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This 

 

Technical Document

 

 provides a detailed description of RiskMetrics

 



 

, a set of techniques and data 
to measure market risks in portfolios of fixed income instruments, equities, foreign exchange, commod-
ities, and their derivatives issued in over 30 countries. This edition has been expanded significantly from 
the previous release issued in May 1995.

We make this methodology and the corresponding RiskMetrics

 



 

 data sets available for three reasons:

1. We are interested in promoting greater transparency of market risks. Transparency is the key to 
effective risk management.

2. Our aim has been to establish a benchmark for market risk measurement. The absence of a common 
point of reference for market risks makes it difficult to compare different approaches to and mea-
sures of market risks. Risks are comparable only when they are measured with the same yardstick.

3. We intend to provide our clients with sound advice, including advice on managing their market 
risks. We describe the RiskMetrics

 



 

 methodology as an aid to clients in understanding and eval-
uating that advice.

Both J.P. Morgan and Reuters are committed to further the development of RiskMetrics

 



 

 as a fully 
transparent set of risk measurement methods. We look forward to continued feedback on how to main-
tain the quality that has made RiskMetrics

 



 

 the benchmark for measuring market risk.

RiskMetrics

 



 

 is based on, but differs significantly from, the risk measurement methodology developed 
by J.P. Morgan for the measurement, management, and control of market risks in its trading, arbitrage, 
and own investment account activities. 

 

We remind our readers that no amount of sophisticated an-
alytics will replace experience and professional judgment in managing risks

 

. RiskMetrics

 



 

 is noth-
ing more than a high-quality tool for the professional risk manager involved in the financial markets and 
is not a guarantee of specific results.

• J.P. Morgan and Reuters have teamed up to enhance RiskMetrics

 



 

. Morgan will continue to be 
responsible for enhancing the methods outlined in this document, while Reuters will control the 
production and distribution of the RiskMetrics

 



 

 data sets.
• Expanded sections on methodology outline enhanced analytical solutions for dealing with nonlin-

ear options risks and introduce methods on how to account for non-normal distributions.
• Enclosed diskette contains many examples used in this document. It allows readers to experiment 

with our risk measurement techniques.
• All publications and daily data sets are available free of charge on J.P. Morgan’s Web page on the 

Internet at 

 

http://www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html

 

. This 
page is accessible directly or through third party services such as CompuServe
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, America 
Online
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, or Prodigy
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This book

 

This is the reference document for RiskMetrics

 



 

. It covers all aspects of RiskMetrics and super-
sedes all previous editions of the 

 

Technical Document

 

. It is meant to serve as a reference to the 
methodology of statistical estimation of market risk, as well as detailed documentation of the ana-
lytics that generate the data sets that are published daily on our Internet Web sites.

This document reviews

1. The conceptual framework underlying the methodologies for estimating market risks.

2. The statistics of financial market returns.

3. How to model financial instrument exposures to a variety of market risk factors.

4. The data sets of statistical measures that we estimate and distribute daily over the Internet 
and shortly, the Reuters Web.

Measurement and management of market risks continues to be as much a craft as it is a science. 
It has evolved rapidly over the last 15 years and has continued to evolve since we launched 
RiskMetrics in October 1994. Dozens of professionals at J.P. Morgan have contributed to the 
development of this market risk management technology and the latest document contains entries 
or contributions from a significant number of our market risk professionals.

We have received numerous constructive comments and criticisms from professionals at Central 
Banks and regulatory bodies in many countries, from our competitors at other financial institu-
tions, from a large number specialists in academia and last, but not least, from our clients. Without 
their feedback, help, and encouragement to pursue our strategy of open disclosure of methodology 
and free access to data, we would not have been as successful in advancing this technology as 
much as we have over the last two years.

 

What is RiskMetrics?

 

RiskMetrics is a set of tools that enable participants in the financial markets to estimate their expo-
sure to market risk under what has been called the “Value-at-Risk framework”. RiskMetrics has 
three basic components:

• A set of market risk measurement methodologies outlined in this document.

• Data sets of volatility and correlation data used in the computation of market risk.

• Software systems developed by J.P.Morgan, subsidiaries of Reuters, and third party vendors 
that implement the methodologies described herein.

With the help of this document and the associated line of products, users should be in a position 
to estimate market risks in portfolios of foreign exchange, fixed income, equity and commodity 
products.

 

J.P. Morgan and Reuters team up on RiskMetrics

 

In June 1996, J.P. Morgan signed an agreement with Reuters to cooperate on the building of a new 
and more powerful version of RiskMetrics. Since the launch of RiskMetrics in October 1994, we 
have received numerous requests to add new products, instruments, and markets to the daily vola-
tility and correlation data sets. We have also perceived the need in the market for a more flexible 
VaR data tool than the standard matrices that are currently distributed over the Internet. The new 
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partnership with Reuters, which will be based on the precept that both firms will focus on their 
respective strengths, will help us achieve these objectives.

 

Methodology

 

J.P. Morgan will continue to develop the RiskMetrics set of VaR methodologies and publish them 
in the quarterly 

 

RiskMetrics Monito

 

r and in the annual 

 

RiskMetrics—Technical Document

 

.

 

RiskMetrics data sets

 

Reuters will take over the responsibility for data sourcing as well as production and delivery of the 
risk data sets. The current RiskMetrics data sets will continue to be available on the Internet free of 
charge and will be further improved as a benchmark tool designed to broaden the understanding of 
the principles of market risk measurement. 

When J.P. Morgan first launched RiskMetrics in October 1994, the objective was to go for broad 
market coverage initially, and follow up with more granularity in terms of the markets and instru-
ments covered. This over time, would reduce the need for proxies and would provide additional 
data to measure more accurately the risk associated with non-linear instruments. 

The partnership will address these new markets and products and will also introduce a new cus-
tomizable service, which will be available over the Reuters Web service. The customizable 
RiskMetrics approach will give risk managers the ability to scale data to meet the needs of their 
individual trading profiles. Its capabilities will range from providing customized covariance matri-
ces needed to run VaR calculations, to supplying data for historical simulation and stress-testing 
scenarios.

More details on these plans will be discussed in later editions of the 

 

RiskMetrics Monitor

 

.

 

Systems

 

Both J.P. Morgan and Reuters, through its Sailfish subsidiary, have developed client-site 
RiskMetrics VaR applications. These products, together with the expanding suite of third party 
applications will continue to provide RiskMetrics implementations.

 

What is new in this fourth edition?

 

In terms of content, the Fourth Edition of the 

 

Technical Document

 

 incorporates the changes and 
refinements to the methodology that were initially outlined in the 1995–1996 editions of the 

 

RiskMetrics Monitor

 

:

•

 

Expanded framework:

 

  We have worked extensively on refining the analytical framework 
for analyzing options risk without having to perform relatively time consuming simulations 
and have outlined the basis for an improved methodology which incorporates better informa-
tion on the tails of distributions related to financial asset price returns; we’ve also developed a 
data synchronization algorithm to refine our volatility and correlation estimates for products 
which do not trade in the same time zone;

•

 

New markets:

 

  We expanded the daily data sets to include estimated volatilities and correla-
tions of additional foreign exchange, fixed income and equity markets, particularly in South 
East Asia and Latin America.

•

 

Fine-tuned methodology:

 

  We have modified the approach in a number of ways. First, we’ve 
changed our definition of price volatility which is now based on a total return concept; we’ve 
also revised some of the algorithms used in our mapping routines and are in the process of 
redefining the techniques used in estimating equity portfolio risk.
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•

 

RiskMetrics products:

 

  While we have continued to expand the list of third parties providing 
RiskMetrics products and support, this is no longer included with this document. Given the 
rapid pace of change in the availability of risk management software products, readers are 
advised to consult our Internet web site for the latest available list of products. This list, 
which now includes FourFifteen

 



 

, J.P. Morgan’s own VaR calculator and report generating 
software, continues to grow, attesting to the broad acceptance RiskMetrics has achieved.

•

 

New tools to use the RiskMetrics data sets:

 

  We have published an Excel add-in function 
which enables users to import volatilities and correlations directly into a spreadsheet. This 
tool is available from our Internet web site.

The structure of the document has changed only slightly. As before, its size warrants the following 
note:  One need not read and understand the entire document in order to benefit from RiskMetrics. 
The document is organized in parts that address subjects of particular interest to many readers.

Part I: Risk Measurement Framework

This part is for the general practitioner. It provides a practical framework on how to 
think about market risks, how to apply that thinking in practice, and how to interpret the 
results. It reviews the different approaches to risk estimation, shows how the calcula-
tions work on simple examples and discusses how the results can be used in limit man-
agement, performance evaluation, and capital allocation.

Part II: Statistics of Financial Market Returns

This part requires an understanding and interest in statistical analysis. It reviews the 
assumptions behind the statistics used to describe financial market returns and how dis-
tributions of future returns can be estimated. 

Part III: Risk Modeling of Financial Instruments

This part is required reading for implementation of a market risk measurement system. 
It reviews how positions in any asset class can be described in a standardized fashion 
(foreign exchange, interest rates, equities, and commodities). Special attention is given 
to derivatives positions. The purpose is to demystify derivatives in order to show that 
their market risks can be measured in the same fashion as their underlying.

Part IV: RiskMetrics Data Sets

This part should be of interest to users of the RiskMetrics data sets. First it describes the 
sources of all daily price and rate data. It then discusses the attributes of each volatility 
and correlation series in the RiskMetrics data sets. And last, it provides detailed format 
descriptions required to decipher the data sets that can be downloaded from public or 
commercial sources. 

Appendices

This part reviews some of the more technical issues surrounding methodology and regu-
latory requirements for market risk capital in banks and demonstrates the use of Risk-
Metrics with the example diskette provided with this document. Finally, Appendix H 
shows you how to access the RiskMetrics data sets from the Internet.
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RiskMetrics examples diskette

This diskette is located inside the back cover. It contains an Excel workbook that 
includes some of the examples shown in this document. Such examples are identified by 
the icon shown here.

 

Future plans

 

We expect to update this 

 

Technical Document

 

 annually as we adapt our market risk standards to 
further improve the techniques and data to meet the changing needs of our clients. 

RiskMetrics is a now an integral part of J.P. Morgan’s Risk Management Services group which 
provides advisory services to a wide variety of the firm’s clients. We continue to welcome any sug-
gestions to enhance the methodology and adapt it further to the needs of the market. All sugges-
tions, requests and inquiries should be directed to the authors of this publication or to your local 
RiskMetrics contacts listed on the back cover.
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Chapter 11. Performance assessment

 

Peter Zangari
Morgan Guaranty Trust Company
Risk Management Research
(1-212) 648-8641

 

zangari_peter@jpmorgan.com

 

In this chapter we present a process for assessing the accuracy of the RiskMetrics model. We 
would like to make clear that the purpose of this section is not to offer a review of the quantitative 
measures for VaR model comparison. There is a growing literature on such measures and we refer 
the reader to Crnkovic and Drachman (1996) for the latest developments in that area. Instead, we 
present simple calculations that may prove useful for determining the appropriateness of the 
RiskMetrics model. 

 

11.1  Sample portfolio

 

We describe an approach for assessing the RiskMetrics model by analyzing a portfolio consisting 
of 215 cashflows that include foreign exchange (22), money market deposits (22), zero coupon 
government bonds (121), equities (12) and commodities (33). Using daily prices for the period 
April 4, 1990 through March 26, 1996 (a total of 1001 observations), we construct 1-day VaR fore-
casts over the most recent 801 days of the sample period. We then compare these forecasts to their 
respective realized profit/loss (P/L) which are represented by 1-day returns.

Chart 11.1 shows the typical presentation of 1-day RiskMetrics VaR forecasts (90% two-tail confi-
dence interval) along with the daily P/L of the portfolio.

 

Chart 11.1

 

One-day Profit/Loss and VaR estimates

 

VaR bands are given by 

 

+/−

 

 1.65

 

In Chart 11.1 the black line represents the portfolio return constructed from the 215 individual 
returns at time 

 

t

 

. The time 

 

t

 

 portfolio return is defined as follows:

[11.1]

where  represents the log return of the 

 

i

 

th underlying cashflow. The Value-at-Risk bands are 
based on the portfolio’s standard deviation. The formula for the portfolio’s standard deviation, 
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[11.2]

where  is the variance of the 

 

i

 

th return series made for time 

 

t

 

 and  is the correla-
tion between the 

 

i

 

th and 

 

j

 

th returns for time 

 

t

 

.

 

11.2  Assessing the RiskMetrics model

 

The first measure of model performance is a simple count the number of times that the VaR esti-
mates “underpredict” future losses (gains). Recall that in RiskMetrics each day it is assumed that 
there is a 5% chance that the observed loss exceeds the VaR forecast.

 

1

 

 For the sake of generality, 
let’s define a random variable 

 

X

 

(

 

t

 

) on any day 

 

t

 

 such that 

 

X

 

(

 

t

 

) = 1 if a particular day’s observed loss 
is greater than its corresponding VaR forecast and 

 

X

 

(

 

t

 

)=0 otherwise. We can write the distribution 
of 

 

X

 

(

 

t

 

) as follows

[11.3]

Now, suppose we observe 

 

X

 

(

 

t

 

) for a total of 

 

T

 

 days, 

 

t 

 

= 1,2,...,

 

T

 

, and we assume that the 

 

X

 

(

 

t

 

)’s are 
independent over time. In other words, whether a VaR forecast is violated on a particular day is 
independent of what happened on other days. The random variable 

 

X

 

(

 

t

 

) is said to follow a Ber-
noulli distribution whose expected value is 0.05.The total number of VaR violations over the time 
period 

 

T

 

 is given by

[11.4]

The expected value of , i.e., the expected number of VaR violations over 

 

T

 

 days, is 

 

T

 

 times 
0.05. For example, if we observe 

 

T 

 

= 20 days of VaR forecasts, then the expected number of VaR 
violations is 20 x 0.05 = 1; hence one would expect to observe one VaR violation every 20 days. 
What is convenient about modelling VaR violations according to Eq. [11.3] is that the probability 
of observing a VaR violation over 

 

T

 

 days is same as the probability of observing a VaR violation at 
any point in time, 

 

t

 

. Therefore, we are able to use VaR forecasts constructed over time to assess the 
appropriateness of the RiskMetrics model for this portfolio of 215 cashflows. 

Table 11.1 reports the observed percent of VaR violations for the upper and lower tails of our sam-
ple portfolio. For each day the lower and upper VaR limits are defined as  and 

 

,

 

 respectively.

 

 

 

A more straightforward approach to derive the preceding results is to apply the maintained 
assumptions of the RiskMetrics model. Recall that it is assumed that the return distribution of sim-
ple portfolios (i.e., those without nonlinear risk) is conditionally normal. In other words, the real-

 

1

 

The focus of this section is on losses. However, the following methodology can also apply to gains.

 

Table 11.1

 

Realized percentages of VaR violations

 

True probability of VaR violations = 5%

 

Prob (Loss < 

 

−

 

1.65

 

)

 

Prob (Profit > 1.65

 

)

 

5.74% 5.87%
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ized return (P/L) divided by the standard deviation forecast used to construct the VaR estimate is 
assumed to be normally distributed with mean 0 and variance 1. Chart 11.2 presents a histogram of 
standardized portfolio returns. We place arrow bars to signify the area where we expect to observe 
5% of the observations.

 

Chart 11.2

 

Histogram of standardized returns 

 

Probability that  < (>)

 

−

 

1.65 (1.65) = 5%

 

 A priori, the RiskMetrics model predicts that 5% of the standardized returns fall below (above)

 

−

 

1.65 (1.65). In addition to this prediction, it is possible to derive the expected value (average) of 
a return 

 

given

 

 that return violates a VaR forecast. For the lower tail, this expected value is defined 
as follows:

[11.5]

where 

It follows from the symmetry of the normal density function that the expected value for upper-tail 
returns is .

Table 11.2 reports these realized expected values for our sample portfolio.  

 

Table 11.2

 

Realized “tail return” averages

 

Conditional mean tail forecasts of standardized returns

 

−

 

1.741 1.828
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To get a better understanding of the size of the returns that violate the VaR forecasts, Charts 11.3 
and 11.4 plot the observed standardized returns (black circles) that fall in the lower (< −1.65) and 
upper (> 1.65) tails of the standard normal distribution. The horizontal line in each chart represents 
the average value predicted by the conditional normal distribution. 

Chart 11.3
Standardized lower-tail returns

Chart 11.4
Standardized upper-tail returns

Both charts show that the returns that violate the VaR forecasts rarely exceed the expected value 
predicted by the normal distribution. In fact, we observe about 3 violations out of (approximately) 
46/47 tail returns for the upper/lower tails. This is approximately 6.5% of the observations that fall 
in a particular tail. Note that the normal probability model prediction is 8.5%.2

2 We derive this number from Prob (X < −2.63 | X < −1.65) = Prob (X < −2.63) / Prob ( X < −1.65).
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Part V:  Backtesting

11.3  Summary

In this chapter we presented a brief process by which risk managers may assess the performance of 
the RiskMetrics model. We applied these statistics to a sample portfolio that consists of 215 cash-
flows covering foreign exchange, fixed income, commodities and equities. Specifically, 1-day VaR 
forecasts were constructed for an 801-day sample period and for each day the forecast was mea-
sured against the portfolio’s realized P/L. It was found that overall the RiskMetrics model per-
forms reasonably well.
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Appendix A. Tests of conditional normality
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A fundamental assumption in RiskMetrics is that the underlying returns on financial prices are dis-
tributed according to the conditional normal distribution. The main implication of this assumption 
is that while the return distribution at each point in time is normally distributed, the return distribu-
tion taken over the entire sample period is 

 

not necessarily

 

 normal. Alternatively expressed, the 
standardized distribution rather than the observed return is assumed to be normal. 

Chart A.1 shows the nontrivial consequence of the conditional normality assumption. The uncon-
ditional distribution represents an estimate of the histogram of USD/DEM log price changes that 
are standardized by the standard deviation taken over the entire sample (i.e., they are standardized 
by the unconditional standard deviation). As mentioned above, relative to the normal distribution 
with a constant mean and variance, this series has the typical thin waist, fat tail features. The 
unconditional distribution represents the distribution of standardized returns which are constructed 
by dividing each historical return by its corresponding standard deviation forecast

 

1

 

, i.e., divide 
every return, , by its standard deviation forecast,  (i.e., conditional standard deviation).

 

Chart A.1

 

Standard normal distribution and histogram of returns on USD/DEM 

 

The difference between these two lines underscores the importance of distinguishing between con-
ditional and unconditional normality.

 

1

 

The exact construction of this forecast is presented in Chapter 5.
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A.1  Numerical methods

 

We now present some computational tools used to test for normality. We begin by showing how to 
obtain sample estimates of the two parameters that describe the normal distribution. For a set of 
returns, , where 

 

t 

 

= 1,2…,

 

T

 

, we obtain estimates of the unconditional mean, , and standard 
deviation, , via the following estimators:

[A.1]

[A.2]

Table A.1 presents sample estimates of the mean and standard deviation for the change series pre-
sented in Table 4.1.

Several popular tests for normality focus on measuring 

 

skewness

 

 and 

 

kurtosis

 

.

 

 Skewness charac-
terizes the asymmetry of a distribution around its mean. Positive skewness indicates an asymmet-
ric tail extending toward positive values (right skewed). Negative skewness implies asymmetry 
toward negative values (left skewed). A simple measure of skewness, the coefficient of skewness, 

 

, 

 

is given by 

[A.3]

Computed values of skewness away from 0 point towards non-normality. Kurtosis characterizes 
the relative peakedness or flatness of a given distribution compared to a normal distribution. The 
standardized measure of kurtosis, the coefficient of kurtosis, , is given by

[A.4]

The kurtosis for the normal distribution is 3. Often, instead of kurtosis, researchers talk about 
excess kurtosis which is defined as kurtosis minus 3 so that in a normal distribution excess kurtosis 
is zero. Distributions with an excess kurtosis value greater than 0 are frequently referred to as hav-
ing fat tails. 

One popular test for normality that is based on skewness and kurtosis is presented in Kiefer and 
Salmon (1983). Shapiro and Wilk (1965) and Bera and Jarcque (1980) offer more computationally 
intensive tests. To give some idea about the values of the mean, standard deviation, skewness and 
kurtosis coefficients that are observed in practice, Table A.2 on page 230 presents estimates of 
these statistics as well as two other measures—tail probability and tail values, to 48 foreign 

 

Table A.1

 

Sample mean and standard deviation estimates for USD/DEM FX

 

Parameter estimates
Absolute price 

change
 Relative price 

change
Log price 

change 

 

, mean (%)

 

−
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−
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−

 

0.090
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exchange series. For each of the 48 time series we used 86 historical weekly prices for the period 
July 1, 1994 through March 1, 1996. (Note that many of the time series presented in Table A.2 are 
not part of the RiskMetrics data set). Each return used in the analysis is standardized by its corre-
sponding 1-week standard deviation forecast. Interpretations of each of the estimated statistics are 
provided in the table footnotes.

When large data samples are available, specific statistics can be constructed to test whether a given 
sample is skewed or has excess kurtosis. This allows for formal hypothesis testing. The large sam-
ple skewness and kurtosis measures and their distributions are given below:

[A.5]

[A.6]

 

Skewness measure  Tγ T

 1
T
---- rt r–( ) 3

t 1=

T

∑

1
T
--- rt r–( ) 2

t 1=

T

∑
3
2
---

-------------------------------------------- N 0 6,( )∼≡

Kurtosis measure  Tκ T

 1
T
---- rt r–( ) 4

t 1=

T

∑
1
T
--- rt r–( ) 2

t 1=

T

∑
2

-------------------------------------------- 3–

 
 
 
 
 
 
 

N 0 24,( )∼≡



 

230 Appendix A.  Tests of conditional normality

RiskMetrics

 



 

 —Technical Document
Fourth Edition

 

Table A.2 

 

Testing for univariate conditional normality

 

1

 

normalized return series; 85 total observations

 

Tail Probability (%)

 

8

 

Tail value

 

9

 

Skewness

 

2

 

Kurtosis

 

3

 

Mean

 

4

 

Std. Dev.

 

5

 

< 

 

−

 

1.65 > 1.65 < 

 

−

 

1.65 > 1.65

Normal

 

             

 

 0.000

 

           

 

0.000

 

  -           

 

1.000

 

           

 

5.000

 

          

 

 5.000

 

        

 

−

 

2.067

 

          

 

2.067

 

 

 

OECD

 

Australia           0.314          3.397           0.120           0.943           2.900           5.700        

 

−

 

2.586           2.306

Austria           0.369           0.673        

 

−

 

0.085           1.037           8.600           5.700        

 

−

 

1.975           2.499

Belgium           0.157           2.961        

 

−

 

0.089           0.866           8.600           2.900        

 

−

 

1.859           2.493

Denmark           0.650           4.399        

 

−

 

0.077           0.903         11.400           2.900        

 

−

 

1.915           2.576

France           0.068           3.557        

 

−

 

0.063           0.969           8.600           2.900        

 

−

 

2.140           2.852

Germany           0.096           4.453        

 

−

 

0.085           0.872           5.700           2.900        

 

−

 

1.821           2.703

Greece           0.098           2.259        

 

−

 

0.154           0.943         11.400           2.900        

 

−

 

1.971           2.658

Holland           0.067           4.567        

 

−

 

0.086           0.865           5.700           2.900        

 

−

 

1.834           2.671

Italy           0.480           0.019           0.101           0.763                 0           2.900                 0           1.853

New Zealand           1.746           7.829           0.068           1.075           2.900           2.900        

 

−

 

2.739           3.633

Portugal           1.747           0.533        

 

−

 

0.062           0.889         11.400           2.900        

 

−

 

1.909           2.188

Spain           6.995           1.680        

 

−

 

0.044           0.957           8.600           2.900        

 

−2.293           1.845

Turkey         30.566      118.749        −0.761           1.162         11.400                 0        −2.944                 0

UK           7.035           2.762        −0.137           0.955           8.600           2.900        −2.516           1.811

Switzerland           0.009           0.001        −0.001           0.995           2.900           5.700        −2.415           2.110

Latin Amer. Econ. System

Brazil           0.880           1.549        −0.224           0.282                 0                   0                   0                   0   

Chile           1.049           0.512        −0.291           0.904           8.600                 0          −2.057                 0   

Colombia           2.010           4.231        −0.536           1.289         11.400           2.900        −3.305           2.958 

Costa Rica           0.093         33.360        −0.865           0.425           5.700                 0          −2.011                 0   

Dominican Rep           0.026         41.011           0.050           1.183           5.700           5.700        −3.053           3.013 

El Salvador           2.708         49.717           0.014           0.504                 0             2.900                 0             1.776 

Equador           0.002         50.097           0.085           1.162           5.700           5.700        −3.053           3.013 

Guatemala           0.026           1.946        −0.280           1.036           8.600           5.700        −2.365           2.237 

Honduras         42.420         77.277        −0.575           1.415         14.300                 0          −3.529                 0   

Jamaica         81.596      451.212        −0.301           1.137           2.900           2.900        −6.163           1.869 

Mexico         13.71         30.237        −0.158           0.597           2.900                 0          −2.500                 0   

Nicaragua           0.051           2.847        −0.508           0.117                 0                   0                   0                   0   

Peru      122.807      672.453        −0.278           1.365           5.700                 0          −5.069                 0   

Trinidad           0.813           0.339           0.146           1.063           8.600         11.400        −2.171           1.915 

Uruguay           0.724           0.106        −0.625           0.371                 0                   0                   0                   0   
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1 Countries are grouped by major economic groupings as defined in Political Handbook of the World:  1995–1996. New York:  CSA 
Publishing, State University of New York, 1996. Countries not formally part of an economic group are listed in their respective geo-
graphic areas.

2 If returns are conditionally normal, the skewness value is zero.
3 If returns are conditionally normal, the excess kurtosis value is zero.
4 Sample mean of the return series.
5 Sample standard deviation of the normalized return series.
8 Tail probabilities give the observed probabilities of normalized returns falling below −1.65 and above +1.65. Under conditional nor-

mality, these values are 5%.
9 Tail values give the observed average value of normalized returns falling below −1.65 and above +1.65. Under conditional normality, 

these values are −2.067 and +2.067, respectively.

ASEAN

Malaysia           1.495           0.265        −0.318           0.926           8.600                 0          −2.366                0   

Philippines           1.654           0.494        −0.082           0.393               0                 0                  0                  0   

Thailand           0.077           0.069        −0.269           0.936           8.600           2.900        −2.184           1.955 

Fiji           4.073           6.471       −0.129           0.868           2.900           2.900        −3.102           1.737 

Hong Kong           5.360         29.084           0.032           1.001           5.700           5.700        −2.233           2.726 

Reunion Island           0.068           3.558        −0.063           0.969           8.600           2.900        −2.140           2.853 

Southern African Dev. Comm. 

Malawi           0.157           9.454        −0.001           0.250                 0                   0                   0                   0   

South Africa         34.464         58.844        −0.333           1.555           8.600                 0          −4.480                 0   

Zambia         22.686         39.073        −0.007           0.011                 0                   0                   0                   0   

Zimbabwe         20.831         29.234       −0.487           0.762           5.700                 0          −2.682                 0   

Ivory Coast           0.068           3.564       −0.064           0.970           8.600           2.900        −2.144           2.857 

Uganda         40.815         80.115        −0.203           1.399           8.600           2.900        −4.092           1.953 

Others

China         80.314      567.012           0.107           1.521           2.900           2.900        −3.616           8.092 

Czech Repub           0.167         12.516        −0.108           0.824           5.700           2.900        −2.088           2.619 

Hungary           1.961           0.006        −0.342           0.741           5.700                 0          −2.135                 0   

India           5.633           3.622       −0.462           1.336         17.100           5.700        −2.715           1.980 

Romania         89.973      452.501        −1.249           1.721         14.300                 0          −4.078                 0   

Russia           0.248           2.819        −0.120           0.369                 0                   0                   0                   0   

Table A.2 (continued)
Testing for univariate conditional normality1

normalized return series; 85 total observations

Tail Probability (%)8 Tail value9

Skewness2 Kurtosis3 Mean4 Std. Dev.5 < −1.65 > 1.65 < −1.65 > 1.65
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A.2  Graphical methods

Q-Q (quantile-quantile) charts offer a visual assessment of the deviations from normality. Recall 
that the qth quantile is the number that exceeds q percent of the observations. A Q-Q chart plots 
the quantiles of the standardized distribution of observed returns (observed quantiles) against the 
quantiles of the standard normal distribution (normal quantiles). Consider the sample of observed 
returns, . Denote the jth observed quantile by  so that for all T observed quan-
tiles we have

[A.7]

where 

Denote the jth standard normal quantile by zj for j = 1…,T. For example, if T = 100, then 
z5 = −1.645. In practice, the five steps to compute the Q-Q plot are given below:2

1. Standardize the daily returns by their corresponding standard deviation forecast, i.e., com-
pute  for t = 1,…,T. 

2. Order  and compute their percentiles qj, j = 1,…,T. 

3. Calculate the probabilities pj corresponding to each qj. 

4. Calculate the standard normal quantiles, zj that correspond to each pj.

5. Plot the pairs . 

Chart A.2 shows an example of a Q-Q plot for USD/DEM daily standardized returns for the period 
January 1988 through September 1996. 

Chart A.2
Quantile-quantile plot of USD/DEM
standardized returns

2 For a complete description of this test see Johnson and Wichern (1992, pp. 153-158).
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The straighter the plot, the closer the distribution of returns is to a normal distribution. If all points 
were to lie on a straight line, then the distribution of returns would be normal. As the chart above 
shows, there is some deviation from normality in the distribution of daily returns of USD/DEM 
over the last 7 years. 

A good way to measure how much deviation from normality occurs is to calculate the correlation 
coefficient of the Q-Q plot,

[A.8]  

For large sample sizes as in the USD/DEM example,  needs to be at least 0.999 to pass a test of 
normality at the 5% significant.3 In this example, = 0.987. The returns are not normal accord-
ing to this test.

Used across asset classes,  can provide useful information as to how good the univariate nor-
mality assumption approximates reality. In the example above, while the returns on the USD/DEM 
exchange rate are not normal, their deviation is slight. 

Deviations from normality can be much more significant among other time series, especially 
money market rates. This is intuitively easy to understand. Short-term interest rates move in a dis-
cretionary fashion as a result of actions by central banks. Countries with exchange rate policies 
that have deviated significantly from economic fundamentals for some period often show money 
market rate distributions that are clearly not normal. As a result they either change very little when 
monetary policy remains unchanged (most of the time), or more significantly when central banks 
change policy, or the markets force them to do so. Therefore, the shape of the distribution results 
from discrete “jumps” in the underlying returns. 

A typical example of this phenomenon can be seen from the Q-Q chart of standardized price 
returns on the 3-month sterling over the period 3-Jan-91 to 1-Sep-94. The  calculated for that 
particular series is 0.907. 

3 See Johnson and Wichern (1992, p 158) for a table of critical values required to perform this test.
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Chart A.3
Quantile-quantile plot of 3-month sterling
standardized returns

The Q-Q charts are useful because they allow the researcher a visual depiction of departures from 
normality. However, as stated before, there are several other tests for normality. It is important to 
remember that when applied directly to financial returns, conventional tests of normality should be 
used with caution. A reason is that the assumptions that underlie these tests (e.g., constant vari-
ance, nonautocorrelated returns) are often violated. For example, if a test for normality assumes 
that the data is not autocorrelated over the sample period when, in fact, the data are autocorrelated, 
then the test may incorrectly lead one to reject normality (Heuts and Rens, 1986). 

The tests presented above are tests for univariate normality and not multivariate normality. In 
finance, tests of multivariate normality are often most relevant since the focus is on the return dis-
tribution of a portfolio that consists of a number of underlying securities. If each return series in a 
portfolio is found to be univariate normal, then the set of returns taken as a whole are still not nec-
essarily multivariate normal. Conversely, if any one return series is found not to be univariate nor-
mal then multivariate normality can be ruled out. Recently, Richardson and Smith (1993) propose 
a direct test for multivariate normality in stock returns. Also, Looney (1995) describes test for 
univariate normality that can be used to determine to whether a data sample is multivariate nor-
mality.
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Since its release in October 1994, RiskMetrics has inspired an important discussion on VaR meth-
odologies. A focal point of this discussion has been the assumption that returns follow a conditional 
normal distribution. Since the distributions of many observed financial return series have tails that 
are “fatter” than those implied by conditional normality, risk managers may underestimate the risk 
of their positions if they assume returns follow a conditional normal distribution. In other words, 
large financial returns are observed to occur more frequently than predicted by the conditional nor-
mal distribution. Therefore, it is important to be able to modify the current RiskMetrics model to 
account for the possibility of such large returns.

The purpose of this appendix is to describe two probability distributions that allow for a more real-
istic model of financial return tail distributions. It is organized as follows: 

• Section B.1 reviews the fundamental assumptions behind the current RiskMetrics calcula-
tions, in particular, the assumption that returns follow a conditional normal distribution. 

• Section B.2 presents the RiskMetrics model of returns under the assumption that the returns 
are conditionally normally distributed and two alternative models (distributions) where the 
probability of observing a return far away from the mean is relatively larger than the probabil-
ity implied by the conditional normal distribution. 

• Section B.3 explains how we estimate each of the three models and then presents results on 
forecasting the 1st and 99th percentiles of 15 return series representing 9 emerging markets.

 

B.1  A review of the implications of the conditional normality assumption

 

In a normal market environment RiskMetrics VaR forecasts are given by the bands of a confidence 
interval that is symmetric around zero. These bands represent the maximum change in the value of 
a portfolio with a specified level of probability. For example, the VaR bands associated with a 90% 
confidence interval are given by where 

 

−

 

/

 

+

 

1.65 are the 5th/95th percentiles of 
the standardized normal distribution, and  is the portfolio standard deviation which may depend 
on correlations between returns on individual instruments. The scale factors 

 

−

 

/

 

+

 

 1.65 result from 
the assumption that standardized returns (i.e., a mean centered return divided by its standard devi-
ation) are normally distributed. When this assumption is true we expect 5% of the (standardized) 
realized returns to lie below 

 

−

 

1.65 and 5% to lie above 

 

+

 

1.65. 

Often, whether complying with regulatory requirements or internal policy, risk managers compute 
VaR at different probability levels such as 95% and 98%. Under the assumption that returns are con-
ditionally normal, the scale factors associated with these confidence intervals are 

 

−

 

/

 

+

 

1.96 and 

 

−

 

/

 

+

 

2.33, respectively. It is our experience that while RiskMetrics VaR estimates provide reasonable 
results for the 90% confidence interval, the methodology does not do as well at the 95% and 98% 
confidence levels.

 

1

 

 Therefore, our goal is to extend the RiskMetrics model to provide better VaR 
estimates at these larger confidence levels.

Before we can build on the current RiskMetrics methodology, it is important to understand exactly 
what RiskMetrics assumes about the distribution of financial returns. RiskMetrics assumes that re-
turns follow a conditional normal distribution.   This means that while returns themselves are not 
normal, returns divided by their respective forecasted standard deviations are normally distributed 
with mean 0 and variance 1. For example, let , denote the time t return, i.e., the return on an asset 
over a one-day period. Further, let  denote the forecast of the standard deviation of returns for 

 

1

 

See Darryl Hendricks, “Evaluation of Value-at-Risk Models Using Historical Data,” 
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 April, 1996.
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time t based on historical data. It then follows from our assumptions that while  is not necessarily 
normal, the standardized return, , is normally distributed.

To summarize, RiskMetrics assumes that financial returns divided by their respective volatility 
forecasts are normally distributed with mean 0 and variance 1. This assumption is crucial because 
it recognizes that volatility changes over time.

 

B.2  Three models to produce daily VaR forecasts

 

In this section we present three models to forecast the distribution of one-day returns from which a 
VaR estimate will be derived.

• The first model that is discussed is referred to as standard RiskMetrics. This model is the basis 
for VaR calculations that are presented in the current 

 

RiskMetrics—Technical Document

 

.

• The second model that we analyze was introduced in the 2nd quarter 1996 

 

RiskMetrics 
Monitor

 

. It is referred to in this appendix as the normal mixture model. The name “normal 
mixture” refers to the idea that returns are assumed to be generated from a mixture of two dif-
ferent normal distributions. Each day’s return is assumed to be a draw from one of the two 
normal distributions with a particular probability. 

• The third, and most sophisticated model that we present is known as RiskMetrics-GED. This 
model is the same as standard RiskMetrics except the returns in this model are assumed to fol-
low a conditional generalized error distribution (GED). The GED is a very flexible distribu-
tion in that it can take on various shapes, including the normal distribution. 

 

B.2.1  Standard RiskMetrics

 

The standard RiskMetrics model assumes that returns are generated as follows

[B.1]

where 

  is a normally distributed random variable with mean 0 and variance 1

, respectively, are the time 

 

t

 

 standard deviation and variance of 

returns ( )

 is a parameter (decay factor) that regulates the weighting on past variances. For one-

day variance forecasts, RiskMetrics sets =0.94.

In summary, the standard RiskMetrics model assumes that returns follow a conditional normal dis-
tribution—conditional on the standard deviation—where the variance of returns is a function of the 
previous day’s variance forecast and squared return.
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B.2.2  Normal mixture

 

In the second quarter 1996 

 

RiskMetrics Monitor

 

 we introduced the normal mixture model of returns 
that was found to more effectively measure the tails of selected return distributions. In essence, this 
model allows for a larger probability of observing very large returns (positive or negative) than the 
conditional normal distribution. 

The normal mixture model assumes that returns are generated as follows

[B.2]

where 

 is the time t continuously compounded return

 is a normally distributed random variable with mean 0 and variance 1

 is a normally distributed random variable with mean  and variance 

 is a 0/1 variable that takes the value 1 with probability 

 

p

 

 and 0 with probability 1

 

−

 

p

 

 is the standard deviation given in the RiskMetrics model

Alternatively stated, the normal mixture model assumes that daily returns standardized by the 
RiskMetrics volatility forecasts, , are generated according to the model

[B.3]

Intuitively, we can think of Eq. [B.3] as representing a model where each day’s standardized return 
is generated from one of two distributions:

1. If  then the standardized return is generated from a standard normal distribution, 
that is, a normal distribution with mean 0 and variance 1.

2. If  then the return is generated from a normal distribution with mean  and vari-
ance . 

We can think of  as a variable that signifies whether a return that is inconsistent with the standard 
normal distribution has occurred. The parameter p is the probability of observing such a return. It 
is important to remember that although the assumed mixture distribution is composed of normal 
distributions, the mixture distribution itself is not normal. Also, note that when constructing a VaR 
forecast, the normal mixture model applies the standard RiskMetrics volatility.

Chart B.1 shows the tails of two normal mixture models (and the standard normal distribution) for 
different values of , and . Mixture(1) is the normal mixture model with parameter values 
set at 

 

=-4,

 

 

 

=1, 

 

p

 

=2%, 

 

=0 =1. Mixture(2) is the normal mixture model with the 
same parameter values as mixture(1) except now 

 

=0,
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Chart B.1

 

Tails of normal mixture densities

 

Mixture(1)

 

 

 

=-4,

 

 

 

=

 

1

 

, p=2%, 

 

=0 =1;

 

Mixture(2) =0, =

 

10

 

, p=2%, =0 =

 

1

Chart B.1 shows that when there is a large negative mean for one of the normal distributions as in 
mixture(1), this translates into a larger probability of observing a large negative return relative to 
the standard normal distribution. Also, as in the case of mixture (2) we can construct a probability 
distribution with thicker tails than the standard normal distribution by mixing the standard normal 
with a normal distribution with a large standard deviation.

 

B.2.3  RiskMetrics-GED

 

According to this model, returns are generated as follows

[B.4]

where 

 is the time t continuously compounded return

 is a random variable distributed according to the GED (generalized error distribu-

tion) with parameter 

 

ν

 

. As will be shown below, 

 

ν

 

 regulates the shape of the GED dis-
tribution.

 is the time t variance of returns ( )

The random variable ( ) in Eq. [B.4] is assumed to follow a generalized error distribution (GED). 
This distribution is quite popular among researchers in finance because of the variety of shapes the 
GED can take. The probability density function for the GED is 
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[B.5]

where  Γ is the gamma function and

[B.6]  

When  this produces a normal density while >(<)2 is more thin (flat) tailed than a normal. 
Chart B.2 shows the shape of the GED distribution for values of  = 1, 1.5 and 2.

Chart B.2
GED distribution

=1, 1.5 and 2

Notice that when the parameter of the GED distribution is below 2 (normal), the result is a distri-
bution with greater likelihood of very small returns (around 0) and a relatively large probability of 
returns far away from the mean. To better understand the effect that the parameter  has on the 
tails of the GED distribution, Chart B.3 plots the left (lower) tail of the GED distribution when 

=1, 1.5 and 2.
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Chart B.3
Left tail of GED (ν) distribution
ν = 1, 1.5, and 2

Chart B.3 shows that as  becomes smaller, away from 2 (normal), there is more probability 
placed on relatively large negative returns.

B.3  Applying the models to emerging market currencies and equity indices

We applied the three models described above to 15 time series representing 9 emerging market 
countries to determine how well each model performs at estimating the 1st and 99th percentiles of 
the return distributions. The time series cover foreign exchange and equity indices. In order to fa-
cilitate our exposition of the process by which we fit each of the models and tabulate the results on 
forecasting the percentiles, we focus on one specific time series, the South African rand.

B.3.1  Model estimation and assessment

We first fit each model to 1152 returns on each of the 15 time series for the period May 25, 1992 
through October 23, 1996. Table B.1 shows the parameter estimates from each of the three models 
for the South African rand.

Table B.1 points to some interesting results:

• In the RiskMetrics-GED model, the estimate of  implies that the distribution of returns 
on the rand are much thicker than the normal distribution (recall that =2 is a normal dis-

Table B.1
Parameter estimates for the South African rand

Normal Mixture Standard RiskMetrics RiskMetrics-GED

Parameter Estimate Parameter Estimate Parameter Estimate

−5.086 0.94 0.927

9.087

p 0.010
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tribution). In other words, we are much more likely to observe a return that is far away 
from the mean return than is implied by the normal distribution.

• In the normal mixture model there is a 1% chance of observing a normally distributed 
return with a mean −5 and standard deviation 9 and a 99% chance of observing a normally 
distributed return with mean 0 and standard deviation 1.288.

• The RiskMetrics optimal decay factor for the South African rand is 0.940. This decay fac-
tor was found by minimizing the root mean squared error of volatility forecasts. Coinci-
dentally, this happens to be the same decay factor applied to all times series in RiskMetrics 
when estimating one-day volatility. 

If a volatility model such as RiskMetrics fits the data well its standardized returns (i.e., the returns 
divided by their volatility forecast) should have a volatility of 1. Table B.2 presents four sample sta-
tistics—mean, standard deviation, skewness and kurtosis—for the standard RiskMetrics model and 
estimates of ν for the RiskMetrics-GED model. Recall that skewness is a measure of a distribution’s 
symmetry. A value of 0 implies that the distribution is symmetric. Kurtosis measures a distribution’s 
“tail thickness”. For example, since the kurtosis for a normal distribution is 3, values of kurtosis 
greater than 3 indicate that there is a greater likelihood of observing returns that are far away from 
the mean return than implied by the normal distribution. 

Under the maintained assumption of the RiskMetrics model the statistics of the standardized returns 
should be as follows;   mean = 0, standard deviation = 1, skewness = 0, kurtosis = 3. Table B.2 
shows that except for Mexico, Philippines and Taiwan foreign exchange, standard RiskMetrics does 
a good job at recovering the standard deviation. The fact that kurtosis for many of the time series 
are well above three signifies that the tails of these return distributions are much larger than the nor-
mal distribution. 

Also, note the estimates of  produced from RiskMetrics-GED. Remember that if the distribution 
of the standardized returns is normal, = 2 and values of < 2 signify that the distribution has 
thicker tails than that implied by the normal distribution. The fact that all of the estimates of  are 
well below 2 indicate that these series contain a relatively large number of returns (negative and 
positive).

Table B.2
Sample statistics on standardized returns
Standard RiskMetrics model

Instrument type Source Mean Std dev Skewness Kurtosis
GED 

parameter, 

Foreign exchange Mexico 0.033 3.520 −21.744 553.035 0.749

Philippines −0.061 1.725 −13.865 327.377 0.368

Taiwan 0.069 1.720 8.200 162.234 0.492

Argentina 0.028 1.177 5.672 112.230 0.219

Indonesia −0.013 1.081 −1.410 12.314 0.460

Korea −0.013 1.106 −1.142 10.188 0.778

Malaysia 0.029 1.210 −0.589 12.488 0.908

South Africa 0.040 1.291 −6.514 116.452 0.927

Thailand −0.004 1.003 0.168 4.865 1.101

Equity Argentina 0.043 1.007 −0.376 3.817 1.221

Indonesia 0.020 1.085 1.069 12.436 0.868

Malaysia 0.002 1.130 0.346 5.966 1.023

Mexico 0.007 1.046 0.042 4.389 0.798

South Africa 0.027 1.023 0.081 5.412 1.136

Thailand −0.019 1.056 −0.008 5.014 0.999

ν

ν
ν ν
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B.3.2  VaR analysis

In this section we report the results of an experiment to determine how well each of the models de-
scribed above can predict the 1st and 99th percentiles of the 15 return distribution. These results are 
provided in Table B.3. 

Our analysis consisted of the following steps:

• First, we estimate the parameters in each of the three models using price data from May, 25, 
1992 through October 23, 1996. This sample consists of 1152 historical returns on each of the 
15 time series. 

• Second, we construct one-day volatility estimates for each of the three models using the most 
recent 952 returns.

• Third, we use the 952 volatility estimates and the three probability distributions (normal, mix-
ture normal and GED) evaluated at the parameter estimates to construct VaR forecasts at the 
1st and 99th percentiles.

• Fourth, we count the number of times the next day realized return exceeds each of the VaR 
forecasts. This number is then converted to a percentage by dividing it by the total number of 
trials—952 in this experiment. The “ideal” model would yield percentages of 1%.

Table B.3 presents these percentages for the three models.

Table B.3 shows that for the RiskMetrics-GED model the VaR forecasts at the 1st percentile are ex-
ceeded 1.315 percent of the time whereas the VaR forecasts at the 99th percentile are exceeded 
1.286% of the time. Similarly, the VaR forecasts produced from the mixture model are exceeded at 
the 1st and 99th percentiles by 1.396% and 1.270% of the realized returns, respectively. Both mod-
els are marked improvements over the standard RiskMetrics model that assumes conditional 
normality.

Table B.3
VaR statistics (in %) for the 1st and 99th percentiles
RGD = RiskMetrics-GED; RM = RiskMetrics; MX = Normal mixture

Instrument type Source

 1st percentile (1%)  99th percentile (99%)

RGD RM MX RGD RM MX

Foreign exchange Mexico 1.477 2.346 0.434 1.043 1.998 0.434

Philippines 1.390 2.520 1.043 1.216 1.998 1.043

Taiwan 0.956 1.651 0.782 1.043 1.911 0.782

Argentina 1.998 1.998 1.303 2.172 2.172 1.39

Indonesia 1.651 3.562 1.651 1.129 1.998 1.411

Korea 1.216 2.433 1.303 0.521 1.303 0.956

Malaysia 1.564 2.433 1.477 1.911 3.215 1.911

South Africa 1.390 1.998 1.216 1.129 1.998 1.303

Thailand 0.695 1.129 1.043 1.651 2.172 1.072

Equity Argentina 1.825 2.520 1.646 0.869 1.129 1.129

Indonesia 0.608 1.998 1.564 1.564 2.520 1.564

Malaysia 1.651 2.433 1.698 1.651 2.693 1.738

Mexico 0.956 2.259 1.738 1.043 1.651 1.303

South Africa 1.216 2.172 1.651 1.477 2.085 1.738

Thailand 1.129 1.564 1.190 0.869 2.346 1.611

Column average 1.315 2.201 1.396 1.286 2.060 1.270
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In this appendix we present alternative measures to assess forecast accuracy of volatility and cor-
relation forecasts.

 

C.1  Normal likelihood (LKHD) criterion

 

Under the assumption that returns are conditionally normal, the objective here is to specify the 
joint probability density of returns given a value of the decay factor. For the return on day 

 

t

 

 this 
can be written as:

[C.1]

Combining the conditional distributions from all the days in history for which we have data, we 
get: 

[C.2]

Equation [C.2] is known as the normal likelihood function. Its value depends on 

 

λ

 

. In practice, it is 
often easier to work with the log-likelihood function which is simply the natural logarithm of the 
likelihood function.

The maximum likelihood (ML) principle stipulates that the optimal value of the decay factor 

 

λ 

 

is 
one which maximizes the likelihood function Eq. [C.2]. With some algebra, it can be shown that 
this is equivalent to finding the value of 

 

λ

 

 that minimizes the following function:

[C.3]

Notice that the criterion Eq. [C.3] imposes the assumption that returns are distributed condition-
ally normal when determining the optimal value of 

 

λ. 

 

The RMSE criterion, on the other hand, does 
not impose any probability assumptions in the determination of the optimal value of 

 

λ

 

.

 

C.2  Other measures

 

In addition to the RMSE and Normal likelihood measures alternative measures could also be 
applied such as the mean absolute error measure for the variance

[C.4]

For individual cashflows, RiskMetrics VaR forecasts are based on standard deviations. Therefore, 
we may wish to measure the error in the standard deviation forecast rather than the variance fore-
cast. If we take as a proxy for the one period ahead standard deviation, , then we can define the 
RMSE of the standard deviation forecast as 
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[C.5]

Notice in Eq. [C.5] that . In fact for the normal distribution, the following equa-

tion holds:  .

Other ways of choosing optimal 

 

λ

 

 include the Q-statistic described by Crnkovic and Drachman 
(RISK, September, 1996) and, under the assumption that returns are normally distributed, a likeli-
hood ratio test that is based on the normal probability density likelihood function.   

 

C.3  Measures for choosing an optimal decay factor for multiple time series.

 

In Chapter 5, we explained how an optimal decay factor for the 480 RiskMetrics time series was 
chosen. This method involved finding optimal decay factors for each series, and then taking a 
weighted average of these factors, with those factors which provided superior performance in fore-
casting volatility receiving the greatest weight. In this section, we briefly describe some alternative 
methods which account for the performance of the correlation forecasts as well.

The first such method is an extension of the likelihood criterion to a multivariate setting. If we 
consider a collection of 

 

n

 

 assets whose returns on day 

 

t 

 

are represented by the vector , then the 
joint probability density for these returns is

[C.6] ,

where  is the matrix representing the forecasted covariance of returns on day 

 

t 

 

using 
decay factor . The likelihood for the returns for all of the days in our data set may be constructed 
analogously to Eq. [C.2]. Using the same reasoning as above, it can be shown that the value of   
which maximizes this likelihood is the one which also maximizes 

[C.7] .

As noted before, choosing the decay factor according to this criterion imposes the assumption of 
conditional normality. In addition, to evaluate the likelihood function in Eq. [C.7], it is necessary 
at each time to invert the estimated covariance matrix . In theory, this matrix will 
always be invertible, although in practice, due to limited precision calculations, there will likely be 
cases where the inversion is impossible, and the likelihood function cannot be computed.

A second approach is a generalization of the RMSE criterion for the covariance forecasts. Recall 
from Chapter 5 that the covariance forecast error on day 

 

t

 

 for the 

 

i

 

th and 

 

j

 

th returns is

[C.8] .

(Recall also that under the RiskMetrics assumptions, .) The total squared 
error for day 

 

t

 

 is then obtained by summing the above over all pairs , and the mean total 
squared error (MTSE) for the entire data set is then
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[C.9] .

The value of  which minimizes the MTSE above can be thought of as the decay factor which his-
torically has given the best covariance forecasts across all of the data series.

The above description presents a myriad of choices faced by the researcher when determining 
“optimal λ”. The simple answer is that there is no clear-cut, simple way of choosing the optimal 
prediction criterion. There has been an extensive discussion among academics and practitioners on 
what error measure to use when assessing post-sample prediction.1 Ultimately, the forecasting cri-
terion should be motivated by the modeler’s objective. For example, West, Edison and Cho (1993) 
note “an appropriate measure of performance depends on the use to which one puts the estimates 
of volatility….” Recently, Diebold and Mariano (1995) remind us, “of great importance and 
almost always ignored, is the fact that the economic loss associated with a forecast may be poorly 
assessed by the usual statistical measures. That is, forecasts are used to guide decisions, and the 
loss associated with a forecast error of a particular sign and size induced directly by the nature of 
the decision problem at hand.” In fact, Leitch and Tanner (1991) use profitability rather than size 
of the forecast error or its squared value as a test of forecast accuracy.

1 For a comprehensive discussion on various statistical error measures (including the RMSE) to assess forecasting 
methods, see the following:

Ahlburg, D.
Armstrong, J. S., and Collopy, F.
Fildes, R.

in the International Journal of Forecasting, 8, 1992, pp. 69–111.
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f

 

In this appendix we compare the VaR forecasts of the delta-gamma approach to those produced by 
full simulation. Before doing so, however, we investigate briefly when the delta-gamma approach 
is expected to perform poorly in relation to full simulation.

The accuracy of the delta-gamma approach depends on the accuracy of the approximation used to 
derive the return on the option. The expression for the option’s return is derived using what is 
known as a “Taylor series expansion.” We now present the derivation.

[D.1]

This expression can be rewritten as follows:

[D.2]

We now express the changes in the value of the option and the underlying in relative terms:

[D.3]

Dividing Eq. [D.3] by , we get

[D.4]

and define the following terms:

, , 

 

n 

 

= , and 

We can now write the return on the option as follows:

[D.5]

This expansion is a reasonable approximation when the “greeks”  and are stable as the under-
lying price changes. In our example, the underlying price is the US dollar/deutschemark exchange 
rate. If changes in the underlying price causes large changes in these parameters then we should not 
expect the delta-gamma approach to perform well.

Chart D.1 shows the changes in the value of delta  when the underlying price and the time to 
the option’s expiry both change. This example assumes that the option has a strike price of 5. 
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Chart D.1
Delta vs. time to expiration and underlying price

Notice that large changes in delta occur when the current price in the underlying instrument is near 
the strike. In other words, we should expect to see large changes in delta for small changes in the 
underlying price when the option is exactly, or close to being, an at-the-money option. 

Since the delta and gamma components of an option are closely related, we should expect a similar 
relationship between the current underlying price and the gamma of the option. For the same option, 
Chart D.2 presents values of gamma as the underlying price and the time to expiry both change.

The chart shows that gamma changes abruptly when the option is near to being an at-the-money 
option and the time to expiry is close to zero. 
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Chart D.2
Gamma vs. time to expiration and underlying price

Together, Charts D.1 and D.2 demonstrate that we should expect the delta-gamma method to do 
most poorly when portfolios contain options that are close to being at-the-money and the time to 
expiry is short (about one week or less).

D.1  Comparing full simulation and delta-gamma: A Monte Carlo study

In this section we describe an experiment undertaken to determine the difference in VaR forecasts 
produced by the full simulation and delta-gamma methodologies. The study focuses on one call op-
tion. (For more complete results, see the third quarter 1996 RiskMetrics Monitor.) VaR forecasts, 
defined as the 5th percentile of the distribution of future changes in the value of the option, were 
made over horizons of one day. The Black-Scholes formula was used to both revalue the option and 
to derive the “greeks.”

We set the parameters used to value the option, determine the “greeks”, and generate future prices 
(for full simulation) as shown in Table D.1.

Given these parameter settings we generate a series of underlying spot prices, , with values 4.5, 
4.6, 4.7,..., 5.6. Here the time t subscript denotes the time the VaR forecast is made. These spot pric-
es imply a set of ratios of spot-to-strike price, , that define the “moneyness” of the option. 
The values of  are 0.90, 0.92,0.94,...,1.12. In addition, we generate a set of time to expira-
tions, , (expressed in years) for the option. Values of  range from 1 day (0.004) to 1 year (1.0).

Table D.1
Parameters used in option valuation

Parameter Value

Strike price (K) 5.0
Standard deviation (annualized)  23.0%
Risk-free interest rate  8.0%
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In full simulation, we are required to simulate future prices of the underlying instrument. Denote 
the future price of the underlying instrument by  where n denotes the VaR forecast horizon
(i.e., n = 1 day, 1 week, 1 month and 3 months). We simulate underlying prices at time t+n, , 
according to the density for a lognormal random variable

[D.6]

where z is a standard unit normal random variable.

In full simulation, VaR is defined as the difference between the value of the option at time t + n (the 
forecast horizon) and today, time t. This means that all instruments are revalued. 

[D.7] Exact = , 

where BS() stands for the Black-Scholes formula.

We use the term “Exact” to represent the fact that the option is being revalued using its exact option 
pricing formula. In the delta-gamma approach, VaR is approximated in terms of the Taylor series 
expansion discussed earlier:

[D.8] Approx = 

Here, the term “Approx” denotes the approximation involved in using only the delta, gamma and 
theta components of the option. To compare VaR forecasts we define the statistics  and  
as follows:

 = the 5th percentile of the Exact distribution which represents full simulation.

 = the 5th percentile of the Approx distribution which represents delta-gamma.

For a given spot price, , time to expiration, τ, and VaR forecast horizon, n, we generate 5,000 
future prices, , and calculate and . This experiment is then repeated 50 times to 
produce 50 ’s and ’s. We then measure the difference in these VaR forecasts by com-
puting two metrics:

[D.9]

[D.10]

Tables D.2 and D.3 report the results of this experiment. Specifically, Tables D.2 and D.3 show, re-
spectively, the mean absolute percentage error (MAPE) and the mean error (ME) for a call option 
for a one-day forecast horizon. Each row of a table corresponds to a different time to expiration (ma-
turity). Time to expiration is measured as a fraction of a year (e.g., 1 day = 1/250 or 0.004) and can-
not be less than the VaR forecast horizon which is one day. Each column represents a ratio of the 
price of the underlying when the VaR forecast was made (spot) to the option’s strike price, . 
This ratio represents the option’s “moneyness” at the time VaR was computed. All entries greater 
than or equal to 10 percent are reported without decimal places.
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D.2  Conclusions

The results reported in this appendix show that the relative error between delta-gamma and full sim-
ulation is reasonably low, but becomes large as the option nears expiration and is at-the-money. 
Note that the extremely large errors in the case where the option is out-of-the-money reflects the 
fact that the option is valueless. Refer to Tables C.10 and C.19 in the RiskMetrics Monitor (third 
quarter, 1996) to see the value of the option at various spot prices and time to expirations. Therefore, 

Table D.2
MAPE (%) for call, 1-day forecast horizon

Time to maturity, 
(years)

Spot/Strike
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0.004 3838 2455 1350 633 187 28 21 1.7463 0.004 0.004 0.004 0.0036
0.054 11 7.12 3.960 1.561 0.042 0.762 0.946 0.733 0.372 0.082 0.052 0.069
0.104 3.226 2.061 1.180 0.486 0.021 0.271 0.395 0.399 0.330 0.229 0.133 0.061
0.154 1.592 1.039 0.615 0.272 0.028 0.130 0.216 0.245 0.232 0.195 0.148 0.102
0.204 0.983 0.655 0.400 0.190 0.036 0.069 0.133 0.163 0.168 0.155 0.131 0.104
0.254 0.685 0.465 0.293 0.148 0.040 0.037 0.087 0.115 0.125 0.122 0.111 0.095
0.304 0.515 0.355 0.230 0.123 0.041 0.018 0.059 0.084 0.096 0.098 0.093 0.084
0.354 0.407 0.285 0.189 0.106 0.042 0.007 0.041 0.063 0.075 0.079 0.078 0.073
0.404 0.333 0.237 0.160 0.094 0.041 0.003 0.028 0.047 0.059 0.065 0.066 0.063
0.454 0.28 0.202 0.139 0.084 0.041 0.007 0.019 0.036 0.048 0.054 0.056 0.055
0.504 0.241 0.175 0.123 0.077 0.040 0.010 0.012 0.028 0.038 0.045 0.048 0.048
0.554 0.211 0.155 0.111 0.071 0.039 0.013 0.007 0.021 0.031 0.038 0.041 0.042
0.604 0.187 0.139 0.101 0.066 0.038 0.015 0.003 0.016 0.025 0.032 0.035 0.037
0.654 0.167 0.125 0.092 0.062 0.037 0.016 0.001 0.012 0.021 0.027 0.031 0.033
0.704 0.151 0.114 0.085 0.058 0.035 0.017 0.003 0.008 0.017 0.023 0.026 0.029
0.754 0.138 0.105 0.079 0.055 0.034 0.018 0.005 0.006 0.013 0.019 0.023 0.025
0.804 0.126 0.097 0.074 0.052 0.033 0.018 0.006 0.003 0.011 0.016 0.020 0.022
0.854 0.117 0.09 0.069 0.049 0.033 0.019 0.007 0.002 0.008 0.014 0.017 0.020
0.904 0.108 0.084 0.065 0.047 0.032 0.019 0.008 0.001 0.006 0.011 0.015 0.018

Table D.3 
ME (%) for call, 1-day forecast horizons

Time to maturity, 
(years)

Spot/Strike
0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12

0.004 0.000 0.000 0.000 −0.003 −0.186 0.569 −0.180 −0.010 0.000 0.000 0.000 0.000
0.054 −0.004 −0.006 −0.008 −0.005 0.000 0.005 0.007 0.005 0.003 0.001 0.000 0.000
0.104 −0.003 −0.004 −0.003 −0.002 0.000 0.001 0.002 0.003 0.002 0.002 0.001 0.000
0.154 −0.002 −0.002 −0.002 −0.001 0.000 0.001 0.001 0.002 0.002 0.001 0.001 0.001
0.204 −0.002 −0.002 −0.001 −0.001 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001
0.254 −0.001 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001
0.304 −0.001 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001
0.354 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
0.404 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.454 −0.001 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.504 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.554 −0.001 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.604 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.654 −0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.704 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.754 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.804 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.854 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.904 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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aside from the case where the option is near expiration and at-the-money, the delta-gamma meth-
odology seems to perform well in comparison to full simulation.

Overall, the usefulness of the delta-gamma method depends on how users view the trade-off be-
tween computational speed and accuracy. For risk managers seeking a quick, efficient means of 
computing VaR that measures gamma risk, delta-gamma offers an attractive method for doing so.
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In Section E.1 of this appendix we briefly introduce three algorithms for simulating correlated nor-
mal random variables from a specified covariance matrix 

 

Σ

 

 (

 

Σ

 

 is square and symmetric). In 
Section E.2 we present the details of the Cholesky decomposition.

 

E.1  Three algorithms to simulate correlated normal random variables

 

This section describes the Cholesky decomposition (CD), eigenvalue decomposition (ED) and the 
singular value decomposition (SVD). CD is efficient when  

 

Σ

 

 is positive definite. However, CD is 
not applicable for positive semi-definite matrices. ED and SVD, while computationally more 
intensive, are useful when 

 

Σ

 

 is positive semi-definite.

• Cholesky decomposition

We begin by decomposing the covariance matrix as follows:

[E.1]

where P is an upper triangular matrix. To simulate random variables from a multivariate nor-
mal distribution with covariance matrix 

 

Σ

 

 we would perform the following steps:

1. Find the upper triangular matrix P.

2. Compute a vector of standard normal random variables denoted . In other words,  
has a covariance matrix 

 

I

 

 (identity matrix).

3. Compute the vector . The random vector y has a multivariate normal distri-
bution with a covariance matrix 

 

Σ

 

.

Step 3 follows from the fact that 

[E.2]

where 

 

V

 

( ) and 

 

E

 

( ) represent the variance and mathematical expectation, respectively.

• Eigenvalue decomposition

Applying spectral decomposition to 

 

Σ

 

 yields

[E.3]

where 

 

C

 

 is an 

 

N

 

x

 

N

 

 orthogonal matrix of eigenvectors, i.e., 

 is an 

 

N

 

x

 

N

 

 matrix with the 

 

N

 

-eigenvalues of 

 

X

 

 along its diagonal and zeros elsewhere
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To simulate random variables from a multivariate normal distribution with covariance matrix 

 

Σ

 

 we would perform the following steps:

1. Find the eigenvectors and eigenvalues of 

 

Σ

 

.

2. Compute a vector of standard normal random variables denoted . In other words,  
has a covariance matrix I (identity matrix).

3. Compute the vector . The random vector y has a multivariate normal distri-
bution with a covariance matrix 

 

Σ

 

.

Step 3 follows from the fact that 

[E.5]

The final algorithm that is proposed is known as the singular value decomposition.

• Singular Value decomposition 

We begin with the following representation of the covariance matrix

[E.6]

where 

 

U

 

 and 

 

V

 

 are 

 

N

 

x

 

N

 

 orthogonal matrices, i.e., , and 

 

D

 

 is an 

 

N

 

x

 

N

 

 matrix 
with the 

 

N

 

 singular values of 

 

Σ

 

 along its diagonal and zeros elsewhere.

It follows directly from Takagi’s decomposition that for any square, symmetric matrix,   
. Therefore, to simulate random variables from a multivariate normal distribution 

with covariance matrix 

 

Σ

 

 we would perform the following steps:

1. Apply the singular value decomposition to 

 

Σ 

 

to get 

 

V

 

 and 

 

D

 

.

2. Compute a vector of standard normal random variables denoted . In other words,  
has a covariance matrix 

 

I

 

 (identity matrix).

3. Compute the vector  where . The random vector y has a multi-
variate normal distribution with a covariance matrix 

 

Σ

 

.

Step 3 follows from the fact that

[E.7]

 

E.2  Applying the Cholesky decomposition

 

In this section we explain exactly how to create the A matrix which is necessary for simulating 
multivariate normal random variables from the covariance matrix 

 

Σ

 

. In particular, 

 

Σ

 

 can be decom-
posed as:

[E.8]

If we simulate a vector of independent normal random variables X then we can create a vector of 
normal random variables with covariance matrix 

 

Σ

 

 by using the transformation Y=A’X. To show 
how to obtain the elements of the matrix A, we describe the Cholesky decomposition when the 
dimension of the covariance matrix is 3 x 3. After, we give the general recursive equations used to 
derive the elements of A from 

 

Σ

 

.
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Consider the following definitions:

[E.9]

Then we have

[E.10]

 equivalent to 

[E.11]

Now we can use the elements of 

 

Σ

 

 to solve for the ’s – the elements of A. This is done recur-
sively as follows:

[E.12]

Having shown how to solve recursively for the elements in A we now give a more general result. 
Let 

 

i

 

 and 

 

j

 

 index the row and column of an 

 

N

 

 x 

 

N

 

 matrix. Then the elements of A can be solved for 
using

[E.13]

and

[E.14]
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The Basel Committee on Banking Supervision under the auspices of BIS issued in January 1996 a 
final Amendment to the 1988 Capital Accord that requires capital charges to cover market risks in 
addition to the existing framework covering credit risk. The framework covers risks of losses in 
on- and off- balance sheet positions arising from movements in market prices.

Banks' minimum capital charges will be calculated as the sum of credit risk requirements under the 
1988 Capital Accord, excluding debt and equity securities in the trading book and all positions in 
commodities, but including the credit counterparty risk on all OTC derivatives, and capital charges 
for market risks. The proposal sets forth guidelines for the measurement of market risks and the 
calculation of a capital charge for market risks.

 

I. Measurement of market risk

 

Market risk may be measured using banks' internal models (subject to approval by the national 
supervisor) and incorporates the following:

1. Market risk in the trading account (i.e., debt and equity securities and derivatives):

 

Standardized method 

 

— uses a “building block” approach where charges for general risk 
and issuer specific risk for debt and equities risks are calculated separately.

 

Internal model

 

 — must include a set of risk factors corresponding to interest rates in each 
currency in which the bank has interest sensitive on- and off-balance sheet positions and 
corresponding to each of the equity markets in which the bank holds significant positions.

2. Foreign exchange risk across the firm (including gold:

 

Standardized method

 

 — uses the shorthand method of calculating the capital requirement.

 

Internal model

 

 — must include FX risk factors of the bank’s exposures.

3. Commodities risk across the firm (including precious metals but excluding gold)

 

Standardized method 

 

— risk can be measured using the standardized approach or the sim-
plified approach.

 

Internal model

 

 — must include commodity risk factors of the bank’s exposures.

4. Options risk across the firm:

 

Standardized method

 

 — banks using only purchased options should use a simplified 
approach and banks using written options should, at a minimum, use one of the intermedi-
ate approaches (“delta plus” or simulation method).

 

Internal model

 

 — must include risk factors (interest rate, equity, FX, commodity) of the 
bank’s exposures.
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II. Capital charge for market risk

Standardized method 

 

—simple sum of measured risk for all factors (i.e., debt/equity/FX/com-
modities/options)

 

Internal model —

 

 

• Higher of the previous day's VaR (calculated in accordance with specific quantitative stan-
dards) or average of daily VaR on each of the preceding 60 days times a multiplication factor, 
subject to a minimum of 3.

• A separate capital charge to cover the specific risk of traded debt and equity securities if not 
incorporated in model.

• A “plus” will be added that is directly related to the ex-post performance of the model 
(derived from “back-testing” outcome)

• Among other qualitative factors, stress testing should be in place as a supplement to the risk-
analysis based on the day-to-day output of the model.

 

III. Methods of measuring market risks

 

A choice between a Standardized Methodology and an Alternative Methodology (i.e., use of 
banks' internal models) will be permitted for the measurement of market risks subject to the 
approval of the national supervisor.

 

1. The standardized methodology

 

This method uses a “building block” approach for debt and equity positions, where issuer-specific 
risk and general risk are calculated separately. The capital charge under the standardized method 
will be the arithmetic sum of the measures of each market risk (i.e., debt/equity/foreign exchange/
commodities/options).

 

Debt securities

 

Instruments covered include:  debt securities (and instruments that behave like them including 
non-convertible preferred shares) and interest rate derivatives in the trading account. Matched 
positions in identical issues (e.g., same issuer, coupon rates, liquidity, call features) as well as 
closely matched swaps, forwards, futures and FRAs which meet additional conditions are permit-
ted to be offset. The capital charge for debt securities is the sum of the specific risk charge and 
general risk charge.

• Specific risk

The specific risk charge is designed to protect against an adverse movement in the price of an 
individual security owing to factors related to the individual issuer. Debt securities and deriv-
atives are classified into broad categories (government, qualified, and other) with a varying 
capital charge applied to gross long positions in each category. Capital charges range from 0% 
for the government category to 8% for the Other category.

• General market risk

The general risk charge is designed to capture the risk of loss arising from changes in market 
interest rates. A general risk charge would be calculated separately for each currency in which 
the bank has a significant position. There are two principal methods to choose from:
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1.

 

Maturity method

 

 — long and short positions in debt securities and derivatives are slot-
ted into a maturity ladder with 13 time bands (15 for deep discount securities). The net 
position in each time band is risk weighted by a factor designed to reflect the price sensi-
tivity of the positions to changes in interest rates.

2.

 

Duration method 

 

— achieves a more accurate measure of general market risk by calcu-
lating the price sensitivity of each position separately.

The general risk charge is the sum of the risk-weighted net short or long position in the whole 
trading book, a small proportion of the matched positions in each time-band (vertical disal-
lowance 10% for maturity method; 5% for duration method), and a larger proportion of the 
matched positions across different time bands (horizontal disallowance).

 

Equities

 

Instruments covered include:  common stocks, convertible securities that behave like equities, 
commitments to buy or sell equities, and equity derivatives. Matched positions in each identical 
equity in each market may be fully offset, resulting in a single net short or long position to which 
the specific and general market risk charges apply. The capital charge for equities is the sum of the 
specific risk charge and general risk charge.

• Specific risk

Specific risk is the risk of holding a long or short position in an individual equity, i.e., the 
bank's absolute equity positions (the sum of all long and short equity positions). The specific 
risk charge is 8% (or 4% if the portfolio is liquid and diversified). A specific risk charge of 2% 
will apply to the net long or net short position in an index comprising a diversified portfolio of 
equities.

• General market risk

General market risk is the risk of holding a long or short position in the market as a whole, 
i.e., the difference between the sum of the longs and the sum of the shorts (the overall net 
position in an equity market). The general market risk charge is 8% and is calculated on a 
market by market basis.

 

Foreign exchange risk (including gold)

 

The shorthand method of calculating the capital requirement for foreign exchange risk is per-
formed by measuring the net position in each foreign currency and gold at the spot rate and apply-
ing an 8% capital charge to the net open position (i.e., the higher of net long or net short positions 
in foreign currency and 8% of the net position in gold).

 

Commodities risk

 

Commodities risk including precious metals, but excluding gold, can be measured using the stan-
dardized approach or the simplified approach for banks which conduct only a limited amount of 
commodities business. Under the standardized approach, net long and short spot and forward posi-
tions in each commodity will be entered into a maturity ladder. The capital charge will be calcu-
lated by applying a 1.5% spread rate to matched positions (to capture maturity mismatches) and a 
capital charge applied to the net position in each bucket. Under the simplified method, a 15% cap-
ital charge will be applied to the net position in each commodity. 

 

Treatment of options

 

Banks that solely use purchased options are permitted to use a simplified approach; however, 
banks that also write options will be expected to use one of the intermediate approaches or a com-
prehensive risk management model. Under the standardized approach, options should be “carved 
out” and become subject to separately calculated capital charges on particular trades to be added to 
other capital charges assessed. Intermediate approaches are the “delta plus approach” and scenario 
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analysis. Under the delta plus approach, delta-weighted options would be included in the standard-
ized methodology for each risk type.

 

2. Alternative methodology: internal models

 

This method allows banks to use risk measures derived from their own internal risk management 
models, subject to a general set of standards and conditions. Approval by the supervisory authority 
will only be granted if there are sufficient numbers of staff (including trading, risk control, audit 
and back office areas) skilled in using the models, the model has a proven track record of accuracy 
in predicting losses, and the bank regularly conducts stress tests.

• Calculation of capital charge under the internal model approach

– Each bank must meet on a daily basis a capital requirement expressed as the higher of its 
previous day's value at risk number measured according to the parameters specified or an 
average of the daily value at risk measures on each of the preceding sixty business days, 
multiplied by a multiplication factor.

– The multiplication factor will be set by supervisors on the basis of their assessment of the 
quality of the bank's risk management system, subject to a minimum of 3. The plus factor 
will range from 0 to 1 based on backtesting results and that banks that meet all of the quali-
tative standards with satisfactory backtesting results will have a plus factor of zero.The 
extent to which banks meet the qualitative criteria may influence the level at which supervi-
sors will set the multiplication factor.

– Banks using models will be subject to a separate capital charge to cover the specific risk of 
traded debt and equity securities to the extent that this risk is not incorporated into their 
models. However, for banks using models, the specific risk charge applied to debt securities 
or equities should not be less than half the specific risk charge calculated under the stan-
dardized methodology.

– Any elements of market risk not captured by the internal model will remain subject to the 
standardized measurement framework.

– Capital charges assessed under the standardized approach and the internal model approach 
will be aggregated according to the simple sum method.

• Requirements for the use of internal models:

 

Qualitative standards

 

• Existence of an independent risk control unit with active involvement of senior management

• Model must be closely integrated into day-to-day risk management and should be used in 
conjunction with internal trading and exposure limits

• Routine and rigorous programs of stress testing and back-testing should be in place

• A routine for ensuring compliance and an independent review of both risk management and 
risk measurement should be carried out at regular intervals

• Procedures are prescribed for internal and external validation of the risk measurement process
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Specification of market risk factors

 

The risk factors contained in a risk measurement system should be sufficient to capture the risk 
inherent in the bank's portfolio, i.e., interest rates, exchange rates, equity prices, commodity 
prices. 

 

Quantitative standards

 

• Value at risk should be computed daily using a 99th percentile, one-tailed confidence interval 
and a minimum holding period of 10 trading days. Banks are allowed to scale up their 1-day 
VaR measure for options by the square root of 10 for a certain period of time after the internal 
models approach takes effect at the end of 1997.

• Historical observation period will be subject to a minimum length of one year. For banks that 
use a weighting scheme or other methods for the historical observation period, the “effective” 
observation period must be at least one year.

• Banks will have discretion to recognize empirical correlations within broad risk categories. 
Use of correlation estimates across broad risk categories is subject to regulatory approval of 
the estimation methodology used.

• Banks should update their data sets no less frequently than once every three months and 
should reassess them whenever market prices are subject to material change

• Models must accurately capture the unique risks associated with options within the broad risk 
categories (using delta/gamma factors if analytical approach is chosen) 

 

IV. Calculation of the capital ratio

 

• The minimum capital ratio representing capital available to meet credit and market 
risks is 8%. 

• The denominator of the ratio is calculated by multiplying the measure of market risk by 12.5 
(reciprocal of the 8% ratio) and adding the results to credit risk-weighted assets. The numera-
tor is eligible capital, i.e., sum of the bank's Tier 1 capital, Tier 2 capital under the limits per-
mitted by the 1988 Accord, and Tier 3 capital, consisting of short-term subordinated debt. Tier 
3 capital is permitted to be used for the sole purpose of meeting capital requirements for mar-
ket risks and is subject to certain quantitative limitations.

• Although regular reporting will in principle take place only at intervals (in most countries 
quarterly), banks are expected to manage the market risk in their trading portfolios in such a 
way that the capital requirements are being met on a continuous basis, i.e., at the close of each 
business day.
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V. Supervisory framework for the use of backtesting

 

Backtesting represents the comparison of daily profits and losses with model-generated risk mea-
sures to gauge the quality and accuracy of banks’ risk measurement systems. The backtests to be 
applied compare whether the observed percentage of outcomes covered by the risk measure is con-
sistent with a 99% level of confidence. The backtesting framework should use risk measures cali-
brated to a 1-day holding period. The Committee urges banks to develop the capability to perform 
backtests using both hypothetical (based on the changes in portfolio value that would occur were 
end-of-day positions to remain unchanged) and actual trading outcomes.

The framework adopted by the Committee calculates the number of times that the trading out-
comes are not covered by the risk measures (exceptions) on a quarterly basis using the most recent 
12 months of data. The framework encompasses a range of possible responses which are classified 
into 3 zones. The boundaries are based on a sample of 250 observations.

•

 

Green zone

 

 — the backtesting results do not suggest a problem with the quality or accuracy 
of a bank’s model (only four exceptions are allowed here).

•

 

Yellow zone

 

 — the backtesting results do raise questions, but such a conclusion is not defini-
tive (only 9 exceptions are allowed here). Outcomes in this range are plausible for both accu-
rate and inaccurate models. The number of exceptions will guide the size of potential 
supervisory increases in a firm’s capital requirement. The purpose of the increase in the multi-
plication factor is to return the model to a 99th percentile standard. Backtesting results in the 
yellow zone will generally be presumed to imply an increase in the multiplication factor 
unless the bank can demonstrate that such an increase is not warranted. The burden of proof in 
these situations should not be on the supervisor to prove that a problem exists, but rather 
should be on the bank to prove that their model is fundamentally sound.

•

 

Red zone

 

 — the backtesting results almost certainly indicate a problem with a bank’s risk 
model (10 or more exceptions). If a bank’s model falls here, the supervisor will automatically 
increase the multiplication factor by one and begin investigation.
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A number of the examples in this 

 

Technical Document

 

, are included on the enclosed examples dis-
kette. This diskette contains a Microsoft Excel workbook file containing six spreadsheets and one 
macro file. The workbook can be used under Excel Version 4.0 or higher.

Some of the spreadsheets allow the user to modify inputs in order to investigate different scenar-
ios. Other spreadsheets are non-interactive. In the latter case, the objective is to provide the user 
with a detailed illustration of the calculations. This workbook and user guide is presented to the 
experienced user of Microsoft Excel, although we hope the material is meaningful to less experi-
enced users. Please make a duplicate of the Examples.XLW workbook and save at least one copy 
on your hard drive and at least one copy on a floppy disk. This will allow you to manipulate the 
enclosed spreadsheets without sacrificing their original format.

Opening the Examples.XLW workbook will show the following file structure:

The files listed above are described as follows:

 

CFMapTD.xls & CFMap.xls

 

These two spreadsheets are similar, although CFMap.xls allows the user to change more of the 
inputs in order to investigate different scenarios, or to perform sensitivity analysis. CFMap.xls 
allows provides more vertices to which to map the cash flows. Note that only data in red is change-
able on all spreadsheets.

 

File Section, page Description

 

CFMapTD.xls Section 6.4, page 134 Decomposition of the 10-year benchmark OAT into RiskMetrics vertices

CFMap.xls Section 6.4, page 135 Generic Excel cash flow mapping spreadsheet (users are given flexibility to map 
standard bullet bonds)

FRA.xls Section 6.4, page 136 Mapping and VaR calculation of a 6x12 French franc FRA

FX_Fwd.xls Section 6.4, page 143 Mapping and VaR calculation of a DEM/USD 1-year forward

Str_note.xls Section 6.4, page 139 Mapping and VaR calculation of a 1-year Note indexed to 2-year DEM swap rates

FXBase.xls Section 8.4, page 183 Generic calculator to convert U.S. dollar based volatilities and correlations to an-
other base currency

Examples.XLM Macro sheet that links to buttons on the various spreadsheets
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In CFMapTD.xls, Example Part 1 illustrates the mapping of a single cash flow, while Example 
Part II illustrates the mapping of the entire bond.

To begin mapping on either spreadsheet, enter your chosen data in all cells that display red font. 
Then click the “Create cash flows” button. Wait for the macro to execute, then click the “Map the 
cash flows to vertices” button to initiate the second macro, which executes for the final output of 
Diversified Value at Risk, Market Value, and Percentage of market value. If you wish to print the 
cash flow mapping output, simply click the “Print Mapping” macro button. 

 

FRA.xls

 

This Forward Rate Agreement example is for illustrative purposes only. We encourage the user, 
however, to manipulate the spreadsheet is such a way as to increase it’s functionality. Changing 
any spreadsheet, of course, should be done after creating a duplicate workbook. 

In this spreadsheet, cells are named so that formulae show the inputs to their respective calcula-
tions. This naming convention, we hope, increases user friendliness. For example, looking at cell 
C21 shows the calculation for the FRA rate utilizing the data in 1. Basic Contract Data and data 
under the Maturity column under 2. FRA Mapping and VaR on 6-Jan-95.

Cells are named according to the heading under which they fall, or the cell to their left that best 
describes the data. For example, cell B30 is named Maturity_1, while cell K32 is named 
Divers_VaR_1. Also note that the RiskMetrics Correlations are named in two-dimensional arrays: 
cells L30:M31 are named Corr_Matrx_1, while cells L40:N42 are named Corr_Matrx_2.

If you have any confusion about the naming convention, simply go to the 

 

Formula Define name…

 

 
command. The 

 

Define Name

 

 dialogue box will appear, where the cell names are listed in alphabet-
ical order along with their respective cell references.

The cells containing the individual VaR calculations (K30, K31, K40, K41, K42) contain the abso-
lute value of the value at risk. In order to calculate the Diversified VaR, however, in cells K32 and 
K43, we have placed the actual VaR values to the right of the correlation matrices. If you go to cell 
K32, you will see that the formula makes use of VaR_Array_1, which refers to cells O31:O32. 
This VaR array contains the actual values of VaR_1 and VaR_2, which are essential to calculating 
the Divers_VaR_1. Cells O31 and O32 are formatted in white font in order to maintain the clarity 
of the spreadsheet. Similarly, the calculation in cell K43 utilizes VaR_Array_2, found in cells 
O40:O42.

 

FX_Fwd.xls

 

This spreadsheet offers some interaction whereby the user can enter data in all red cells.

Before examining this spreadsheet, please review the names of the cells in the 1. Basic contract 
data section in order to better understand the essential calculations. If you have any confusion 
about the naming convention, simply go to the 

 

Formula Define name…

 

 command. The 

 

Define 
Name

 

 dialogue box will appear, where the cell names are listed in alphabetical order along with 
their respective cell references.

Please note that the Diversified Value at Risk calculation utilizes the var_array input, which refers 
to cells I33:I35. These cells are formatted in white font in order to maintain the clarity of the 
worksheet.
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Str_note.xls

 

This spreadsheet is for illustrative purposes only. Again, we encourage the user to format the 
spreadsheet for custom use.

Please notice that the Diversified VaR calculations make use of VaR_Array1 and VaR_Array2. 
VaR_Array1 references cells N26:N28, while VaR_Array2 references cells O37:O40. These two 
arrays are formatted in white font in order to maintain the clarity of the worksheet.

If you have any confusion about the naming convention, simply go to the 

 

Formula Define name…

 

 
command. The 

 

Define Name

 

 dialogue box will appear, where the cell names are listed in alphabet-
ical order along with their respective cell references.
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RiskMetrics home pages on the Internet are currently located at

 

http://www.jpmorgan.com/RiskManagement/RiskMetrics/RiskMetrics.html

 

and 

 

http://www.riskmetrics.reuters.com

 

The RiskMetrics home page on the Reuters Web is located at:

 

http://riskmetrics.session.rservices.com

 

The Internet can be accessed through such services as CompuServe

 



 

, Prodigy

 



 

, or America

 



 

 
Online, or through service providers by using browsers such as Netscape

 



 

 Navigator, Microsoft

 



 

 
Internet Explorer, Mosaic or their equivalents. The Reuters Web is available with the Reuters 3000 
series.

RiskMetrics data sets can be downloaded from the Internet and from the Reuters Web. 
RiskMetrics documentation and a listing of third parties, both consultants and software developers 
who incorporate RiskMetrics methodology and/or data sets, are also freely available from these 
sites or from local Reuters offices. Users can receive e-mail notification of new publications or 
other information relevant to RiskMetrics by registering at the following address:

 

http://www.jpmorgan.com/RiskManagement/RiskMetrics/rmform.html

 

Note that URL addresses are subject to change.

 

H.1  Data sets

 

RiskMetrics data sets are updated daily on the Internet at 

 

http://www.riskmetrics.reuters.com 

 

and 
on the Reuters Web at 

 

http://riskmetrics.session.rservices.com.

 

The data sets are available by 10:30 a.m. U. S. Eastern Standard Time. They are based on the pre-
vious day’s data through close of business, and provide the latest estimates of volatilities and cor-
relations for daily and monthly horizons, as well as for regulatory requirements.

The data sets are not updated on official U.S. holidays. For these holidays, foreign market data is 
included in the following business day’s data sets; U.S. market data is adjusted according to the 
Expectation Maximization (EM) algorithm described in Section 8.25. EM is also used in a consis-
tent fashion for filling in missing data in other markets.

The data sets are supplied in compressed file format for DOS, Macintosh, and UNIX platforms. 
The DOS and Macintosh files are auto-extracting, i.e., the decompression software is enclosed in 
the file.
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On the same page as the data sets is the Excel add-in, which enables users to perform DEaR/VaR 
calculations on other than a US dollar currency basis. The add-in allows users full access to the 
data sets when building customized spreadsheets. Current rate, price volatility, and correlation of 
specified pairs can be returned. The add-in was compiled in 16 bit and runs under Excel 4.0 and 
5.0. It does not run under Windows NT. The name of the add-in is JPMVAR for the Mac and 
JPMVAR.XLL for the PC. It has an expiration date of November 1, 1997.

 

H.2  Publications

 

http://www.jpmorgan.com/RiskManagement/riskMetrics/pubs.html

 

The annual 

 

RiskMetrics—Technical Document

 

, the quarterly 

 

Monitor

 

 and all other RiskMetrics 
documents are available for downloading in Adobe Acrobat pdf file format. Adobe Acrobat Reader 
is required to view these files. It can be downloaded from 

 

http://www.adobe.com

 

. 

RiskMetrics documents are also available from your local Reuters office.

 

H.3  Third parties

 

http://www.jpmorgan.com/RiskManagement/RiskMetrics/Third_party_directory.html

 

Setting up a risk management framework within an organization requires more than a quantitative 
methodology. A listing of several consulting firms who have capital advisory practices to help 
ensure the implementation of effective risk management and system developers who have inte-
grated RiskMetrics methodology and/or data sets is available for viewing or saving as a file.

Users should be able to choose from a number of applications that will achieve different goals, 
offer various levels of performance, and run on a number of different platforms. Clients should 
review the capabilities of these systems thoroughly before committing to their implementation. 

 

J. P. Morgan and Reuters do not endorse the products of these third parties nor do they war-
rant their accuracy in the application of the RiskMetrics methodology 

 

and in the use of the 
underlying data accompanying it.
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Glossary of terms

 

absolute market risk.  

 

Risk associated with the change in value of a position or a portfolio result-
ing from changes in market conditions i.e., yield levels or prices.

 

adverse move X.  

 

Defined in RiskMetrics as 1.65 times the standard error of returns. It is a mea-
sure of the most the return will move over a specified time period.

 

ARCH.  

 

 Autoregressive Conditional Heteroskedascticity. A time series process which models 
volatility as dependent on past returns. GARCH—Generalized ARCH, models volatility as a func-
tion of past returns and past values of volatility. EGARCH—Exponential GARCH, IGARCH— 
Integrated GARCH. SWARCH—Switching Regime ARCH.

 

autocorrelation (serial correlation).   

 

When observations are correlated over time. In other 
words, the covariance between data recorded on the same series sequentially in time is non-zero.

 

beta.  

 

A volatility measure relating the rate of return on a security with that of its market over 
time. It is defined as the covariance between a security’s return and the return on the market port-
folio divided by the variance of the return of the market portfolio.

 

bootstrapping.  

 

 A method to generate random samples from the observed data’s underlying, pos-
sibly unknown, distribution by randomly resampling the observed data. The generated samples 
can be used to compute summary statistics such as the median. In this document, bootstrapping is 
used to show monthly returns can be generated from data which are sampled daily. 

 

CAPM.  

 

Capital Asset Pricing Model. A model which relates the expected return on an asset to the 
expected return on the market portfolio.

 

Cholesky factorization/decomposition.  

 

A method to simulation of multivariate normal returns 
based on the assumption that the covariance matrix is symmetric and positive-definite. 

 

constant maturity.  

 

The process of inducing fixed maturities on a time series of bonds. This is 
done to account for bonds “rolling down” the yield curve.

 

decision horizon.  

 

The time period between entering and unwinding or revaluing a position. Cur-
rently, RiskMetrics offers statistics for 1-day and 1-month horizons.

 

decay factor.   

 

See lambda.

 

delta equivalent cash flow.  

 

In situations when the underlying cash flows are uncertain (e.g. 
option), the delta equivalent cash flow is defined as the change in an instrument's fair market value 
when its respective discount factor changes. These cash flows are used to find the net present value 
of an instrument. 

 

delta neutral cash flows.  

 

These are cash flows that exactly replicate a callable bond’s sensitivity 
to shifts in the yield curve. A single delta neutral cash flow is the change in the price of the callable 
bond divided by the change in the value of the discount factor.

 

duration (Macaulay).  

 

The weighted average term of a security’s cash flow.

 

EM algorithm.  

 

A statistical algorithm that can estimate parameters of a function in the presence 
of incomplete data (e.g. missing data). EM stands for Expectation Maximization. Simply put, the 
missing values are replaced by their expected values given the observed data.
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exponential moving average.  

 

Applying weights to a set of data points with the weights declining 
exponentially over time. In a time series context, this results in weighing recent data more than the 
distant past.

 

GAAP.  

 

Generally Accepted Accounting Principles.

 

historical simulation.  

 

A non-parametric method of using past data to make inferences about the 
future. One application of this technique is to take today’s portfolio and revalue it using past his-
torical price and rates data.

 

kurtosis.  

 

Characterizes relative peakedness or flatness of a given distribution compared to a nor-
mal distribution.

 

1

 

Since the unconditional normal distribution has a kurtosis of 3, excess kurtosis is defined as 

 

K

 

x

 

-3.

 

λ

 

 lambda (decay factor).  

 

The weight applied in the exponential moving average. It takes a value 
between 0 and 1. In the RiskMetrics lambda is 0.94 in the calculation of volatilities and correla-
tions for a 1-day horizons and 0.97 for 1-month horizon.

 

leptokurtosis (fat tails).  

 

The situation where there are more occurrences far away from the mean 
than predicted by a standard normal distribution.

 

linear risk (nonlinear).  

 

 For a given portfolio, when the underlying prices/rates change, the 
incremental change in the payoff of the portfolio remains constant for all values of the underlying 
prices/rates. When this does not occur, the risk is said to be nonlinear.

 

log vs. change returns.  

 

For any price or rate 
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, log return is defined as ln (
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) whereas the 
change return is defined by (
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), these two types of 
returns give very similar results. Also, both expressions can be converted to percentage 
returns/changes by simply multiplying them by 100.

 

mapping.  

 

The process of translating the cash flow of actual positions into standardized position 
(vertices). Duration, Principal, and cash flow.

 

mean.  

 

A Measure of central tendency. Sum of daily rate changes divided by count

 

mean reversion.  

 

When short rates will tend over time return to a long-run value.

 

modified duration.  

 

An indication of price sensitivity. It is equal to a security’s Macaulay dura-
tion divided by one plus the yield.

 

outliers.  

 

Sudden, unexpectedly large rate or price returns.

 

1

 

We would like to thank Steven Hellinger of the New York State Banking Department for pointing this formula out 
for us.
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overlapping data.  

 

Consecutive returns that share common data points. An example would be 
monthly returns (25-day horizon) computed on a daily basis. In this instance adjacent returns share 
24 data points.

 

nonparametric.  

 

Potential market movements are described by assumed scenarios, not statistical 
parameters.

 

parametric.  

 

When a functional form for the distribution a set of data points is assumed. For 
example, when the normal distribution is used to characterize a set of returns.

 

principle of expected return.  

 

The expected total change in market value of the portfolio over the 
evaluation period.

 

relative market risk.  

 

Risk measured relative to an index or benchmark

 

residual risk.  

 

The risk in a position that is issue specific.

 

skewness.  

 

Characterizes the degree of asymmetry of the distribution around its mean. Positive 
skews indicate asymmetric tail extending toward positive values (right-hand side). Negative skew-
ness implies asymmetry toward negative values (left-hand side).

 

speed of adjustment.  

 

A parameter used in modelling forward rates. It is estimated from past data 
on short rates. A fast speed of adjustment will result in a forward curve that approaches the long-
run rate at a relatively short maturity.

 

stochastic volatility.  

 

Applied in time series models that take volatility as an unobservable random 
process. Volatility is often modeled as a first order autoregressive process.

 

standard deviation

 

. Indication of the width of the distribution of changes around the mean. 

 

Structured Monte Carlo.  

 

Using the RiskMetrics covariance matrix to generate random normal 
variates to simulate future price scenarios.

 

total variance.  

 

The variance of the market portfolio plus the variance of the return on an individ-
ual asset.

 

zero mean.  

 

When computing sample statistics such as a variance or covariance, setting the mean 
to a prior value of zero. This is often done because it is difficult to get a good estimate of the true 
mean.
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Look to the  J.P. Morgan site on the Internet for 
updates of these examples or useful new tools.

If there is not a diskette in the pocket below, the 
examples it contains are available from the Internet 
web pages.

 

http://www.jpmorgan.com/RiskManagement/Risk-
Metrics/pubs.html

 

The enclosed Excel workbook is intended as a demontration of the 
RiskMetrics market risk management methodology and volatility and 
correlation datasets. The worksheets have been designed as an educa-
tional tool and should not be used for the risk estimation of acutual 
portfolios. Clients should contact firms specialized int he design of 
risk management software for the implementation of a market risk 
estimation system. If you have any questions about the use of this 
workbook contact your local J.P.Morgan representative or:

 

North America

 

New York Scott Howard (1-212) 648-4317
howard_james_s@jpmorgan.com

 

Europe

 

London Guy Coughlan(44-171) 

 

325-5384

 

coughlan_g@jpmorgan.com

 

Asia

 

Singapore Michael Wilson (65) 326-9901
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 is based on, but differs significantly from, the market risk management systems developed by J.P. Morgan for its own use. J.P. Morgan does not warrant any results 
obtained from use of the RiskMetrics
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 data, methodology, documentation or any information derived from the data (collectively the “Data”) and does not guarantee its sequence, 
timeliness, accuracy, completeness or continued availability. The Data is calculated on the basis of historical observations and should not be relied upon to predict future market 
movements. The Data is meant to be used with systems developed by third parties. J.P. Morgan does not guarantee the accuracy or quality of such systems.

 

Additional information is available upon request. Information herein is believed to be reliable, but J.P. Morgan does not warrant its completeness or accuracy. Opinions and estimates constitute our judgement and are 
subject to change without notice. Past performance is not indicative of future results. This material is not intended as an offer or solicitation for the purchase or sale of any financial instrument. J.P. Morgan may hold a 
position or act as market maker in the financial instruments of any issuer discussed herein or act as advisor or lender to such issuer. Morgan Guaranty Trust Company is a member of FDIC and SFA. Copyright 1996 J.P. 
Morgan & Co. Incorporated. Clients should contact analysts at and execute transactions through a J.P. Morgan entity in their home jurisdiction unless governing law permits otherwise.
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 products

 

Introduction to RiskMetrics

 



 

:

 

  An eight-page document that 
broadly describes the RiskMetrics

 



 

 methodology for 
measuring market risks.

 

RiskMetrics
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 Directory:

 

  Available exclusively on-line, a list 
of consulting practices and software products that incorporate 
the RiskMetrics

 



 

 methodology and data sets.
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—Technical Document:  

 

A manual describing 
the RiskMetrics

 



 

 methodology for estimating market risks. It 
specifies how financial instruments should be mapped and 
describes how volatilities and correlations are estimated in 
order to compute market risks for trading and investment 
horizons. The manual also describes the format of the volatility 
and correlation data and the sources from which daily updates 
can be downloaded. 
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 Monitor:

 

  A quarterly publication that 
discusses broad market risk management issues and statistical 
questions as well as new software products built by third-party 
vendors to support RiskMetrics

 



 

.

 

RiskMetrics

 



 

 data sets:

 

  Two sets of daily estimates of future 
volatilities and correlations of approximately 480 rates and 
prices, with each data set totaling 115,000+ data points. One set 
is for computing short-term trading risks, the other for medium-
term investment risks. The data sets currently cover foreign 
exchange, government bond, swap, and equity markets in up to 
31 currencies. Eleven commodities are also included.
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 Regulatory data set, which incorporates the 
latest recommendations from the Basel Committee on the use 
of internal models to measure market risk, is also available.
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For more information about RiskMetrics
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, please contact the 
authors or any other person listed below.
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coughlan_g@jpmorgan.com
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fransolet_l@jpmorgan.com

 

Paris Ciaran O’Hagan (33-1) 4015-4058

 

ohagan_c@jpmorgan.com

 

Frankfurt Robert Bierich (49-69) 712-4331

 

bierich_r@jpmorgan.com

 

Milan Roberto Fumagalli (39-2) 774-4230

 

fumagalli_r@jpmorgan.com

 

Madrid Jose Antonio Carretero (34-1) 577-1299

 

carretero@jpmorgan.com

 

Zurich Viktor Tschirky (41-1) 206-8686
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Asia

 

Singapore Michael Wilson (65) 326-9901

 

wilson_mike@jpmorgan.com

 

Tokyo Yuri Nagai (81-3) 5573-1168
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Hong Kong Martin Matsui (85-2) 973-5480
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robertson_d@jpmorgan.com


