit from RiskMetrics. 
The document is organized in parts that address subjects of particular interest to many readers.

Part I: Risk Measurement Framework

This part is for the general practitioner. It provides a practical framework on how to 
think about market risks, how to apply that thinking in practice, and how to interpret the 
results. It reviews the different approaches to risk estimation, shows how the calcula-
tions work on simple examples and discusses how the results can be used in limit man-
agement, performance evaluation, and capital allocation.

Part II: Statistics of Financial Market Returns

This part requires an understanding and interest in statistical analysis. It reviews the 
assumptions behind the statistics used to describe financial market returns and how dis-
tributions of future returns can be estimated. 

Part III: Risk Modeling of Financial Instruments

This part is required reading for implementation of a market risk measurement system. 
It reviews how positions in any asset class can be described in a standardized fashion 
(foreign exchange, interest rates, equities, and commodities). Special attention is given 
to derivatives positions. The purpose is to demystify derivatives in order to show that 
their market risks can be measured in the same fashion as their underlying.

Part IV: RiskMetrics Data Sets

This part should be of interest to users of the RiskMetrics data sets. First it describes the 
sources of all daily price and rate data. It then discusses the attributes of each volatility 
and correlation series in the RiskMetrics data sets. And last, it provides detailed format 
descriptions required to decipher the data sets that can be downloaded from public or 
commercial sources. 

Appendices

This part reviews some of the more technical issues surrounding methodology and regu-
latory requirements for market risk capital in banks and demonstrates the use of Risk-
Metrics with the example diskette provided with this document. Finally, Appendix H 
shows you how to access the RiskMetrics data sets from the Internet.
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RiskMetrics examples diskette

This diskette is located inside the back cover. It contains an Excel workbook that 
includes some of the examples shown in this document. Such examples are identified by 
the icon shown here.

 

Future plans

 

We expect to update this 

 

Technical Document

 

 annually as we adapt our market risk standards to 
further improve the techniques and data to meet the changing needs of our clients. 

RiskMetrics is a now an integral part of J.P. Morgan’s Risk Management Services group which 
provides advisory services to a wide variety of the firm’s clients. We continue to welcome any sug-
gestions to enhance the methodology and adapt it further to the needs of the market. All sugges-
tions, requests and inquiries should be directed to the authors of this publication or to your local 
RiskMetrics contacts listed on the back cover.
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This chapter explains the methodology RiskMetrics uses to calculate VaR for portfolios that 
include multiple instruments such as simple bonds, swaps, foreign exchange, equity and other 
positions.

The chapter is organized as follows:

• Section 6.1 describes how to decompose various positions into cash flows.

• Section 6.2 covers how to convert or map the actual cash flows onto the corresponding 
RiskMetrics vertices.

• Section 6.3 explains two analytical approaches to measuring VaR.

• Section 6.4 presents a number of examples to illustrate the application of the RiskMetrics 
methodology.

 

6.1  Step 1—Identifying exposures and cash flows

 

The RiskMetrics building block for describing any position is a cash flow. A cash flow is defined 
by an amount of a currency, a payment date and the credit standing of the payor. 

Once determined, these cash flows are marked-to-market. Marking-to-market a position’s cash 
flows means determining the present value of the cash flows given 

 

current

 

 market rates and 
prices. This procedure requires current market rates, including the current on-the-run yield curve 
for newly issued debt, and a zero-coupon yield curve on instruments that pay no cash flow until 
maturity.

 

1

 

 The zero coupon rate is the relevant rate for discounting cash flows received in a partic-
ular future period.

 

2

 

We now describe how to express positions in fixed income, foreign exchange, equity, and com-
modities in terms of cash flows. The general process of describing a position in terms of cash flows 
is known as mapping.

 

6.1.1  Fixed Income

 

Interest rate positions describe the distribution of cash flows over time. Practitioners have applied 
various methods to express, or map, the cash flows of interest rate positions, the most common 
three being (1) duration map, (2) principal map, and (3) cash flow map. In this book we use the 
cash flow map method, but for comparison, present the two other methods as viable alternatives.

• Duration map

The first and most common method to characterize a position’s cash flows is by its duration 
(the weighted average life of a position’s interest and principal payments). Macaulay duration 
is a measure of the weighted average maturity of an instrument’s cash flows. Modified dura-
tion is a measure of a bond’s price sensitivity to changes in interest rates. In general, duration 
provides risk managers with a simplified view of a portfolio’s market risk. Its main drawback 
is that it assumes a linear relationship between price changes and yield changes. Moreover, 

 

1

 

See 

 

The J. P. Morgan/Arthur Andersen Guide to Corporate Exposure Management

 

 (p. 54, 1994). 

 

2

 

It is often suggested that implied forward rates are required to estimate the floating rates to be paid in future peri-
ods. In this document, however, we will show why forward rates are not necessarily required.
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this approach works well when there are so-called parallel shifts in the yield curve but poorly 
when yield curves twist. Duration maps are used extensively in fixed income investment man-
agement. Many investment managers’ activities are constrained by risk limits expressed in 
terms of portfolio duration.

• Principal map

A second method, used extensively over the last two decades by commercial banks, is to 
describe a global position in terms of when principal payments occur. These “principal” maps 
form the basis for asset/liability management. ARBLs (Assets Repricing Before Liabilities) 
are used by banks to quantify interest rate risk in terms of cumulative assets maturing before 
liabilities. This method is employed most often when risks are expressed and earnings are 
accounted for on an accrual basis. The main problem with principal maps is that they assume 
that all interest payments occur at current market rates. This is often not a good assumption 
particularly when positions include fixed rate instruments with long maturities and when 
interest rates are volatile. Principal maps describe an instrument only as a function of the 
value and timing of redemption.

• Cash flow map

The third method, and the one RiskMetrics applies is known as cash flow mapping. Fixed 
income securities can be easily represented as cash flows given their standard future stream of 
payments. In practice, this is equivalent to decomposing a bond into a stream of zero-coupon 
instruments. Complications in applying this technique can arise, however, when some of these 
cash flows are uncertain, as with callable or puttable bonds. 

The following example shows how each of the mapping methodologies can be applied in practice. 
Chart 6.1 shows how a 10-year French OAT (FRF 100,000 francs nominal, 7.5% of April 2005) 
can be mapped under the approaches listed above:

• The duration map associates the market value of the instrument against the bond’s Macaulay 
duration of 6.88 years.

• The principal map allocates the market value of the bond to the 10-year maturity vertex.

• The cash flow map shows the distribution over time of the current market value of all future 
streams (coupons 

 

+ 

 

principals).

As shown in Chart 6.1, the cash flow map (present valued) treats all cash flows separately and 
does not group them together as do the duration and principal maps. Cash flow mapping is the 
preferred alternative because it treats cash flows as being distinct and separate, enabling us to 
model the risk of the fixed income position better than if the cash flows were simply repre-
sented by a grouped cash flow as in the duration and principal maps.
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Chart 6.1

 

French franc 10-year benchmark maps

 

amounts in thousands of market value

6.1.1.1  Simple bonds

 

Consider a hypothetical bond with a par value of 100, a maturity of 4 years and a coupon rate of 
5%. Assume that the bond is purchased at time 0 and that coupon payments are payed on an annual 
basis at the beginning of each year. Chart 6.2 shows the bond’s cash flows.

 

3

 

 

In general, arrows pointing upwards signify cash inflows and arrows pointing downwards repre-
sent outflows. Also, a cash flow’s magnitude is proportional to the length of the arrow; the taller 
(shorter) the arrow the greater (lower) the cash flow.

 

Chart 6.2

 

Cash flow representation of a simple bond

 

We can represent the cash flows of the simple bond in our example as cash flows from four zero-
coupon bonds with maturities of 1,2,3 and 4 years. This implies that on a risk basis, there is no dif-
ference between holding the simple bond or the corresponding four zero-coupon bonds. 

 

6.1.1.2  Floating rate notes (FRN)

 

A 

 

floating rate note (FRN)

 

 is an instrument that is based on a principal, P, that pays floating cou-
pons. A FRN’s coupon payment is defined as the product of the principal and a floating rate that is 
set some time in advance of the actual coupon payment. For example, if coupon payments are paid 
on a semiannual basis, the 6-month LIBOR rate would be used to determine the payment in 
6 month’s time. The coupon payments would adjust accordingly depending on the current 6-month 
LIBOR rate when the floating rate is reset. The principal is exchanged at both the beginning and 
end of the FRN’s life.

 

3

 

We ignore the payment for the bond. That is, we do not account for the initial (negative) cash flow at time 0.

Principal flowsDuration Cash flows
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Chart 6.3 shows the cash flows for a hypothetical FRN lasting 4 years. The floating payments are 
represented by the gray shaded arrows. The black arrows represent fixed payments. All payments 
are assumed to occur on a yearly basis.

 

Chart 6.3

 

Cash flow representation of a FRN

 

Notice that the first payment (at year 1) is known, and therefore, fixed. Also, the last payment rep-
resents the fact that the principal is known at the fourth year, but the final coupon payment is 
unknown. We now show how to evaluate the future floating payments. 

Suppose that at time t (between 0 and 1 year), a risk manager is interested in analyzing the floating 
payment that will be received in year 3. The rate that determines this value is set in the second year 
and lasts one year. Now, implied forward rates are often used to forecast floating rates. The funda-
mental arbitrage relationship between current and future rates implies that the 1-year rate, as of 
year 2 satisfies the expression

[6.1]

where 

 

r

 

i,j

 

 

 

is the 

 

i

 

-year rate set at time 

 

j

 

 and 

 

f

 

i,j

 

 is the 

 

i

 

 period forward rate set at time 

 

j

 

. So, for 
example, 

 

f

 

1,2 

 

is the 1-year rate, beginning at the second year. It follows that the cash flow implied 
by this rate occurs in year 3. Since we know at time 

 

t

 

 both 

 

r

 

2-

 

t,t

 

 (the 2-t year rate) and 

 

r

 

3-

 

t,t

 

 (the 
3-t year rate), we can solve for the implied forward rate as a function of observed rates. i.e.,

[6.2]

We can apply same technique to all other implied forward rates so that we can solve for 

 

f

 

1,1

 

, 

 

f

 

1,2

 

, 

 

f

 

1,3

 

 and determine the expected future payments. The forecast coupon payment, for example, at 
time 3 is . The present value of this payment at time 

 

t

 

, is simply . 
Substituting Eq. [6.2] into the expression for the discounted coupon payment yields,

[6.3]

Equation [6.3] shows that the expected coupon payment can be written in terms of known zero 
coupon rates. We can apply similar methods to the other coupon payments so that we can write the 
cash flows of the FRN as

[6.4]

The right-hand side of Eq. [6.4] is equal to

years
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[6.5]

Equation [6.5] collapses to the present value 

[6.6]

Chart 6.4 shows that the cash flow of the FRN from the time t perspective, is . There-
fore, we would treat the FRN’s cash flows as a cash flow from a zero coupon bond with maturity 
1-

 

t

 

 period.

 

Chart 6.4 

 

Estimated cash flows of a FRN

 

Notice that if the cash flows in Chart 6.3 were computed relative to time zero (the start of the 
FRN), rather than to time 

 

t

 

, the cash flow would be simply 

 

P at t = 0, representing the par value of 
the FRN at its start.

6.1.1.3  Simple interest-rate swaps
Investors enter into interest-rate swaps to change their exposure to interest rate uncertainty by 
exchanging interest flows. In order to understand how to identify a simple interest-rate swap’s cash 
flows, a swap should be thought of as a portfolio consisting of one fixed and one floating rate 
instrument. Specifically, the fixed leg is represented by a simple bond without an exchange of prin-
cipal. The floating leg is a FRN with the caveat that the principal is used only to determine coupon 
payments, and is not exchanged. 

Chart 6.5 shows the cash flows of an interest-rate swap that receives fixed rate and pays the float-
ing rate.

Chart 6.5
Cash flow representation of simple interest rate swap
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We compute the cash flows relative to time t, (again, between 0 and 1 year) after the start of the 
swap. The cash flows on the fixed side are simply the fixed coupon payments over the next 4 years 
which, as already explained in Section 6.1.1.1, are treated as holding four zero-coupon bonds. The 
cash flows on the floating side are derived in the exact manner as the payments for the FRN 
(except now we are short the floating payments). The present value of the cash flow map of the 
floating side of the swap is given by Eq. [6.7] 

[6.7] ,

where P is the principal of the swap. Notice the similarity between this cash flow and that given by 
Eq. [6.6] for the FRN. Hence, we can represent the cash flows on the floating side of the swap as 
being short a zero coupon bond with maturity 1-t.

6.1.1.4  Forward starting swap
A forward starting swap is an instrument where one enters into an agreement to swap interest pay-
ments at some future date. Unlike a simple swap none of the floating rates are fixed in advance. 
Chart 6.6 shows the cash flows of a forward starting swap.   

Chart 6.6 
Cash flow representation of forward starting swap

Suppose that an investor enters into a forward starting swap with 5 years to maturity at some time t 
(the trade date), and the start date of the swap, (i.e., the date when the floating rates are fixed) is 
year 2. Starting in year 3, payments are made every year until year 5. The cash flows for this 
instrument are essentially the same as a simple interest-rate swap, but now the first floating pay-
ment is unknown.

The cash flows on the fixed side are simply the cash flows discounted back to time t. On the float-
ing side, the cash flows are, again, determined by the implied forward rates. The cash flow map for 
the (short) floating payments is represented by Eq. [6.8]. 

[6.8]
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Chart 6.7 depicts this cash flow.

Chart 6.7
Cash flows of the floating payments in a forward starting swap

Notice that this cash flow map is equivalent to being short a 2-t zero coupon bond.

6.1.1.5  Forward rate agreement (FRA)
A forward rate agreement (FRA) is an interest rate contract. It locks in an interest rate, either a 
borrowing rate (buying a FRA) or a lending rate (selling a FRA) for a specific period in the future. 
FRAs are similar to futures but are over-the-counter instruments and can be customized for any 
maturity. 

A FRA is a notional contract. Therefore, there is no exchange of principal at the expiry date (i.e., 
the fixing date). In effect, FRAs allow market participants to lock in a forward rate that equals the 
implied break even rate between money market and term deposits.4 To understand how to map the 
cash flows of a FRA, let’s consider a simple, hypothetical example of a purchase of a 3 vs. 6 FRA 
at r% on a notional amount P. This is equivalent to locking in a borrowing rate for 3 months start-
ing in 3 months. The notation 3 vs. 6 thus refers to the start date of the underlying versus the end 
date of the underlying, with the start date being the delivery date of the contract. 

Chart 6.8 depicts the cash flows of this FRA. 

Chart 6.8
Cash flow representation of FRA

i

We can replicate these cash flows by going long the current 3-month rate and short the 6-month 
rate as shown in Chart 6.9. 

4 For more details on FRAs, refer to Valuing and Using FRAs (Hakim Mamoni, October, 1994, JP Morgan 
publication).
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Chart 6.9
Replicating cash flows of 3-month vs. 6-month FRA

Note that the gray arrows no longer represent floating payments. The gray and black arrows repre-
sent the cash flows associated with going short a 6-month zero coupon bond and long a 3-month 
zero coupon bond, respectively. The benefit of working with the cash flows in Chart 6.9 rather than 
in Chart 6.8, is that the latter requires information on forward rates whereas the former does not.

6.1.1.6  Interest rate future
We now consider the cash flow map of a 3-month Eurodollar future contract that expires in 
3 months’. Taking time 0 to represent the current date, we represent the future’s cash flows by an 
outflow in 3 months and an inflow in 6 months, as shown in Chart 6.10.

Chart 6.10
Cash flow representation of 3-month Eurodollar future

To be more specific, if the current USD 3-month Eurodollar deposit rate is 7.20%, a purchaser of 
this futures contract would face a cash outflow of USD 981,800 in 3 months and a cash inflow of 
USD 1,000,000 in 6 months. We can then represent these cash flows as being short the current 3-
month rate and investing this money in the current 6-month rate. Hence, the cash flows of this 
Eurodollar futures contract can be replicated by a short 3-month position and a long 6-month posi-
tion as shown in Chart 6.11.

Chart 6.11
Replicating cash flows of a Eurodollar futures contract
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6.1.2  Foreign exchange

Financial positions are described in terms of a base or “home” currency. For example, American 
institutions report risks in U.S. dollars, while German institutions use Deutsche marks. A risk 
manager’s risk profile is not independent of the currency in which risk is reported. For example, 
consider two investors. One investor is based in US dollars, the other in Italian lira. Both investors 
purchase an Italian government bond. Whereas the USD based investor is exposed to both interest 
rate and exchange rate risk (by way of the ITL/USD exchange rate), the lira based investor is 
exposed only to interest rate risk. Therefore, an important step to measure foreign exchange risk is 
to understand how cash flows are generated by foreign exchange positions.

6.1.2.1  Spot positions
Describing cash flows of spot foreign exchange positions is trivial. Graphically, up and down 
arrows represent long and short positions in foreign exchange, respectively. 

6.1.2.2  Forward foreign exchange positions
A foreign exchange (FX) forward is an agreement to exchange at a future date, an amount of one 
currency for another at a specified forward rate. Mapping a forward foreign exchange position is 
facilitated by the ability to express the forward as a function of two interest rates and a spot for-
eign exchange rate.5 For example, Chart 6.12 shows the cash flows of an FX forward that allows 
an investor to buy Deutsche marks with US dollars in 6 months’ time at a prespecified forward 
rate. 

Chart 6.12
FX forward to buy Deutsche marks with US dollars in 6 months

We can replicate these cash flows by borrowing dollars at time 0 at the 6-month interest rate 
 and immediately investing these dollars in Germany at a rate , This scenario would 

generate the cash flows which, at the 6-month mark, are identical to those of the forward contract. 
These cash flows are shown in Chart 6.13.

Chart 6.13
Replicating cash flows of an FX forward

The ability to replicate future foreign exchange cash flows with interest rate positions results from 
what is known as interest rate parity (IRP). We now demonstrate this condition. Let the spot rate, 

, of the home currency expressed in units of foreign currency, (e.g., if the home currency is the 
US dollars and the foreign currency is Deutsche marks,  is expressed in US dollars per Deutsche 

5 For simplicity, we ignore other factors such as transaction costs and possible risk premia.
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marks (USD/DEM)). The forward rate, , is the exchange rate observed at time t, which guaran-
tees a spot rate at some future time T. Under interest rate parity the following condition holds

[6.9]

It follows from IRP that the ability to convert cash flows of an FX forward into equivalent borrow-
ing and lending positions implies that holding an FX forward involves cash flows that are exposed 
to both foreign exchange and interest risk.

6.1.2.3  Currency swaps
Currency swaps are swaps for which the two legs of the swap are each denominated in a different 
currency. For example, one party might receive fixed rate Deutsche marks, the other floating rate 
US dollars. Unlike an interest-rate swap, the notional principal in a currency swap is exchanged at 
the beginning and end of the swap.6

Chart 6.14 shows the cash flows for a hypothetical currency swap with a maturity of 4 years and 
paying fixed rate Deutsche marks and floating rate US dollars on an annual basis. For complete-
ness, we present the cash flows associated with the initial exchange of principal.

Chart 6.14
Actual cash flows of currency swap

From the perspective of holding the swap at time t between 0 and year 1, the fixed leg of the swap 
has the same cash flows as the simple bond presented in Section 6.1.1.1. The cash flows of the 
floating leg are the same as that as a short position in a FRN.

6.1.3  Equities 

The cash flows of equity are simple spot positions expressed in home currency equivalents. Equity 
positions held in foreign countries are subject to foreign exchange risk in addition to the risk from 
holding equity. 

6 There are currency swaps where one or both of the notional amounts are not exchanged.
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6.1.4  Commodities

Exposures to commodities can be explained using a framework similar to that of interest rates. 
Risks arise in both the spot market (you purchase a product today and store it over time) and from 
transactions that take place in the future (e.g., physical delivery of a product in one month’s time). 

6.1.4.1  Commodity futures contract
Commodity futures contracts enable investors to trade products for future delivery with relative 
ease and also serve as a price setting and risk transferring mechanisms for commodity producers. 
These contracts provide market participants with valuable information about the term structure of 
commodities prices. 

6.1.4.2  Commodity swap
Institutions do not have to limit themselves to futures contracts when they participate in the com-
modity markets. They can enter into swaps to change their exposure to interest rates, currency, 
and/or commodity risks. A typical commodity swap entails an institution to paying (receiving) 
fixed amounts in exchange for receiving (paying) variable amounts with respect to an index (e.g., 
an average of the daily price of the nearby natural gas futures contract). 

In many respects, commodity swaps are similar to interest-rate swaps. Unlike an interest-rate swap 
the underlying instrument of a commodity swap can be of variable quality thereby making the 
terms of the transaction more complex.

6.2  Step 2—Mapping cash flows onto RiskMetrics vertices

In the last section we described cash flows generated by particular classes of instruments. Finan-
cial instruments, in general, can generate numerous cash flows, each one occurring at a unique 
time. This gives rise to an unwieldy number of combinations of cash flow dates when many instru-
ments are considered. As a result, we are faced with the impractical task of having to compute an 
intractable number of volatilities and correlations for the VaR calculation. To more easily estimate 
the risks associated with instruments’ cash flows, we need to simplify the time structure of these 
cash flows. 

The RiskMetrics method of simplifying time structure involves cash flow mapping, i.e., redistrib-
uting (mapping) the observed cash flows onto so-called RiskMetrics vertices, to produce 
RiskMetrics cash flows.

6.2.1  RiskMetrics vertices

All RiskMetrics cash flows use one or more of the 14 RiskMetrics vertices shown below (and on 
page 107).

1m 3m 6m 12m 2yr 3yr 4yr 5yr 7yr 9yr 10yr 15yr 20yr 30yr

These vertices have two important properties: 

• They are fixed and hold at any time now and in the future for all instruments, linear and non-
linear. (J.P. Morgan can occasionally redefine these vertices to keep up with market trends.) 

• RiskMetrics data sets provide volatilities and correlations for each of these vertices (and only 
for these vertices).

Mapping an actual cash flow involves splitting it between the two closest RiskMetrics vertices 
(unless the cash flow happens to coincide with a RiskMetrics vertex). For example, a cash flow 
occurring in 6 years is represented as a combination of a 5-year and a 7-year cash flow. Chart 6.15 
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shows how the actual cash flow occurring at year 6 is split into the synthetic (RiskMetrics) cash 
flows occurring at the 5- and 7-year vertices.

Chart 6.15
RiskMetrics cash flow mapping

The two fractions of the cash flow are weighted such that the following three conditions hold:

1. Market value is preserved. The total market value of the two RiskMetrics cash flows must 
be equal to the market value of the original cash flow.

2. Market risk is preserved. The market risk of the portfolio of the RiskMetrics cash flows 
must also be equal to the market risk of the original cash flow.

3. Sign is preserved. The RiskMetrics cash flows have the same sign as the original cash flow.

In the trivial case that the actual vertex and RiskMetrics vertex coincide, 100% of the actual cash 
flow is allocated to the RiskMetrics vertex.

It is important to understand that RiskMetrics cash flow mapping differs from conventional map-
ping methods in the three conditions that it stipulates. A common practice used to date throughout 
the financial industry has been to follow two standard rules when allocating cash flows between 
vertices:

1. Maintain present value. For example, the sum of the cash flows maturing in 5 and 7 years 
must be equal to the original cash flow occurring in year 6.

2. Maintain duration. The duration of the combination of 5- and 7-year cash flows must also 
be equal to the duration of the 6-year cash flow.

Cash flow maps like these are similar to a barbell type trade, where an existing position is replaced 
by a combination of two instruments distributed along the yield curve under the condition that the 
trade remains duration neutral. Barbell trades are entered into by investors who are duration-con-
strained but have a view on a shift in the yield curve. What is a perfectly defensible investment 
strategy, however, cannot be simply applied to risk estimation.

6.2.2  Computing RiskMetrics cash flows

For allocating actual cash flows to RiskMetrics vertices, RiskMetrics proposes a methodology that 
is based on the variance (σ2) of financial returns. The advantage of working with the variance is 
that it is a risk measure closely associated with one of the ways RiskMetrics computes VaR, 
namely the simple VaR method as opposed to the delta-gamma or Monte Carlo methods.
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In order to facilitate the necessary mapping, the RiskMetrics data sets provide users with volatili-
ties on, and correlations across many instruments in 33 markets. For example, in the US govern-
ment bond market, RiskMetrics data sets provide volatilities and correlations on the 2-, 3-, 4-, 5-, 
7-, 9-, 10-, 15-, 20-, and 30-year zero coupon bonds.

We now demonstrate how to convert actual cash flows to RiskMetrics cash flows, continuing with 
the example of allocating a cash flow in year 6 to the 5- and 7-year vertices (Chart 6.15). We 
denote the allocations to the 5- and 7-year vertices by α and (1-α), respectively. The procedure 
presented below is not restricted to fixed income instruments, but applies to all future cash flows.

1. Calculate the actual cash flow’s interpolated yield:

We obtain the 6-year yield, y6, from a linear interpolation of the 5- and 7-year yields pro-
vided in the RiskMetrics data sets. Using the following equation, 

[6.10]

If an actual cash flow vertex is not equidistant between the two RiskMetrics vertices, then 
the greater of the two values,  is assigned to the closer RiskMetrics vertex. 

2. Determine the actual cash flow’s present value:

From the 6-year zero yield, , we determine the present value, , of the cash flow occur-
ring at the 6-year vertex. (In general,  denotes the present value of a cash flow occurring 
in i years.)

3. Calculate the standard deviation of the price return on the actual cash flow:

We obtain the standard deviation, σ6, of the return on the 6-year zero coupon bond, by a lin-
ear interpolation of the standard deviations of the 5- and 7-year price returns, i.e., 

, respectively.

Note that are provided in the RiskMetrics data sets as the VaR statistics 
, respectively. Hence, 1.65σ6 is the interpolated VaR. 

To obtain σ6, we use the following equation: 

[6.11]

where

from Eq. [6.10]

y6 ây5 1 â–( ) y7+           0 â 1≤≤=

where y6 interpolated 6-year zero yield=

â linear weighting coefficient,  â 0.5 in this example= =

y5 5-year zero yield=

y7 7-year zero yield=

â and (1 â ) ,–

y6 P6
Pi

σ5 and σ7

σ5 and σ7
1.65σ5 and 1.65σ7

σ6 âσ5 1 â–( ) σ7+           0 â 1≤≤=

 â linear weighting coefficient =

σ5 standard deviation of the 5-year return=

σ7 standard deviation of the 7-year return=
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4. Compute the allocation, α and (1-α), from the following equation:

[6.12]

where  ρ5,7, is the correlation between the 5- and 7- year returns. (Note that  is pro-
vided in the correlation matrix in RiskMetrics data sets). 

Equation  [6.12] can be written in the quadratic form

[6.13]

where

The solution to  is given by

[6.14]  

Notice that Eq. [6.14] yields two solutions (roots). We choose the solution that satisfies the 
three conditions listed on page 118. 

5. Distribute the actual cash flow onto the RiskMetrics vertices:

Split the actual cash flow at year 6 into two components, α and (1-α), where you allocate α 
to the 5-year RiskMetrics vertex and (1-α) to the 7-year RiskMetrics vertex.

Using the steps above, we compute a RiskMetrics cash flow map from the following real-world 
data. Suppose that on July 31, 1996, the cash flow occurring in 6 years is USD 100. The 
RiskMetrics daily data sets provide the statistics shown in Table 6.1, from which we calculate the 
data shown in Table 6.2.7

7 Recall that RiskMetrics provides VaR statistics—that is, 1.65 times the standard deviation.
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To solve for α, we substitute the values in Tables 6.1 and 6.2 into Eq. [6.13] to find the following 
values:

which in Eq. [6.14], yields the solutions  and . We disqualify the first solu-
tion since (1−α) violates the sign preservation condition (page 118). 

From Step 2 on page 119, the present value of USD 100 in 6 years is USD 93.74, i.e., the 6-year 
cash flow. We allocate 49.66% (USD 46.55) of it to the 5-year vertex and 50.33% (USD 47.17) to 
the 7-year vertex. We thus obtain the RiskMetrics cash flow map shown in Chart 6.15.

The preceding example demonstrated how to map a single cash flow to RiskMetrics vertices. In 
practice portfolios often contain many cash flows, each of which has to be mapped to the 
RiskMetrics vertices. In such instances, cash flow mapping simply requires a repeated application 
of the methodology explained in this section. 

6.3  Step 3—Computing Value-at-Risk 

This section explains two analytical approaches to measuring Value-at-Risk:  simple VaR for lin-
ear instruments, and delta-gamma VaR for nonlinear instruments, where the terms “linear” and 
“nonlinear” describe the relationship of a position’s underlying returns to the position’s relative 
change in value. (For more information about simple VaR methodology, see Section 6.3.2. For 
more information about delta-gamma methodology, see Section 6.3.3.)

In the simple VaR approach, we assume that returns on securities follow a conditionally multivari-
ate normal distribution (see Chapter 4) and that the relative change in a position’s value is a linear 
function of the underlying return. Defining VaR as the 5th percentile of the distribution of a portfo-

Table 6.1
Data provided in the daily RiskMetrics data set

y5 5-year yield 6.605%

y7 7-year yield 6.745%

volatility on the 5-year bond price return 0.5770%

volatility on the 7-year bond price return 0.8095%

correlation between the 5- and 7-year bond returns 0.9975

Table 6.2
Data calculated from the daily RiskMetrics data set

y6 6-year yield
  (from Eq. [6.10], where )

6.675%

standard deviation on the 6-year bond price return 0.4202%

variance on the 6-year bond price return 
  (from Eq. [6.11])

1.765 × 10−3%

variance on the 5-year bond price return 1.223 × 10−3%

variance on the 7-year bond price return 2.406 × 10−3%

1.65σ5

1.65σ7

ρ5 7,

â 0.5=

σ6

σ6
2

σ5
2

σ7
2

a 2.14 10
6–×=

b 1.39 10
5–×–=

c 6.41 10
6–×=

α 5.999= α 0.489=
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lio’s relative changes, we compute VaR as 1.65 times the portfolio’s standard deviation, where the 
multiple 1.65 is derived from the normal distribution. This standard deviation depends on the vol-
atilities and correlations of the underlying returns and on the present value of cash flows.

In the delta-gamma approach, we continue to assume that returns on securities are normally dis-
tributed, but allow for a nonlinear relationship between the position’s value and the underlying 
returns. Specifically, we allow for a second-order or gamma effect, which implies that the distribu-
tion of the portfolio’s relative change is no longer normal. Therefore, we cannot define VaR as 
1.65 times the portfolio’s standard deviation. Instead, we compute VaR in two basic steps. First, 
we calculate the first four moments of the portfolio’s return distribution, i.e., the mean, standard 
deviation, skewness and kurtosis. Second, we find a distribution that has the same four moments 
and then calculate the fifth percentile of this distribution, from which we finally compute the VaR.

The choice of approach depends on the type of positions that are at risk, i.e., linear or non-linear 
positions, as defined above.

6.3.1  Relating changes in position values to underlying returns

This section explains the linearity and nonlinearity of instruments in the context of RiskMetrics 
methodology.

Value-at-Risk measures the market risk of a portfolio. We define a portfolio as a set of positions, 
each of which is composed of some underlying security. In order to calculate the risk of the portfo-
lio, we must be able to compute the risks of the positions that compose the portfolio. This requires 
an understanding of how a position’s value changes when the value on its underlying security 
changes. Thus, we classify positions into simple positions, which are linear, and into derivative 
positions, which can be further broken down into linear and nonlinear derivative positions. 

As an example of a simple position, the relative change in value of a USD 100 million dollar posi-
tion in DEM is a linear function of the relative change in value in the USD/DEM exchange rate 
(i.e., the return on the USD/DEM exchange rate).

The value of derivative positions depends on the value of some other security. For example, the 
value of a forward rate agreement, a linear derivative, depends on the value of some future interest 
rate. In contrast, other derivatives may have a nonlinear relationship between the relative change 
in value of the derivative position and the value of the underlying security. For example, the rela-
tive change in value of an option on the USD/FRF exchange rate is a nonlinear function of the 
return on that rate. 
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Chart 6.16 shows how the return on a position varies with the return on the underlying security. 

Chart 6.16
Linear and nonlinear payoff functions

The straight lines in Chart 6.16 signify a constant relationship between the position and underlying 
security. The black line represents a one-to-one relationship between the position value and the 
underlying security. Note that for a payoff to be linear, the movement between the position value 
and the underlying security’s value does not have to be one-to-one. For example, the change in 
value of a simple option can be expressed in terms of the “delta” (slope) of the underlying security, 
where the delta varies between −1 and +1. Chart 6.16 shows a payoff function where delta is 0.5 
(gray line).

When payoffs are nonlinear there is no longer a “straight line” relationship between the position 
value and the underlying security’s value. Chart 6.16 shows that the payoff line is curved such that 
the position value can change dramatically as the underlying security value increases. The convex-
ity of the line is quantified by the parameter “gamma”.

In summary, linear payoffs are characterized by a constant slope, delta. Their convexity, gamma, is 
always equal to zero. VaR for such instruments is calculated from the simple VaR methodology 
(Section 6.3.2). For nonlinear payoffs, delta can take on any value between −1 and +1, while 
gamma is always non-zero, accounting for the observed curvature of the payoff function. Nonlin-
ear instruments are thus treated by the delta-gamma methodology (although the same methodol-
ogy can also be used to handle linear instruments. See Section 6.3.3 on page 129).

Table 6.3 lists selected positions (instruments), their underlying returns, and the relationship 
between the two. 

Table 6.3 
Relationship between instrument and underlying price/rate

Type of position Instrument* Underlying price/rate†

Simple (linear): Bond Bond price§ 

Stock Local market index

Foreign exchange FX rate

Commodity Commodity price

IR swap Swap price

Linear derivative: Floating rate note Money market price

Position value

Underlying security



124 Chapter 6.  Market risk methodology

RiskMetrics  —Technical Document
Fourth Edition

6.3.1.1  Linear positions
Using the qualitative information in the preceding section, we now formally derive the relation-
ship between the relative change in the value of a position and an underlying return for linear 
instruments. 

We denote the relative change in value of the ith position, at time t, as . In the simple case 
where there is a linear one-to-one correspondence between the relative change in value of this 
position and some underlying return , we have .8 In general, we denote a position 
that is linearly related to an underlying return as , where δ is a scalar.

Notice that in the case of fixed income instruments, the underlying value is defined in terms of 
prices on zero equivalent bonds (Table 6.3). Alternatively, underlying returns could have been 
defined in terms of yields. For example, in the case of bonds, there is no longer a one-to-one corre-
spondence between a change in the underlying yield and the change in the price of the instrument. 
In fact, the relationship between the change in price of the bond and yield is nonlinear. Since we 
only deal with zero-coupon bonds we focus on these. Further, we work with continuous com-
pounding.

Assuming continuous compounding, the price of an N-period zero-coupon bond at time t, Pt, with 
yield yt is 

[6.15]  

A second order approximation to the relative change in Pt yields

[6.16]

Now, if we define the return rt in terms of relative yield changes, i.e., , then we 
have

[6.17]

8 Technically, this results from the fact that the derivative of the price of the security with respect to the underlying 
price is 1.

FX forward FX rate/money market price

Forward rate agreement Money market price

Currency swap Swap price/FX rate

Nonlinear derivative: Stock Option Stock price

Bond Option Bond price

FX Option FX rate

* Treated by . See the remainder of Section 6.3.

† Treated by . See the remainder of Section 6.3.

§ Note, however, the relationship between a bond price and its yield is nonlinear.

Table 6.3 (continued)
Relationship between instrument and underlying price/rate

Type of position Instrument* Underlying price/rate†
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Equation [6.17] reveals two properties:  (1) If we ignore the second term on the right-hand side we 
find that the relative price change is linearly, but not in one-to-one correspondence, related to the 
return on yield. (2) If we include the second term, then there is a nonlinear relationship between 
return, rt, and relative price change.

6.3.1.2  Nonlinear positions (options)
In options positions there is a nonlinear relationship between the change in value of the position 
and the underlying return. We explain this relationship with a simple stock option. For a given set 
of parameters denote the option’s price by  where  is the spot price on the 
underlying stock at time t,  is the option’s exercise price,  is the time to maturity of the option 
in terms of a year,  is the riskless rate of a security that matures when the option does, and  is 
the standard deviation of the log stock price change over the horizon of the option. 

In order to obtain an expression for the return on the option, , we approximate the future 
value of the option  with a second-order Taylor series expansion around the 
current values (spot rates), . This yields,

[6.18]

which can be rewritten in the more concise form

[6.19]  

Notice that dV, the change in value of the option, is in units of price P thus δ is unitless and Γ is in 
units of 1/P. Writing Eq. [6.19] in terms of relative changes, we get

[6.20]

where  measures the leverage effect of holding the option,  measures the relative change in the 
value of the option given a change in the value of the price ,  measures the relative change in 
the value of the option given a change in the value of .

As Eq. [6.20] shows, the relative change, , in the option is a nonlinear function of , the return 
on the underlying stock price, since it involves the term . 

6.3.2  Simple VaR calculation

In this section we provide the general formula to compute VaR for linear instruments. (These 
instruments include the first nine listed in Table 6.3.) The example provided below deals exclu-
sively with the VaR calculation at the 95% confidence interval using the data provided by Risk-
Metrics. 

Consider a portfolio that consists of N positions and that each of the positions consists of one cash 
flow on which we have volatility and correlation forecasts. Denote the relative change in value of 
the nth position by . We can write the change in value of the portfolio, , as

[6.21]
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where  is the total (nominal) amount invested in the nth position. For example, suppose that the 
total current market value of a portfolio is $100 and that $10 is allocated to the first position. It fol-
lows that  = $10. 

Now, suppose that the VaR forecast horizon is one day. In RiskMetrics, the VaR on a portfolio of 
simple linear instruments can be computed by 1.65 times the standard deviation of —the 
portfolio return, one day ahead.The expression of VaR is given as follows. 

[6.22]   (Value-at-Risk estimate)

where

[6.23]  

is the individual VaR vector (1xN) and

[6.24]  

is the NxN correlation matrix of the returns on the underlying cash flows.

The above computations are for portfolios whose returns can be reasonably approximated by the 
conditional normal distribution. In other words, it is assumed that the portfolio return follows a 
conditional normal distribution.

6.3.2.1  Fixed income instruments
In this section we address two important issues related to calculating the VaR on a portfolio of 
fixed income instruments. The first issue relates to what variable should be used to measure vola-
tility and correlation. In other words, should we compute volatilities and correlations on prices or 
on yields? The second issue deals with incorporating the “roll down” and “pull-to-par” effects of 
bonds into VaR calculations. 

We discussed in Section 6.3.1.1 that one may choose to model either the yield (interest rate) or the 
price of a fixed income instrument. RiskMetrics computes the price volatilities and correla-
tions on all fixed income instruments. This is done by first computing zero rates for all instru-
ments with a maturity of over one year, and then constructing prices from these series using the 
expression (continuous compounding).

[6.25]  

where yt is the current yield on the N-period zero-coupon bond.

For money market rates, i.e., instruments with a maturity of less than one-year, prices are con-
structed from the formula 

[6.26]
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Since practitioners often think of volatilities on fixed income instruments in terms of yield, we 
present the price volatility in terms of yield volatility. Starting with Eq. [6.25], we find the price 
return to be

[6.27]

Therefore, the standard deviation of price returns under continuous compounding is given by the 
expression

[6.28]

where  is the standard deviation of . What Eq. [6.28] states is that price 
return volatility is the maturity on the underlying instrument times the standard deviation of the 
absolute changes in yields.

Performing the same exercise on Eq. [6.26] we find the price return to be

[6.29]

In this case (discrete compounding) the standard deviation of price returns is 

[6.30]

where  is the standard deviation of .

We now explain how to incorporate the unique features of fixed income instruments in VaR calcu-
lations.9 Traditionally, RiskMetrics treats a cash flow as a zero coupon bond and subjects it to two 
assumptions:  (1) There is no expected change in the market value of such a bond, and (2) the vol-
atility of the bond’s market value scales up with the square root of the time horizon. In reality, the 
bond’s market value systematically increases toward its par value (the “pull to par” effect), and its 
daily volatility decreases as it moves closer to par (the “roll down” effect). The two assumptions 
imply that the cash flow is treated as a generic bond (a bond whose maturity is always the same) 
rather than as an instrument whose maturity decreases with time. While this leads to an accurate 
depiction of the risk of the future cash flow for short forecast horizons, for longer horizons, it can 
result in a significant overstatement of risk.

Suppose that as of today, a USD based investor currently holds a one-year USD money market 
deposit and is interested in computing a Value-at-Risk estimate of this instrument over a 3-month 
forecast horizon. That is, the investor would like to know the maximum loss on this deposit (at a 
95% confidence level) if he held the deposit for 3 months. To compute the risk of this position we 
compute the VaR of holding 9-month deposit with a forecast horizon 3-months. In other words, we 
are measuring the volatility on the 9-month deposit over a 3-month forecast horizon. To do this we 
use the current 9-month money market rates. This addresses the “roll down effect”. In addition, the 
expected value of holding a one-year deposit for 3 months is not zero. Instead, the mean return is 

9 This section is based on the article by Christopher C. Finger, “Accounting for the “pull to par” and “roll down” for 
RiskMetrics cash flows”, RiskMetrics Monitor, September 16, 1996.

rt Pt Pt 1–⁄( )ln N yt 1– yt–( )= =

σt Nσ yt 1– yt–( )=

σ yt 1– yt–( ) yt 1– yt–

rt Pt Pt 1–⁄( )ln=

N
1 yt 1–+

1 yt+
--------------------

 
 
 

ln=

σt Nσ
1 yt+

1 yt 1–+
--------------------

 
 
 

ln=

σ
1 yt+

1 yt 1–+
--------------------

 
 
 

ln
1 yt+

1 yt 1–+
--------------------

 
 
 

ln



128 Chapter 6.  Market risk methodology

RiskMetrics  —Technical Document
Fourth Edition

non-zero reflecting the pull-to-par phenomenon. Chart 6.17 presents a visual description of the 
situation.

Chart 6.17
VaR horizon and maturity of money market deposit

In general, the methodology to measure the VaR of a future cash flow(s) that occurs in T days over 
a forecast horizon of t days (t < T) is as follows. 

1. Use the T-t rate, , to discount the cash flow occurring in T days time. Denote the 
present value of this cash flow by 

2. Compute VaR as .

Note that in the preceding example, T = 360, t = 90,  is the 270-day rate and  is the stan-
dard deviation of the distribution of returns on the 270-day rate. 

6.3.2.2  Equity positions
The market risk of the stock, VaRt, is defined as the market value of the investment in that stock, 
Vt, multiplied by the price volatility estimate of that stock’s returns, .

[6.31]

Since RiskMetrics does not publish volatility estimates for individual stocks, equity positions are 
mapped to their respective local indices. This methodology is based upon the principles of single-
index models (the Capital Asset Pricing Model is one example) that relate the return of a stock to 
the return of a stock (market) index in order to attempt to forecast the correlation structure 
between securities. Let the return of a stock, , be defined as

[6.32]

where

As such, the returns of an asset are explained by market-specific components  and by 
stock-specific components . Similarly, the total variance of a stock is a function of the 
market- and firm-specific variances. 
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Since the firm-specific component can be diversified away by increasing the number of different 
equities that comprise a given portfolio, the market risk, VaRt, of the stock can be expressed as a 
function of the stock index

[6.33] .

Substituting Eq. [6.33] into Eq. [6.31] yields

[6.34] ,

where

.

As with individual stocks, Eq. [6.34] should also be used to calculate the VaR for positions that 
consist of issue that themselves are part of the EMBI+.

6.3.3  Delta-gamma VaR methodology (for portfolios containing options) 

In this section we describe a methodology known as delta-gamma that allows users to compute the 
Value-at-Risk of a portfolio that contains options. Specifically, we provide a methodology to incor-
porate the delta, gamma and theta of individual options in the VaR calculation. We explain this 
methodology by first showing how it applies to a single option and then to a portfolio that contains 
three options. To keep our examples simple, we assume that each option is a function of one cash 
flow. In other words, we can write the return on each option as 

[6.35]

For a complete derivation of Eq. [6.35], see Appendix D. Similarly, we can write the returns on the 
other two options as 

[6.36]  and 

Let’s begin by demonstrating the effect of incorporating gamma and theta components on the 
return distribution of the option. We do so by comparing the statistical features on the return on 
option 1, , and the return of its underlying cash flow, . Recall that RiskMetrics assumes 
that the returns on the underlying assets, , are normally distributed with mean 0 and variance 
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. Table 6.4 shows the first four moments10—the mean, variance, skewness, and kurtosis—for 
 and .

The results presented in Table 6.4 point to three interesting findings. 

• First, even though it is assumed that the return on the underlying has a zero mean return, this 
is not true for the option’s return unless both gamma and theta are zero. Also, the sign of the 
option’s mean will be determined by the relative magnitudes and signs of both gamma and 
theta and whether one is long or short the option. 

• Second, the variance of the return on the option differs from the variance of the return on the 
underlying instrument by the factor . 

• And third, depending on whether one is long or short the option determines whether the return 
on the option distribution is negatively or positively skewed. To see this, on a short option 
position,  and therefore . Consequently, the term  in the skewness expres-
sion will be negative. As an example of this point, Chart 6.18 shows the probability density 
functions for long and short options positions (along with the normal probability curve). 

10 See Section 4.5.2.1 for the definition of these moments.

Table 6.4
Statistical features of an option and its underlying return

Statistical 
parameter  Option Underlying

Return

Mean 0

Variance

Skewness 0

Kurtosis 3
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Chart 6.18
Long and short option positions
negative and positive skewness

Note that in variance and kurtosis, the sign of  is immaterial since in these expressions  is 
raised to an even power. 

Now, to determine the numerical values of the moments presented in Table 6.4 we need estimates 
of , ,  and . Estimates of the first three parameters are easily found by applying a 
Black-Scholes type valuation model. The variance, , is given in the RiskMetrics data sets. 

Having obtained the first four moments of ’s distribution, we find a distribution that has the 
same moments but whose distribution we know exactly. In other words, we match the moments of 

’s distribution to one of a set of possible distributions known as Johnson distributions. Here, 
“matching moments” simply means finding a distribution that has the same mean, standard devia-
tion, skewness and kurtosis as ’s. The name Johnson comes from the statistician Norman 
Johnson who described a process of matching a particular distribution to a given set of moments.   

Matching moments to a family of distributions requires that we specify a transformation from the 
option’s return  to a return, , that has a standard normal distribution. For example, 
Johnson (1949) suggested the general transformation

[6.37]

where f( ) is a monotonic function and , ,  and  are parameters whose values are determined 
by ’s first four moments. In addition to the normal distribution, the Johnson family of distri-
butions consists of three types of transformations.

[6.38]

[6.39]
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[6.40]

with the restriction .

To find estimates of , ,  and , we apply a modified version of Hill, Hill and Holder’s (1976) 
algorithm.11 Given these estimates we can calculate any percentile of ’s distribution given 
the corresponding standard normal percentile (e.g., −1.65). This approximate percentile is then 
used in the VaR calculation. For example, suppose that we have estimates of , ,  and  
and that they result in the following moments:  mean = 0.2, variance = 1, skewness coefficient = 
0.75 and kurtosis coefficient = 7. Note that these numbers would be derived from the formulae pre-
sented in Table 6.3. Applying the Hill et. al. algorithm we find that the selected distribution is 
“Unbounded” with parameter estimates: a = −0.582, b = 1.768, c = −0.353, and d = 1.406. 

Therefore, the percentile of ’s distribution is based on the transformation

[6.41]

Setting = −1.65, the estimated 5th percentile of ’s distribution is −1.45. That is, the 
option’s fifth percentile is increased by 0.20. In this hypothetical example, the incorporation of 
gamma and theta reduces the risk relative to holding the underlying. 

We now show that it is straightforward to compute the VaR of a portfolio of options. In particular, 
we show this for the case of a portfolio that contains three options. We begin by writing the portfo-
lio return as 

[6.42]  

where 

To compute the moments of ’s distribution we need the RiskMetrics covariance matrix, Σ, of 
the underlying returns , and the delta, gamma and theta cash flow vectors that are 
defined as follows:

[6.43] ,  , and 

We find the 5th percentile ’s distribution the same way we found the 5th percentile of ’s 
distribution, as shown previously. The only difference is that now the expressions for the four 
moments are more complicated. For example, the mean and variance of the portfolio return are 

11 These original algorithms (numbers 99 and 100) are available in their entirety on the Web at the StatLib—Griffiths 
and Hill Archive. The URL is http://lib.stat.cmu.edu/griffiths-hill/. 
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[6.44]  and 

[6.45]

where “trace” is an operator that sums the diagonal elements of a matrix.

The delta-gamma methodology described in this section extends to options that have more than 
one underlying cash flow (e.g., bond option). We have presented a simple example purposely to 
facilitate our exposition of the methodology. See, Appendix D for an assessment of the 
methodology.

Finally, the methodologies presented in Section 6.3 do not require simulation. All that is necessary 
for computing VaR is a covariance matrix, financial parameters (such as delta, gamma and theta) 
and position values. In the next chapter we present a methodology known as structured Monte 
Carlo that computes VaR by first simulating future paths of financial prices and/or rates.

µp t, 0.5 trace Γ̃Σ[ ] θ i
˜

i 1=

3
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σp t,
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6.4  Examples

In this section we present nine examples of VaR calculations for the various instruments discussed 
in this chapter. Note that the diskette symbol placed to the left of each example means that the 
example appears on the enclosed diskette at the back of the book.

Ex. 6.1 Government bond mapping of a single cash flow
Suppose that on March 27, 1995, an investor owns FRF 100,000 of the French OAT benchmark 
7.5% maturing in April 2005. This bond pays coupon flows of FRF 7,500 each over the next 10 
years and returns the principal investment at maturity. One of these flows occurs in 6.08 years, 
between the standard vertices of 5 and 7 years (for which volatilities and correlations are avail-
able). 

All the data required to compute the cash flow map is readily available in the RiskMetrics data sets 
except for the price volatility (1.65σ6.08) of the original cash flow’s present value. This must be 
interpolated from the price volatilities already determined for the RiskMetrics vertices. 

Applying the three conditions on page 118 and using Eqs. [6.10]–[6.14] with the RiskMetrics data 
in Table 6.5, we solve for the allocation α (and (1-α)), and obtain the values  α = 4.30 and 
α = 0.4073. Given the constraint that both of the allocated cash flows must have the same sign as 
the original cash flow, we reject the first solution, which would lead to a short position in the sec-
ond proxy cash flow. As a result, our original cash flow of FRF 7,500, whose present value is FRF 
4,774, must be mapped as a combination of a 5-year maturity cash flow of FRF 1,944 (40.73% of 
the original cash flow’s PV) and a 7-year maturity cash flow of FRF 2,829 (59.27% of the original 
cash flow’s PV).

The cash flow map is shown in Table 6.6. 

Table 6.5
RiskMetrics data for 27, March 1995

RiskMetrics
Vertex Yield,%

P. Vol,* 
(1.65σt) 

Yield Vol,† 
(1.65σt)

Correlation Matrix,
 ρij

5yr 7yr

5yr 7.628 0.533 1.50 1.000 0.963

7yr 7.794 0.696 1.37 0.963 1.000

*  P. Vol = price volatility, also called the VaR statistic.

†  While this data is provided in the data set, it is not used in this calculation. 

Table 6.6
RiskMetrics map of single cash flow

Step 1* Step 2*† Step 3* Step 4* Step 5*

Coupon 
Flow Term

Yield,%
(Actual)

Yield,% (y6.08) 
(Interpolated) (PV)6.08

‡
P. Vol, (1.65σt)

§

(RiskMetrics)
P. Vol, (1.65σ6.08)§

(Interpolated)
RiskMetrics 

Vertex Allocation
RiskMetrics 

Cash flow

7.628 0.533 5yr 0.4073 1,950

7,500 6.08yr 7.717 4,774 0.624

7.794 0.696 7yr 0.3927 2,824

* Step from the mapping procedure on pages 119–121. Also, data in this column is calculated from the data in Table 6.5. Note that in Step 3 the price volatility, 
1.65σ6.08, rather than the standard deviation alone, is computed.

† In this example .

‡ PV = present value.

§ P. Vol = price volatility, also called the VaR statistic.

â 0.46=
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Ex. 6.2  Government bond mapping of multiple cash flows
A full set of positions can easily be mapped in the same fashion as the single cash flow in the last 
example. 

The example below takes the instrument in Ex. 6.1, i.e., the 10-year French OAT benchmark on 
March 27, 1995, and decomposes all of the component cash flows according to the method 
described on pages 119–121, to create a detailed RiskMetrics cash flow map. Table 6.7 shows how 
the 100,000 French franc nominal position whose market value is FRF 97,400, is decomposed into 
nine representative present value cash flows. The table also shows the VaR for the cash flow at 
each RiskMetrics vertex and the diversified Value-at-Risk.

In this example, note that the first cash flow (on 25-Apr-95) occurs in less than one month’s time 
relative to March 27, but is allocated at 100% weight to the 1-month RiskMetrics vertex. The rea-
son for 100% allocation is that vertices shorter than one month are not defined in the RiskMetrics 
data sets.

Table 6.7
RiskMetrics map for multiple cash flows

Money market rate volatilities are used for vertices below 2 years. Government bond zero volatili-
ties are used for 2-year and other vertices.

Bond data RiskMetrics™ vertices 1m 1y 2y 3y 4y 5y 7y 10y 15y

Yield volatility 7.00 3.16 2.10 1.74 1.63 1.50 1.37 1.36 1.29

Settlement 30-Mar Current yield 8.25 7.04 7.28 7.39 7.54 7.63 7.79 7.92 8.15

Principal 100,000 Price volatility 0.04 0.21 0.29 0.36 0.46 0.53 0.70 1.00 1.46

Price 97.4 Correlation Matrix 1m 1.00 0.75 0.53 0.48 0.45 0.42 0.33 0.33 0.33

Coupon 7.50 1y 0.75 1.00 0.88 0.81 0.78 0.74 0.61 0.63 0.58

Basis 365 2y 0.53 0.88 1.00 0.99 0.96 0.92 0.80 0.82 0.76

3y 0.48 0.81 0.99 1.00 0.98 0.95 0.85 0.87 0.81

4y 0.45 0.78 0.96 0.98 1.00 0.99 0.91 0.93 0.88

5y 0.42 0.74 0.92 0.95 0.99 1.00 0.96 0.96 0.93

7y 0.33 0.61 0.80 0.85 0.91 0.96 1.00 1.00 0.99

10y 0.33 0.63 0.82 0.87 0.93 0.96 1.00 1.00 0.99

15y 0.33 0.58 0.76 0.81 0.88 0.93 0.99 0.99 1.00

Date Flow Term Yield PV Md. Dur P.Vol

25-Apr-95 7,500 0.071 8.204 7,456 0.066 0.032 7,456

25-Apr-96 7,500 1.074 7.056 6,970 1.003 0.218 5,594 1,376

25-Apr-97 7,500 2.074 7.284 6,482 1.933 0.292 5,780 703

25-Apr-98 7,500 3.074 7.402 6,022 2.862 0.366 5,505 517

25-Apr-99 7,500 4.074 7.543 5,577 3.788 0.463 5,105 472

25-Apr-00 7,500 5.077 7.635 5,162 4.717 0.539 4,923 240

25-Apr-01 7,500 6.077 7.720 4,773 5.641 0.624 1,944 2,829

25-Apr-02 7,500 7.077 7.798 4,408 6.565 0.703 4,302 107

25-Apr-03 7,500 8.077 7.855 4,072 7.488 0.805 2,589 1,483

25-Apr-04 7,500 9.079 7.895 3,762 8.415 0.905 1,131 2,631

25-Apr-05 107,500 10.079 7.919 49,863 9.340 1.004 49,019 844

RiskMetrics™ vertices 1m 1y 2y 3y 4y 5y 7y 10y 15y

Total Vertex Mapping 7,456 5,594 7,156 6,207 5,622 7,339 11,091 53,239 844

RiskMetrics™ Vertex VaR 3 12 20 22 26 39 77 530 12

Diversified Value at Risk 727 FRF over the next 24 hours

% of market value 0.7%



136 Chapter 6.  Market risk methodology

RiskMetrics  —Technical Document
Fourth Edition

Ex. 6.3 Forward rate agreement cash flow mapping and VaR 
A forward rate agreement is an interest-rate contract. It locks in an interest rate, either a borrowing 
rate (buying a FRA) or a lending rate (selling a FRA) for a specific period in the future. FRAs are 
similar to futures, but are over-the-counter instruments and can be customized for any maturity.

Because a FRA is a notional contract, there is no exchange of principal at the expiry date (i.e., the 
fixing date). If the rate is higher at settlement than the FRA rate agreed by the counterparties when 
they traded, then the seller of a FRA agrees to pay the buyer the present value of the interest rate 
differential applied to the nominal amount agreed upon at the time of the trade. The interest rate 
differential is between the FRA rate and the observed fixing rate for the period. In most cases this 
is the LIBOR rate for any given currency.

The general FRA pricing equation is given by

[6.46]

where

In effect, FRAs allow market participants to lock in a forward rate that equals the implied break-
even rate between money market term deposits. 

Given that a FRA is a linear combination of money market rates, it is simple to express its degree 
of risk as a function of the combination of these rates. 

Suppose that on January 6, 1995 you sold a 6x12 FRA on a notional 1 million French francs at 
7.24%. This is equivalent to locking in an investment rate for 6 months starting in 6 months’ time. 
The rate of 7.24% is calculated by combining the 6- and 12-month money market rates using the 
general pricing equation, Eq. [6.46], which can be rewritten as follows to reflect the no-arbitrage 
condition:

[6.47]

where

This FRA transaction is equivalent to borrowing FRF 1 million for 6 months on a discount basis 
(i.e., total liability of FRF 1 million in 6 months’ time) and investing the proceeds (FRF 969,121) 
for 12 months. This combination can be mapped easily into the RiskMetrics vertices as shown in 
Table 6.8. The current present value of these two positions is shown in column (6). The Value-at-
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 Y6m Y12m, 6- and 12-month French franc yields, respectively=

Y6m Y12m, 6 x 12 FRA rate=
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Example 6.3 (continued)

Risk of each leg of the FRA over a 1-month horizon period, shown in column (9), is obtained by 
multiplying the absolute present value of the position by the monthly price volatility of the equiv-
alent maturity deposit. The portfolio VaR is obtained by applying the 6- to 12-month correlation to 
the VaR estimate from column (9).

One month into the trade, the mapping becomes somewhat more complex as the cash flows have 
now shorter maturities (the instrument is now in fact a 5x11 FRA). The 5-month cash flow must be 
mapped as a combination of 3-month and 6-month RiskMetrics vertices (Table 6.9), while the 
11-month cash flow must be split between the 6-month and 12-month vertices.

Table 6.8
Mapping a 6x12 short FRF FRA at inception

Observed data RiskMetrics data set Calculated values

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Cash flow
Term

(mths.) Yield,%

Volatilities Correlation matrix Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimateYield Price 6m 12m

−1,000,000 6 6.39 6.94 0.21 1.00 0.70 -969,121 6m −969,121 2,081

1,036,317 12 6.93 7.42 0.48 0.70 1.00 969,121 12m 969,121 4,662

Total 0 0

Portfolio VaR 3,530

Table 6.9
Mapping a 6x12 short FRF FRA held for one month

Observed data RiskMetrics data set Calculated values

Cash flow
Term

(mths.)

Volatilities Correlation matrix

Yield,%
Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimateYield Price 3m 6m 12m

6.77 0.1 1 0.81 0.67 3m −302,232 −296

−1,000,000 5 6.12 −975,302

7.91 0.19 0.81 1.00 0.68 −1,0486m −549,300

1,036,317 11 6.65 976,894

7.14 0.41 0.67 0.68 1.00 12m 853,124 3,533

Total 1,592 1,592

Portfolio VaR 2,777



138 Chapter 6.  Market risk methodology

RiskMetrics  —Technical Document
Fourth Edition

Example 6.3 (continued)

One month into the trade, the change in market value of the contract is a positive FRF 1,592. This 
is well within the range of possible gains or losses predicted (with a 95% probability) by the previ-
ous month’s Value-at-Risk estimate of FRF 3,530.

Unwinding a FRA, i.e., hedging out the interest rate risk between the FRA rate and the market 
rate, before maturity requires entering into a contract of opposite sign at dates that no longer qual-
ify as standard maturities. If you wanted to unwind the position in this example one month after 
the dealing date, you would have to ask a quote to buy a 5x11 FRA, a broken dated instrument that 
is less liquid and therefore is quoted at higher bid-offer spreads. The rates in column (1) above do 
not take this into account. They were derived by interpolating rates between standard maturities. 
Actual market quotes would have been slightly less favorable, reducing the profit on the transac-
tion. This risk is liquidity related and is not identified in the VaR calculations.
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Ex. 6.4 Structured note
The basic concepts used to estimate the market risk of simple derivatives can be extended to more 
complex instruments. Suppose that in early 1994, when the market consensus was that German 
rates were to continue to decline, you had purchased a “one year index note linked to two year 
rates”. This 1-year instrument leveraged a view that the DEM 2-year swap rate in 1-year’s time 
would be below the forward rate measured at the time the transaction was entered into.

The characteristics of the instrument are shown in Table 6.10.

While seemingly complex, this transaction is in fact little more (disregarding minor convexity 
issues) than a bond to which a leveraged long-dated FRA had been attached. As a holder of the 
note, you were long the 3-year swap rate and short the 1-year rate, with significant leverage 
attached to the difference. 

Table 6.11 shows how the leveraged note can be decomposed into the cash flows of the two under-
lying building blocks:

• The 1-year DEM 35 million bond with a 5.10% coupon.

• The forward swap (2-year swap starting in one year). The forward principal cash flows of the 
swap are equal to 20 times the notional amount of the note divided by the PVBP (price value 
of a basis point) of a 2-year instrument, or 1.86 in this case. The forward coupons are equal to 
the forward principal times the coupon rate of 5.10%.

Combining the bond and the swap creates three annual cash flows where the investor is short DEM 
340 million in the 1-year, and long DEM 19 and DEM 396 million in the 2- and 3-year maturities. 
At issue, the market value of these cash flows is equal to DEM 35 million, the instrument’s issue 
price.

Table 6.10
Structured note specification

Issuer Company A

Format Euro Medium Term Note

Issue date 9 February 94

Maturity date 9 February 95

Issue price 100%

Amount DEM 35,000,000

Coupon 5.10%

Strike 5.10%

Redemption value 100%+20*(Strike- 2-year DEM swap rate)

* Although these details are hypothetical, similar products were marketed in 1994.

Table 6.11
Actual cash flows of a structured note

Term
(years)

Bond Swap Total 
cash flowPrincipal Coupon Principal Coupon

1 35,000,000 1,785,000 −376,996,928 −340,211,928

2 19,226,843 19,226,843

3 376,996,928 19,226,843 396,223,771
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Example 6.4 (continued)

Each of the three cash flows is mapped to RiskMetrics vertices to produce the cash flow map 
shown in Table 6.12.

Using the appropriate volatilities and correlations as of February 9, 1994, the Value-at-Risk of 
such a position over a 1-month horizon was around DEM 2.15 million.

One month into the life of the instrument on March 9, the mapping and risk estimation could have 
been repeated using updated interest rates as well as updated RiskMetrics volatilities and correla-
tions. Table 6.13 shows the result. 

The movement in market rates led the market value of the note to fall by over DEM 4 million, 
twice the maximum amount expected to happen with a 95% probability using the previous 
month’s RiskMetrics volatilities and correlations. Why?

Table 6.12
VaR calculation of structured note
One month forecast horizon

Observed data RiskMetrics data set Calculated values

Cash flow
Term

(years) Yield,%
Price 

volatility

Correlation matrix Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimate1y 2y 3y

−340,211,928 1 5.48 0.33 1.00 0.46 0.43 −322,536,906 1y 322,536,906 1,067,597

19,226,843 2 5.15 0.46 0.46 1.00 0.95 17,389,594 2y 17,389,594 79,644

396,223,772 3 5.22 0.68 0.43 0.95 1.00 340,147,312 3y 340,147,312 2,309,600

Total 35,000,000

Portfolio VaR 2,155,108

Table 6.13
VaR calculation on structured note
One-month into life of instrument

Observed data RiskMetrics data set Calculated values

Cash flow
Term

(years) Yield,%
Price 

volatility

Correlation matrix Present 
value

RiskMetrics 
vertex

RiskMetrics 
cash flow

VaR 
estimate6m 1y 2y 3y

0.16 1.00 0.83 0.58 0.54 6m −43,218,017 68,023
−340,211,928 0.9 5.53 −975,302

0.35 0.83 1.00 0.58 0.54 960,2501y −277,979,823

19,226,843 1.9 5.53 17,399,085

0.65 0.58 0.58 0.94 1.00 2y 39,059,679 252180

19,226,843 2.9 5.68 337,230,727

1.03 0.54 0.54 0.94 1.00 3y 312,934,965 3,218,971

Total 30,976,801 −4,203,199

Portfolio VaR 3,018,143
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Example 6.4 (continued)

Chart 6.19 shows the 3-year DEM swap rate moved 45+bp from 5.22% to slightly above 5.68% 
during the month—twice the maximum amount expected with a 95% probability (4.56% × 5.22%; 
i.e., 23 basis points). This was clearly a large rate move. The RiskMetrics volatility estimate 
increased from 4.56% to 6.37% as of March 9. This reflects the rapid adjustment to recent obser-
vations resulting from the use of an exponential moving average estimation method. Correspond-
ingly the VaR of the structured note increased 44% over the period to just over DEM 3 million.

Chart 6.19
DEM 3-year swaps in Q1-94

The message in these examples is that with proper cash flow mapping, the risks in complex deriv-
atives can be easily estimated using the RiskMetrics methodology and data sets.
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Ex. 6.5 Interest-rate swap
Investors enter into swaps to change their exposure to interest rate uncertainty by exchanging 
interest flows. In order to understand how to map its cash flows, a swap should be thought of as a 
portfolio of one fixed- and one floating-rate transaction. Specifically, the fixed leg of a swap is 
mapped as if it were a bond, while the floating leg is considered to be a FRN.

Market risk estimation is straightforward if the value of each leg is considered separately. The 
fixed leg exposes an investor to interest rate variability as would a bond. Since the floating leg is 
valued as if it were a FRN, if interest rates change, then forward rates used to value the leg change 
and it will revalue to par. Once a floating payment is set, the remaining portion of the floating leg 
will revalue to par, and we need only consider interest rate exposure with respect to that set cash 
flow. The details of this will be provided in a forthcoming edition of the RiskMetrics Monitor.

Consider the following example. A company that enters into a 5-year USD interest-rate swap pays 
9.379% fixed and receives floating cash flows indexed off of 1-year USD LIBOR flat on a notional 
amount of USD 1,000,000. For simplicity, the reset/payment dates are annual. Table 6.14 presents 
the data used to estimate the market risk of this transaction.

Table 6.14
Cash flow mapping and VaR of interest-rate swap

Observed data RiskMetrics data set Calculated values

Term Zero rate

Cash flow
Price 

volatility, %

Correlation matrix
Net present 
value, USDFixed Floating 1yr 2yr 3yr 4yr 5yr

1yr 8.75 −86,247 1,000,000 0.027 1.000 0.949 0.933 0.923 0.911 913,753

2yr 9.08 −85,986 0.067 0.949 1.000 0.982 0.978 0.964 −85,986

3yr 9.24 −85,860 0.112 0.933 0.982 1.0000 0.995 0.984 85,860

4yr 9.34 −85,782 0.149 0.923 0.978 0.995 1.000 0.986 85,782

5yr 9.42 −999,629 0.190 0.911 0.964 0.984 0.986 1.000 −999,629

Total −343,505

Portfolio VaR 1,958
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Ex. 6.6 Foreign exchange forward 
Below is an example of how to calculate the market risk of buying a 1-year 153,000,000 DEM/
USD foreign exchange forward. Note that buying a DEM/USD foreign exchange forward is equiv-
alent to borrowing US dollars for 1-year (short money market position) and using them to pur-
chase Deutsche marks in one year’s time (short foreign exchange position). We take the holding 
period to be one day. Based on a 1-day volatility forecast, the foreign exchange risk, in USD, is 
$904,922 (94,004,163 × 0.963%) as shown in Table 6.15. The interest rate risk is calculated by 
multiplying the current market value of each 12-month leg (the short in USD and the long in 
DEM) times its respective interest rate volatility. Therefore, the Value-at-Risk for a 1-day holding 
period is $912,880. 

Table 6.15
VaR on foreign exchange forward

Observed data RiskMetrics data set Calculated values

Instrument Cash flow
Term

(years) Yield,%
Price 

volatility

Correlation matrix Present 
value, USD

VaR 
estimateDEM FX DEM 1y USD 1y

DEM Spot FX — 0.963 1.0000 −0.0035 −0.0042 −94,004,163 −904,922

DEM 1y 153,000,000 1 6.12 0.074 −0.0035 1.0000 0.1240 94,004,163 45,855

USD 1y −99,820,670 1 6.65 0.116 −0.0042 0.1240 1.0000 −94,004,163 −108,624

Total 94,004,163

Portfolio VaR 3,530
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Ex. 6.7 Equity 
Consider a three-asset portfolio in which an investor holds stocks ABC and XYZ (both U.S. com-
panies) as well as a basket of stocks that replicate the S & P 500 index. The market risk of this 
portfolio, VaRp, is

[6.48]

Rewriting this equation in terms of Eq. [6.48] 

[6.49]

where

yields

[6.50]

Factoring the common term and solving for the portfolio VaR results in

[6.51]

The methodology for estimating the market risk of a multi-index portfolio is similar to the process 
above and takes into account correlation among indices as well as foreign exchange rates. Since all 
positions must be described in a base or “home” currency, you need to account for foreign 
exchange risk.

VaRp V ABC 1.65σRABC
⋅( ) V XYZ 1.65σRXYZ

⋅( )+=

+ VSP500 1.65σRSP500
⋅

VaRs Vs βs 1.65σRM
⋅ ⋅=

1.65σRM
the RiskMetrics volatility estimate for the appropriate stock index,=

VaRp V ABC βABC 1.65σRSP500
⋅ ⋅( ) V XYZ βXYZ 1.65σRSP500

⋅ ⋅( )+=

+ VSP500 1.65σRSP500
⋅( )

VaRp 1.65σRSP500
V ABC βABC⋅( ) V XYZ βXYZ⋅( ) VSP500+ +[ ]=

4.832% 1 000 000 0.5( ) 1 000 000, ,( ) 1.5( ) 1 000 000, ,+ +, ,[ ]=

4.832% 3 000 000, ,( )=

USD 144 960,=
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Ex. 6.8 Commodity futures contract
Suppose on July 1, 1994 you bought a 6-month WTI future on a notional USD 18.3 million (1 mil-
lion barrels multiplied by a price of USD 18.30 per barrel). The market and RiskMetrics data for 
that date are presented in Table 6.16.

The initial Value-at-Risk for a 1-month horizon is approximately USD 1.7 million. This represents 
the maximum amount, with 95% confidence, that one can expect to lose from this transaction over 
the next 25 business days. Since the flow occurs in 6 months, the entire position is mapped to the 
6-month WTI vertex, therefore calculating the Value-at-Risk of this transaction on the trade date is 
simply

[6.52]

One month into the trade, the cash flow mapping becomes slightly more complex. Table 6.17 
shows the new VaR of this transaction. 

Table 6.16
Market data and RiskMetrics estimates as of trade date July 1, 1994

WTI future Correlation matrix

Vertex LIBOR Term Price Volatility 3m 6m

3m 5.563 0.250 10.25 1.000

6m 5.813 0.500 18.30 9.47 0.992 1.000

Table 6.17
Cash flow mapping and VaR of commodity futures contract

Term Zero rate
Cash flow 

(PV) Price volatility, %

Correlation matrix RiskMetrics 
vertex

RiskMetrics 
cash flow3m 6m

4.810 6.212 1.00 0.992 3m 13,084,859

4m 5.068 17,924,465

5.190 5.739 0.992 1.00 6m 4,839,605

Portfolio VaR 1,417,343

VaR6m Future PV of cash flow RiskMetrics volatility estimate⋅=

18 300 000, ,

1
5.813%

100
------------------ 

  0.5⋅+
----------------------------------------------- 9.47%⋅=

USD 1.7 million=
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Ex. 6.9  Delta-gamma methodology
Consider the situation where a USD (US dollar) based investor currently holds a USD 1million 
equivalent position in a French government bond that matures in 6 years and a call option on 
Deutsche marks that expires in 3 months. Since market risk is measured in terms of a portfolio’s 
return distribution, the first step to computing VaR is to write down an expression for this portfolio’s 
return, , which consists of one French government bond and one foreign exchange option. Here, 
return is defined as the one-day relative price change in the portfolio’s value. The return on the port-
folio is given by the expression

[6.53]

where ro is the return on the option, and rB is the return on the French government bond.

We now provide a more detailed expression for the returns on the bond and option. Since the cash 
flow generated by the bond does not coincide with a specific RiskMetrics vertex, we must map it to 
the two nearest RiskMetrics vertices. Suppose we map 49% of the cash flow that arrives in 6 years’ 
time to the 5-year vertex and 51 percent of the cash flow to the 7-year vertex. If we denote the re-
turns on the 5 and 7-year bonds by  and , respectively, we can write the return on the French 
government bond as

[6.54]

Writing the return on the option is more involved. We write the return on the option as a function 
of its delta, gamma and theta components. The one-day return on the option is given by the expres-
sion12

[6.55]

where 

 is the one-day return on the DEM/USD exchange rate

 is the spot position in USD/DEM

V is the price of the option, or premium.

 is the ratio of  to V. The parameter  measures the leverage from holding 
the option.

 is the “delta” of the option. Delta measures the change in the value of the option given 
a change in the underlying exchange rate.

 is the “gamma” of the option. Gamma measures the change in  given a change in 
the underlying exchange rate.

 is the “theta” of the option. Theta measures the change in the value of the option for 
a given change in the option’s time to expiry.

n is the forecast horizon over which VaR is measured. In this example n is 1 for one day.

12 We derive this expression in Appendix D.

RP

r p r o rB+=) )

r5 r7

rB 0.49r5 0.51r7+=

r 0 αδrUSD/DEM 0.5αΓ PUSD/DEMrUSD/DEM
2

V
1– θn++=)

rUSD/DEM

PUSD/DEM

α PUSD/DEM α

δ

Γ δ

θ
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Example 6.9 (continued)

We can now write the return on the portfolio as 

[6.56]

In particular, we find the first four moments of ’s distribution that correspond to the mean, vari-
ance, skewness and kurtosis (a measure of tail thickness). These moments depend only on the price 
of the option, the current market prices of the underlying securities, the option’s “greeks” , , , 
and the RiskMetrics covariance matrix, . In this example,  is the covariance matrix of returns 

,  and .

Let’s take a simple hypothetical example to describe the delta-gamma methodology. Table 6.18 pre-
sents the necessary statistics on the bond and option positions to apply delta-gamma. 

To compute VaR we require the covariance matrix 

[6.57]

which, when using the information in Table 6.18 yields

[6.58]

Also, we need the cash flows corresponding to the delta components of the portfolio,

[6.59]

the cash flows corresponding to the gamma components of the portfolio,

Table 6.18
Portfolio specification

Bond Option

 

V = USD 3.7191

Portfolio PV = USD 103.719

r p 0.49r5 0.51R7 αδrUSD/DEM 0.5αΓ PUSD/DEMr
USD/DEM

2
V

1– θn+++ +=)

rp

δ Γ θ
Σ Σ

r5 r7 rUSD/DEM

σ5 0.95%= σUSD/DEM 1%=

σ7 1%= δ 0.9032=

ρ5 7, 0.85= Γ 0.0566=

PB USD 100= θ 0.9156–=

PUSd/DEM USD 346.3=

Σ
σ6y

2 σ6y USD/DEM,
2

σ6y USD/DEM,
2 σUSD/DEM

2
=

Σ 0.009025 0.008075

0.008075 0.01000
 (in percent)=

δ̃ = 100

81.352

  Delta cash flow on bond           

Delta cash flow on FX option
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Example 6.9 (continued)

[6.60]

and, the cash flows corresponding to the theta components of the portfolio.

[6.61]

The implied moments of this portfolio’s distribution are presented in Table 6.19.

Based on the information presented above, VaR estimates of this portfolio over a one-day forecast 
horizon are presented in Table 6.20 for three confidence levels. For comparison we also present VaR 
based on the normal model and VaR that excludes the theta effect.

Table 6.19
Portfolio statistics

Moments Including theta Excluding theta

mean −0.1608 0.0854

variance 2.8927 2.8927

skewness coefficient 0.2747 0.2747

kurtosis coefficient 3.0997 3.0997

Table 6.20
Value-at-Risk estimates (USD)
one-day forecast horizon: total portfolio value is 103.719

VaR percentile Normal
Delta-gamma

(excluding theta)
Delta-gamma

(including theta)

5.0% −2.799 −2.579 −2.826

2.5% −3.325 −3.018 −3.265

1.0% −3.953 −3.523 −3.953

Γ̃= 0

1708.47

Zero gamma cash flow on bond              

Gamma cash flow for FX option             

θ̃= 0

0.2462–

Zero theta cashflow on bond              

 Theta cashflow for FX option              
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In the previous chapter, we illustrated how to combine cash flows, volatilities, and correlations 
analytically to compute the Value-at-Risk for a portfolio. We have seen that this methodology is 
applicable to linear instruments, as well as to non-linear instruments whose values can be well 
approximated by a Taylor series expansion (that is, by its “greeks”). 

In this chapter, we outline a Monte Carlo framework under which it is possible to compute VaR for 
portfolios whose instruments may not be amenable to the analytic treatment. We will see that this 
methodology produces an estimate for the entire probability distribution of portfolio values, and 
not just one risk measure.

The Monte Carlo methodology consists of three major steps:

1.

 

Scenario generation

 

—Using the volatility and correlation estimates for the underlying 
assets in our portfolio, we produce a large number of future price scenarios in accordance 
with the lognormal models described previously.

2.

 

Portfolio valuation

 

—For each scenario, we compute a portfolio value.

3.

 

Summary

 

—We report the results of the simulation, either as a portfolio distribution or as a 
particular risk measure.

We devote one section of this chapter to each of the three steps above.

To better demonstrate the methodology, we will consider throughout this section a portfolio com-
prised of two assets: a future cash flow stream of DEM 1M to be received in one year’s time and 
an at the money put option with contract size of DEM 1M and expiration date one month in the 
future. Assume the implied volatility at which the option is priced is 14%. We see that our portfo-
lio value is dependent on the USD/DEM exchange rate and the one year DEM bond price. (Techni-
cally, the value of the option also changes with USD interest rates and the implied volatility, but 
we will not consider these effects.) Our risk horizon for the example will be five days.

 

7.1  Scenario generation

 

We first recall the lognormal model which we assume for all underlying instruments. Consider a 
forecast horizon of  days. If an instrument’s price today is , and our estimate for the one day 
volatility of this instrument is , then we model the price of the instrument in  days by

[7.1]

where  is a standard normal random variable. Thus, the procedure to generate scenarios is to 
generate standard normal variates and use Eq. [7.1] to produce future prices. The procedure for the 
multivariate case is similar, with the added complication that the ’s corresponding to each 
instrument must be correlated according to our correlation estimates.

In practice, it is straightforward to generate independent normal variates; generating arbitrarily 
correlated variates is more involved, however. Suppose we wish to generate  normal variates 
with unit variance and correlations given by the x  matrix . The general idea is to generate  
independent variates, and then combine these variates is such a way to achieve the desired correla-
tions. To be more precise, the procedure is as follows:

• Decompose  using the Cholesky factorization, yielding a lower triangular matrix  such 
that . We provide details on this factorization below and in Appendix E.

t P0
σ t

Pt P0e
σ tY

=

Y

Y

n
n n Λ n

Λ A
Λ AA ′=
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• Generate an x  vector  of independent standard normal variates.

• Let . The elements of  will each have unit variance and will be correlated accord-
ing to .

To illustrate the intuition behind using the Cholesky decomposition, consider the case where we 
wish to generate two variates with correlation matrix 

[7.2]

The Cholesky factorization of  is given by

[7.3]

(It is easy to check that .) Now say that  is a x  vector containing independent stan-
dard normal random variables  and . If we let , then the elements of  are given 
by

[7.4a]  and

[7.4b]  

Clearly,  has unit variance, and since  and  are independent, the variance of  is given 
by

[7.5]

Again using the fact that  and  are independent, we see that the expected value of  is 
just , and so the correlation is as desired.

Note that it is not necessary to use the Cholesky factorization, since any matrix  which satisfies 
 will serve in the procedure above. A singular value or eigenvalue decomposition would 

yield the same results. The Cholesky approach is advantageous since the lower triangular structure 
of  means that fewer operations are necessary in the  multiplication. Further, there exist 
recursive algorithms to compute the Cholesky factorization; we provide details on this in 
Appendix E. On the other hand, the Cholesky decomposition requires a positive-definite correla-
tion matrix; large matrices obtained from the RiskMetrics data do not always have this property.

Using the procedure above to generate random variates with arbitrary correlations, we may gener-
ate scenarios of asset prices. For example, suppose we wish to model the prices of two assets  
days into the future. Let  and  indicate the prices of the assets today, let  and  
indicate the daily volatilities of the assets, and let  indicate the correlation between the two 
assets. To generate a future price scenario, we generate correlated standard normal variates  
and  as outlined above and compute the future prices by

[7.6a]  and

n 1 Z

Z AY= Z
Λ

Λ 1 ρ
ρ 1

=

Λ

A
1 0

ρ 1 ρ2
–

=

AA ′ Λ= Y 2 1
Y1 Y2 Z AY= Z

Z1 Y1=

Z2 ρY1 1 ρ2
– Y2+=

Z1 Y1 Y2 Z2

ρ2
Var Y1( ) 1 ρ2

– 
  2

Var Y2( )+ 1=

Y1 Y2 Z1Z2
ρ

A
Λ AA ′=

A AZ

t
P0

1( )
P0

2( ) σ1 σ2
ρ

Z1
Z2
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1( )
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1( )

e
σ1 tZ1=
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[7.6b]  

To generate a collection of scenarios, we simply repeat this procedure the required number of 
times.

For our example portfolio, the two underlying assets to be simulated are the USD/DEM exchange 
rate and the one year DEM bond price. Suppose that the current one year German interest rate is 
10% (meaning the present value of a one year 1M DEM notional bond is DEM 909,091) and that 
the current USD/DEM exchange rate is 0.65. We take as the daily volatilities of these two assets 

 and  and as the correlation between the two . 

To generate one thousand scenarios for values of the two underlying assets in five days, we first 
use the approach above to generate one thousand pairs of standard normal variates whose correla-
tion is . Label each pair  and . We present histograms for the results in Chart 7.1. Note 
that the distributions are essentially the same.

 

Chart 7.1

 

Frequency distributions for  and 

 

1000 trials

 

The next step is to apply Eq. [7.6a] and Eq. [7.6b]. This will create the actual scenarios for our 
assets. Thus, for each pair  and , we create future prices  and  by applying

[7.7a]  

and

[7.7b]

Of course, to express the bond price in USD (accounting for both the exchange rate and interest 
rate risk for the bond), it is necessary to multiply the bond price by the exchange rate in each sce-
nario. Charts 7.2 and 7.3 show the distributions of future prices,  and , respectively, 
obtained by one thousand simulations. Note that the distributions are no longer bell shaped, and 

Pt
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e
σ2 tZ2=
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for the bond price, the distribution shows a marked asymmetry. This is due to the transformation 
we make from normal to lognormal variates by applying Eq. [7.7a] and Eq. [7.7b].

 

Chart 7.2

 

Frequency distribution for DEM bond price

 

1000 trials

Chart 7.3

 

Frequency distribution for USD/DEM exchange rate

 

1000 trials

 

In Table 7.1, we present the first ten scenarios that we generate.
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Portfolio valuation

In the previous section, we illustrated how to generate scenarios of future prices for the underlying 
instruments in a portfolio. Here, we take up the next step, how to value the portfolio for each of 
these scenarios. We will examine three alternatives: full valuation, linear approximation, and 
higher order approximation. Each of the alternatives is parametric, that is, an approach in which 
the value of all securities in the portfolio is obtained through the values of its underlying assets, 
and differ only in their methods for valuing non-linear instruments given underlying prices.

Recall that at the current time, the present value of our cash flow is DEM 909,091, or USD 
590,909.   The value of the option is USD 10,479.

 

7.1.1  Full valuation

 

This is the most straightforward and most accurate alternative, but also the most intense computa-
tionally. We assume some type of pricing formula, in our case the Black-Scholes option pricing 
formula, with which we may value our option in each of the scenarios which we have generated. 
Say  gives the premium (in USD) associated with the option of selling one DEM given 
spot USD/DEM rate of , strike rate of , and expiration date  years into the future. (Again, this 
function will also depend on interest rates and the implied volatility, but we will not model 
changes in these variables, and so will suppress them in the notation.) 

In our example, for a scenario in which the USD/DEM rate has moved to  after five days, our 

option’s value (in USD) moves from  to 

. The results of applying this method to our scenarios are dis-

 

Table 7.1

 

Monte Carlo scenarios

 

1000 trials

 

USD/DEM
PV of cash flow 

(DEM)
PV of cash flow 

(USD)

 

0.6500 906,663 589,350

0.6540 907,898 593,742

0.6606 911,214 601,935

0.6513 908,004 591,399

0.6707 910,074 610,430

0.6444 908,478 585,460

0.6569 908,860 597,053

0.6559 906,797 594,789

0.6530 906,931 592,267

0.6625 920,768 603,348

V S K τ, ,( )
S K τ

R

1 000 000 V 0.65 0.65
1
12
------, , 

 ×, ,

1 000 000 V R 0.65 1
12
------ 5

365
---------–, , 

 ×, ,
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played in Table 7.2. Note that scenarios with moderate changes in the bond price can display sig-

nificant changes in the value of the option.

7.1.2  Linear approximation

Because utilizing the Black-Scholes formula can be intensive computationally, particularly for a 
large number of scenarios, it is often desirable to use a simple approximation to the formula. The 
simplest such approximation is to estimate changes in the option value via a linear model, which is 
commonly known as the “delta approximation.” In this case, given an initial option value  and 
an initial exchange rate , we approximate a future option value  at a future exchange rate 

 by 

[7.8]

where 

[7.9]

is the first derivative of the option price with respect to the spot exchange rate.

For our example,  is USD/DEM 0.0105 and  is USD/DEM 0.65. (To compute the price of 
our particular option contract, we multiply  by DEM 1M, the notional amount of the contract.) 
The value of  for our option is −0.4919. Table 7.2 illustrates the results of the delta approxima-
tion for valuing the option’s price. Note that for the delta approximation, it is still possible to uti-
lize the standard RiskMetrics methodology without resorting to simulations.

7.1.3  Higher order approximations

It can be seen in Table 7.2 that the delta approximation is reasonably accurate for scenarios where 
the exchange rate does not change significantly, but less so in the more extreme cases. It is possi-
ble to improve this approximation by including the “gamma effect”, which accounts for second 

Table 7.2
Monte Carlo scenarios—valuation of option
1000 trials

Value of option (USD)

USD/DEM
PV of cash flow 

(USD) Full Delta Delta/Gamma
Delta/Gamma/

Theta

0.6500 589,350 9,558 10,458 10,458 9,597

0.6540 593,742 7,752 8,524 8,644 7,783

0.6606 601,935 5,273 5,272 6,122 5,261

0.6513 591,399 8,945 9,831 9,844 8,893

0.6707 610,430 2,680 273 3,541 2,680

0.6444 585,460 12,575 13,214 13,449 12,588

0.6569 597,053 6,562 7,073 7,437 6,576

0.6559 594,789 6,950 7,565 7,832 6,971

0.6530 592,267 8,156 8,981 9,052 8,190

0.6625 603,348 4,691 4,349 5,528 4,667

V0
R0 V1

R1

V1 V0 δ P1 P–( )+=

δ ∂
∂R
------V P S τ, ,( )

P0
=

V0 R0
V0

δ
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order effects of changes in the spot rate, and the “theta effect”, which accounts for changes in the 
time to maturity of the option. The two formulas associated with these added effects are

[7.10]  and

[7.11]

where  is the length of the forecast horizon and  and  are defined by

[7.12a]  and

[7.12b]

Using the values = DEM/USD 15.14 and = USD/DEM 0.0629 per year, we value our portfolio 
for each of our scenarios. The results of these approximations are displayed in Table 7.2. A plot 
illustrating the differences between the various methods of valuation is displayed in Chart 7.4; the 
delta/gamma/theta approximation is not plotted since for the values considered, it almost perfectly 
duplicates the full valuation case. Note that even for these higher order approximations, analytical 
methods exist for computing percentiles of the portfolio distribution. See, for example, the method 
outlined in Chapter 6.

Chart 7.4
Value of put option on USD/DEM
strike = 0.65 USD/DEM; Value in USD/DEM

7.2  Summary

Finally, after generating a large number of scenarios and valuing the portfolio under each of them, 
it is necessary to make some conclusions based on the results. Clearly, one measure which we 
would like to report is the portfolio’s Value-at-Risk. This is done simply by ordering the portfolio 
return scenarios and picking out the result corresponding to the desired confidence level. 
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For example, to compute the 5% worst case loss using 1000 trials, we order the scenarios and 
choose the 50th (5% × 1000) lowest absolute return. The percentiles computed for our example 
under the various methods for portfolio valuation are reported in Table 7.3.

Thus, at the 5% confidence level and in the full valuation case, we obtain a Value-at-Risk of USD 
4,559, or about 0.75% of the current portfolio value. 

A particularly nice feature of the Monte Carlo approach is that we obtain an estimate for the entire 
distribution of portfolio returns. This allows us to compute other risk measures if we desire, and 
also to examine the shape of the distribution. Chart 7.5 illustrates the return distribution for our 
example. Note that the distribution is significantly more skewed than the distributions for the 
underlying assets (see Chart 7.5), which is a result of the non-linearity of the option position.

Chart 7.5
Distribution of portfolio returns
1000 trials

Table 7.3
Value-at-Risk for example portfolio
1000 trials

Portfolio return (USD)

Percentile, % Full Delta Delta/Gamma Delta/Gamma/Theta

1.0 (5,750) (5,949) (4,945) (5,806)

2.5 (5,079) (5,006) (4,245) (5,106)

5.0 (4,559) (4,392) (3,708) (4,569)

10.0 (3,662) (3,299) (2,825) (3,686)

25.0 (2,496) (1,808) (1,606) (2,467)

50.0 (840) (22) 50 (812)

75.0 915 1,689 1,813 951

90.0 2,801 3,215 3,666 2,805

95.0 4,311 4,331 5,165 4,304

97.5 5,509 5,317 6,350 5,489

99.0 6,652 6,224 7,489 6,628

594,469 599,621 604,772 609,923 615,074
0
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7.3  Comments

In our example, we treated the bond by assuming a lognormal process for its price. While this is 
convenient computationally, it can lead to unrealistic results since the model does not insure posi-
tive discount rates. In this case, it is possible to generate a scenario where the individual bond 
prices are realistic, but where the forward rate implied by the two simulated prices is negative.

We have examined a number of methods to rectify this problem, including decomposing yield 
curve moves into principal components. In the end, we have concluded that since regularly 
observed bond prices and volatilities make the problems above quite rare, and since the methods 
we have investigated only improve the situation slightly, it is not worth the effort to implement a 
more sophisticated method than what we have outlined in this chapter. We suggest a straight 
Monte Carlo simulation with our methodology coupled with a check for unrealistic discount or 
forward rates. Scenarios which yield these unrealistic rates should be rejected from consideration.
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