Academy of Economic Studies Bucharest Doctoral School of Finance and Banking

Dissertation Paper

Testing for Informational Efficiency on the Romanian Capital Market

SupervisorPhD. Professor Moisa Altar

M. Sc. Student Adrian Codirlaşu

Contents

1. INTRODUCTION	3
2. TESTS FOR RANDOM WALK HYPOTHESIS	5
2.1. Unit Root Tests and Dependence Tests for the Romanian Capital Market 2.1.1. BET Index 2.1.2. BETC Index 2.1.3. RASDAQC Index	7 7 9 12
2.2. Implications of Nonrandom Walks 2.2.1. Volatility 2.2.2. Betas	14 14 16
3. TESTS FOR THE WEAK FORM OF MARKET EFFICIENCY	17
3.1. Seasonality of Returns	17
3.2. Tests of the Trading Rules 3.2.1. Tests of the Filter Rules 3.2.1. Tests of Moving Average Rules	20 20 21
4. TESTS FOR THE SEMI-STRONG FORM OF MARKET EFFICIENCY	23
4.1. The Response of Stock Prices to the Announcement of a Stock Split	23
4.2. The Response of the Stock Prices after a New Company is Listed on a Stock Exchange	29
5. TESTS FOR THE STRONG FORM OF MARKET EFFICIENCY	32
6. ALTERNATIVES TO THE EFFICIENT MARKET HYPOTHESIS	35
BIBLIOGRAPHY	36

1. Introduction

Several very important implications for security valuation are derived from the theory of market efficiency.

The main premises of an efficient market are: first assumption is that the market consists of a large number of profit-maximizing agents who operate independently and, in order to achieve their goals, they analize and valuate stocks. A second assumption is that new information concerning securities comes to the market in a random way, and anouncements over time are generally independent from one another. A third assumption is that investors adjust security prices rapidly in order to reflect the effect of arrival of new information. The adjustment of the security prices takes place rapidly because of the large number of profit-maximizing agents. The joint effect of information comming in a random, independent way and the numerous investors who adjust stock prices rapidly in order to reflect the arrival of new information is that the price changes should be independent and random, so, according to the efficient market hypothesis, they should reflect all available information, including the risk involved.

According to Eugene Fama¹, taking into account the way the different types of information are reflected in securities prices, there are three forms of market efficiency: the weak form, the semi-strong form and the strong form.

Under the weak form of the efficient market hypothesis, stock prices are assumed to reflect any information contained in the historical stock price. If this hypothesis is true, a trader cannot obtain abnormal profit (profit above the average) by taking into account only the historical stock price, because information set is already included in the stock price. As a result, technical analysis or charting becomes ineffective. In this situation it is said that the stock price's movements are random walk.

Under the semi-strong form of the efficient market hypothesis, all publicly available information is presumed to be reflected in the securities' price. This includes information in the stock price series as well as information in the firm's accounting reports, the reports of competing firms, announced information relating to the state of the economy, and any other publicly available information relevant to the valuation of a firm. Again, if a trader takes into account only all available information, he/she cannot obtain abnormal profit, because all

_

¹ Fama, Eugene F. (1970); "Efficient Capital Markets: a Review of Theory and Empirical Work"; The Journal of Finance

available information set is already included in the stock prices. As a result, fundamental analysis becomes ineffective.

The strong form of the efficient market hypothesis takes the notion of market efficiency to the ultimate extreme. If this form of efficiency is true, all information is reflected in the stock prices. This includes private, or inside information as well as that which is publicly available. Under this form, those who acquire inside information, act on it and quickly force the price to reflect the information. But, the initial acquisition of new pieces of this information is a matter of chance, and since the stock prices already reflect the existing inventory of inside information, an investor cannot obtain above the average returns.

In the next chapters I test the validity of those three forms of informational market efficiency on the Romanian capital market.

In chapter two I test the random walk hypothesis and the implication of the validity of this assumption on estimating risk and volatility. The random walk model of stock prices generates several important implications for practitioners. Two of them are: First, that stock returns should follow a Normal distribution; and second, that the risk of a security should scale proportionally to the square root of time (the $T^{\frac{1}{2}}$ rule). The first implication is important because investors need to assume a given distribution in order to estimate the risk of their securities. The second implication is important because it says that investors can estimate the risk of a security in any time interval, and subsequently estimate the implied risk in any other time interval through a linear rescaling.

The third chapter presents tests of the weak form of market efficiency: tests for seasonality of market returns, tests of the efficiency of using transactions rules. These tests show whether or not an investor can obtain abnormal profit using only the information provided by the history of the stock prices.

In the forth chapter, there are tests for the semi-strong form of market efficiency. Some of the best moments to test whether or not all the publicly available information are reflected in the stock prices are by looking at the return of the stock before and after a stock split and also by looking at the evolution of the stock market prices of a company after it becomes publicly traded on a stock market.

In the fifth chapter I perform a test of the strong form of market efficiency. I assume that, if the market were strong form efficient, a professional portfolio manager couldn't obtain abnormal returns only if he/she used insider information.

2. Tests for Random Walk Hypothesis

The definition of a random walk is: $y_t = y_{t-1} + \varepsilon_t$, where y_t is a time series and ε is a stationary random disturbance term. The series y has a constant forecast value, conditional on t, and the variance is increasing over time. The random walk is a difference stationary series since the first difference of y is stationary: $y_t - y_{t-1} = (1 - L)y = \varepsilon_t$. A difference stationary series is said to be integrated and is denoted as I(d) where d is the order of integration. The order of integration is the number of unit roots contained in the series, or the number of differencing operations it takes to make the series stationary. For the random walk above, there is one unit root, so it is an I(1) series. Similarly, a stationary series is I(0).

This condition is not sufficient for a time series to be random walk. The other conditions are: the error term is normally distributed and there is no linear or non-linear correlation between the error terms. For a series of stock market prices, y_t is the logarithm of the stock prices series, and, as a result, the first difference $y_t - y_{t-1}$ is the series of returns.

I test in this part whether stock prices behave as a random walk using the three main indexes on the Romanian stock markets: the BET Index, the index which take into account the evolution of the ten most liquid companies on the Bucharest Stock Market; the BETC Index, which is the composite index of the Bucharest Stock Exchange and the RASDAQC Index, the composite index of the Romanian OTC market – RASDAQ.

The first step in analysis consists in testing for a unit root in the time series. For testing, I used Augmented Dickey-Fuller and Phillips-Perron tests. Because the results of those tests were similar, I will present only the result of the Augmented Dickey-Fuller test.

To illustrate the use of Dickey-Fuller tests, consider first an AR(1) process: $y_t = \mu + \varphi y_{t-1} + \varepsilon_t$, where μ and φ are parameters and ε_t is assumed to be white noise. y is a stationary series if $-1 < \varphi < 1$. If $\varphi = 1$, y is a non-stationary series. If the absolute value of φ is greater than one, the series is explosive. The difference between a unit root (non-stationary) series and a stationary series is that in a stationary series, a random shock will be absorbed in time, but in a unit root series, a random shock will never be absorbed. The test, performed with Eviews 3.0 will return an *ADF Test Statistic*, which is the t test for rejecting the null hypothesis (the series is unit root). To reject the null hypothesis, the value of the t statistic must be less than the critical value for the chosen significance level.

Then I test if the returns are normally distributed, and if there is or not linear or non-linear correlation between the error terms (stock returns).

For linear dependence I used those two regressions: $\ln(I_t) = \mu + \rho \ln(I_{t-1}) + \varepsilon_t$ and $\varepsilon_t = \phi_0 + \phi_1 \varepsilon_{t-1}$, where I_t is the value of an index in day t. In order to exist linear dependence, ϕ_1 should be statistical significant. This is equivalent to an ARMA(1,1) process for $\ln(I_t)$.

For nonlinear dependence I tested whether or not the returns are a GARCH(p,q) process. The form of a GARCH(p,q) model is:

$$r_{t} = \beta_{0} + \beta L(r_{t}) + \varepsilon_{t}$$

$$\varepsilon_{t} \approx N(0, h_{t})$$

$$h_{t} = \alpha_{0} + \alpha(L)\varepsilon_{t}^{2} + \gamma(L)h_{t}.$$

The finding that stock prices do not follow a random walk has implications on volatility and betas. If stock prices do not follow a random walk, the volatility cannot be estimated through a linear rescaling (the $T^{\frac{1}{2}}$ rule). In reality, the monthly volatility (computed on the monthly returns) is greater than the volatility computed through a linear rescaling. The betas, under the random walk hypothesis, should be independent from the frequency of the data used to compute them. But in reality the monthly betas are larger than the daily betas, so the investors would underestimate the systematic risk.

2.1. Unit Root Tests and Dependence Tests for the Romanian Capital Market

2.1.1. BET Index²

ADF Test

Level:

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(LOGBET)

Method: Least Squares Sample(adjusted): 6 634

Included observations: 629 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOGBET(-1)	-0.004597	0.002958	-1.554272	0.1206
D(LOGBET(-1))	0.354188	0.040026	8.848942	0.0000
D(LOGBET(-2))	-0.077318	0.042429	-1.822281	0.0689
D(LOGBET(-3))	0.070805	0.042432	1.668666	0.0957
D(LOGBET(-4))	-0.020733	0.039994	-0.518410	0.6044
С	0.027353	0.019316	1.416050	0.1573
@TREND(1)	2.26E-06	5.26E-06	0.430762	0.6668
R-squared	0.122965	Mean dependent var		-0.000993
Adjusted R-squared	0.114505	S.D. depend	dent var	0.022728
S.E. of regression	0.021388	Akaike info	criterion	-4.840945
Sum squared resid	0.284521	Schwarz crit	terion	-4.791487
Log likelihood	1529.477	F-statistic		14.53465
Durbin-Watson stat	1.998541	Prob(F-statistic)		0.000000
				-
First difference:				
ADF Test Statistic	-10.07556	1% Critical	Value*	-3.9772
		5% Critical	Value	-3.4191
		10% Critical	Value	-3.1318

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGBET,2)

Method: Least Squares Sample(adjusted): 7 634

Included observations: 628 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOGBET(-1))	-0.668346	0.066333	-10.07556	0.0000
D(LOGBET(-1),2)	0.021817	0.061792	0.353069	0.7242
D(LOGBET(-2),2)	-0.058797	0.055900	-1.051819	0.2933
D(LOGBET(-3),2)	0.010590	0.047753	0.221773	0.8246
D(LOGBET(-4),2)	-0.017336	0.040054	-0.432810	0.6653
С	-0.002580	0.001751	-1.472882	0.1413
@TREND(1)	5.92E-06	4.75E-06	1.244252	0.2139
R-squared	0.340371	Mean deper	ndent var	-3.39E-05
Adjusted R-squared	0.333997	S.D. depend	dent var	0.026268

_

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

² For analysis were used the daily average values of the BET index between 09/22/1997 – 04/28/2000

S.E. of regression	0.021437	Akaike info criterion	-4.836315
Sum squared resid	0.285377	Schwarz criterion	-4.786797
Log likelihood	1525.603	F-statistic	53.40629
Durbin-Watson stat	_ 1.998072_	Prob(F-statistic)	_ 0.000000

Linear dependence – ARMA(1,1):

Dependent Variable: LOGBET Method: Least Squares Sample(adjusted): 2 634

Included observations: 633 after adjusting endpoints

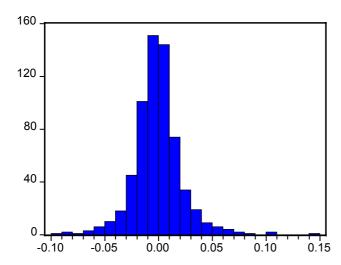
Convergence achieved after 20 iterations

Backcast: 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.999812	0.000183	5456.451	0.0000
MA(1)	0.350380	0.037265	9.402281	0.0000
R-squared	0.995607	Mean dependent var		6.257467
Adjusted R-squared	0.995600	S.D. dependent var		0.322649
S.E. of regression	0.021402	Akaike info criterion		-4.847542
Sum squared resid	0.289018	Schwarz criterion		-4.833480
Log likelihood	1536.247	F-statistic		143011.1
Durbin-Watson stat	1.983114	Prob(F-statistic)		0.000000
Inverted AR Roots	1.00			
Inverted MA Roots	35			

Nonlinear dependence: GARCH(1,1):

Dependent Variable: BETRETURN Method: ML - ARCH Sample(adjusted): 2 634


Included observations: 633 after adjusting endpoints

Convergence achieved after 24 iterations

Backcast: 1

	Coefficient	Std. Error	z-Statistic	Prob.
MA(1)	0.339386	0.045178	7.512279	0.0000
	Variance	Equation		
С	0.000133	2.00E-05	6.640666	0.0000
ARCH(1)	0.347547	0.051757	6.714986	0.0000
GARCH(1)	0.385771	0.071764	5.375574	0.0000
R-squared	0.112288	Mean deper	ndent var	-0.001040
Adjusted R-squared	0.108054	S.D. depend	dent var	0.022718
S.E. of regression	0.021455	Akaike info	criterion	-5.011506
Sum squared resid	0.289544	Schwarz crit	terion	-4.983383
Log likelihood	1590.142	F-statistic		26.52101
Durbin-Watson stat	1.957779	Prob(F-statis	stic)	0.000000
Inverted MA Roots	34			

Distribution of returns:

Series: BETRETURN Sample 1 634 Observations 634				
Mean	-0.000803			
Median	-0.001506			
Maximum	0.146352			
Minimum	-0.092848			
Std. Dev.	0.022815			
Skewness	0.648790			
Kurtosis	8.438426			
Jarque-Bera	825.7901			
Probability	0.000000			

According to the unit root test, BET is an I(1) series. According to the linear dependence test, there is linear dependence between the returns. Also, BET is a GARCH(1,1) process. The distribution of the returns in not Normal, but Leptokurtotik. So, the BET series is not random walk.

2.1.2. BETC Index³

ADF test

Level

		10 /6 Chilical Value	-3.1329
		10% Critical Value	-3.1329
		5% Critical Value	-3.4209
ADF Test Statistic	-2.565282	1% Critical Value*	-3.9810

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGBETC)

Method: Least Squares Sample(adjusted): 6 496

Included observations: 491 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
LOGBETC(-1)	-0.009616	0.003749	-2.565282	0.0106
D(LOGBETC(-1))	0.341672	0.045161	7.565639	0.0000
D(LOGBETC(-2))	-0.086600	0.047562	-1.820772	0.0693
D(LOGBETC(-3))	0.101429	0.047586	2.131485	0.0336
D(LOGBETC(-4))	-0.013976	0.045148	-0.309569	0.7570
С	0.059319	0.024380	2.433058	0.0153
@TREND(1)	1.27E-06	5.66E-06	0.225014	0.8221
R-squared	0.136118	Mean deper	ndent var	-0.001616
Adjusted R-squared	0.125409	S.D. dependent var		0.016490
S.E. of regression	0.015421	Akaike info	criterion	-5.492013

-

³ For analysis were used the daily average values of the BETC index between 04/17/1998 – 04/28/2000

Sum squared resid	0.115099	Schwarz criterion	-5.432186
Log likelihood	1355.289	F-statistic	12.71027
Durbin-Watson stat	1.997414	Prob(F-statistic)	_0.000000
First difference: ADF Test Statistic	-8.127661	1% Critical Value* 5% Critical Value 10% Critical Value	-3.9810 -3.4209 -3.1329

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGBETC,2)

Method: Least Squares Sample(adjusted): 7 496

Included observations: 490 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOGBETC(-1))	-0.605114	0.074451	-8.127661	0.0000
D(LOGBETC(-1),2)	-0.048083	0.069967	-0.687219	0.4923
D(LOGBETC(-2),2)	-0.143968	0.063684	-2.260676	0.0242
D(LOGBETC(-3),2)	-0.035349	0.054191	-0.652302	0.5145
D(LOGBETC(-4),2)	-0.078532	0.045353	-1.731573	0.0840
C	-0.002838	0.001465	-1.936486	0.0534
@TREND(1)	7.46E-06	5.03E-06	1.482928	0.1387
R-squared	0.351464	Mean dependent var		1.22E-05
Adjusted R-squared	0.343407	S.D. dependent var		0.019119
S.E. of regression	0.015492	Akaike info criterion		-5.482810
Sum squared resid	0.115920	Schwarz criterion		-5.422889
Log likelihood	1350.288	F-statistic		43.62569
Durbin-Watson stat	2.005809	Prob(F-stati	stic)	0.000000

Linear dependence – ARMA(1,1)

Dependent Variable: LOGBETC

Method: Least Squares Date: 06/21/00 Time: 14:07 Sample(adjusted): 2 496

Included observations: 495 after adjusting endpoints

Convergence achieved after 28 iterations

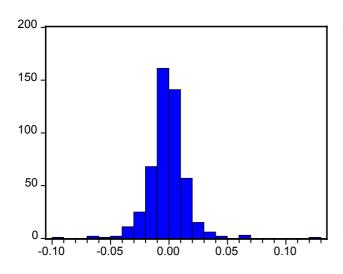
Backcast: 1

Variable	Coefficient	Std. Error	t-Statistic	Prob.
AR(1)	0.999735	0.000149	6703.698	0.0000
MA(1)	0.354569	0.042117	8.418717	0.0000
R-squared	0.994927	Mean dependent var		6.316295
Adjusted R-squared	0.994917	S.D. dependent var		0.217279
S.E. of regression	0.015491	Akaike info criterion		-5.493087
Sum squared resid	0.118305	Schwarz criterion		-5.476099
Log likelihood	1361.539	F-statistic		96693.63
Durbin-Watson stat	1.995409	Prob(F-statistic)		0.000000
Inverted AR Roots	1.00			
Inverted MA Roots	<u>-</u> .35			

Nonlinear dependence GARCH(2,2)

Dependent Variable: BETCRETURN

Method: ML - ARCH Sample(adjusted): 4 496


Included observations: 493 after adjusting endpoints

Convergence achieved after 30 iterations

Backcast: 3

	Coefficient	Std. Error	z-Statistic	Prob.
AR(2)	0.232879	0.052134	4.466965	0.0000
MA(1)	0.535703	0.046905	11.42094	0.0000
	Variance	Equation		
С	7.99E-05	2.07E-05	3.858708	0.0001
ARCH(1)	0.617498	0.055781	11.06999	0.0000
ARCH(2)	0.270288	0.124595	2.169332	0.0301
GARCH(1)	-0.332439	0.154726	-2.148568	0.0317
GARCH(2)	0.220903	0.064907	3.403356	0.0007
R-squared	0.076346	Mean deper	ndent var	-0.001617
Adjusted R-squared	0.064943	S.D. depend	dent var	0.016458
S.E. of regression	0.015915	Akaike info	criterion	-5.824164
Sum squared resid	0.123097	Schwarz cri	terion	-5.764521
Log likelihood	1442.656	F-statistic		6.695178
Durbin-Watson stat	2.321493	Prob(F-stati	stic)	0.000001
Inverted AR Roots	.48	48		
Inverted MA Roots	<u>-</u> .54			

Distribution of returns:

Series: BETCRETURN							
Sample 1 496							
Observations 4	196						
Mean	-0.001401						
Median	-0.001308						
Maximum	0.126898						
Minimum	-0.092961						
Std. Dev.	0.016492						
Skewness	0.674539						
Kurtosis	14.11037						
Jarque-Bera	2588.714						
Probability	0.000000						

According to the unit root test, BETC is an I(1) series. According to the linear dependence test, there is linear dependence between the returns. Also, BETC is a GARCH(2,2) process. The distribution of the returns in not Normal, but Leptokurtotik. So, the BETC series is not random walk.

2.1.3. RASDAQC Index

ADF Test

Level

ADF Test Statistic -3.504723 1% Critical Value* -3.9842 5% Critical Value -3.4224 10% Critical Value -3.1338

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGRASDAQC)

Method: Least Squares Sample(adjusted): 6 421

Included observations: 416 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.	
LOGRASDAQC(-1)	-0.050000	0.014267	-3.504723	0.0005	
D(LOGRASDAQC(-1))	-0.227081	0.049070	-4.627689	0.0000	
D(LOGRASDAQC(-2))	0.027667	0.050273	0.550332	0.5824	
D(LOGRASDAQC(-3))	0.071748	0.050292	1.426642	0.1544	
D(LOGRASDAQC(-4))	0.005371	0.048887	0.109859	0.9126	
С	0.330091	0.094820	3.481243	0.0006	
@TREND(1)	2.17E-06	7.99E-06	0.271225	0.7864	
R-squared	0.092747	Mean dep	endent var	-0.000823	
Adjusted R-squared	0.079438	S.D. depe	S.D. dependent var		
S.E. of regression	0.019383	Akaike inf	o criterion	-5.032113	
Sum squared resid	0.153668	Schwarz o	criterion	-4.964289	
Log likelihood	1053.679	F-statistic		6.968601	
Durbin-Watson stat	1.999444	Prob(F-sta	atistic)	0.000000	
First difference:		-			
ADF Test Statistic	-10.05960	1% Critic	al Value*	-3.9842	
		5% Critic	al Value	-3.4224	
		10% Critic	al Value	-3.1338	

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(LOGRASDAQC,2)

Method: Least Squares Sample(adjusted): 7 421

Included observations: 415 after adjusting endpoints

Variable	Coefficient	Std. Error	t-Statistic	Prob.
D(LOGRASDAQC(-1))	-1.295554	0.128788 -10.0596		0.0000
D(LOGRASDAQC(-1),2)	0.047048	0.115149	0.408580	0.6831
D(LOGRASDAQC(-2),2)	0.065977	0.099521	0.662947	0.5077
D(LOGRASDAQC(-3),2)	0.124486	0.078829	1.579180	0.1151
D(LOGRASDAQC(-4),2)	0.093458	0.049310	1.895293	0.0588
С	-0.002301	0.001978	-1.163287	0.2454
@TREND(1)	5.83E-06	8.06E-06	0.723761	0.4696
R-squared	0.628640	Mean dep	endent var	2.25E-05
Adjusted R-squared	0.623179	S.D. depe	ndent var	0.031942
S.E. of regression	0.019608	Akaike inf	o criterion	-5.009035
Sum squared resid	0.156865	Schwarz criterion		-4.941088
Log likelihood	1046.375	F-statistic		115.1106
Durbin-Watson stat	1.967785	Prob(F-sta	atistic)	0.000000

^{*}MacKinnon critical values for rejection of hypothesis of a unit root.

Linear dependence – ARMA(1,1)

Dependent Variable: LOGRASDAQC

Method: Least Squares Sample(adjusted): 2 421

Included observations: 420 after adjusting endpoints

Convergence achieved after 21 iterations

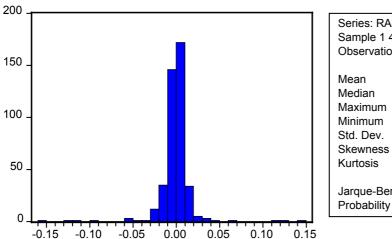
Backcast: 1

Variable	Coefficient	Std. Error t-Statisti		Prob.
AR(1)	0.999869	0.000111	8987.480	0.0000
MA(1)	-0.227423	0.047635	-4.774279	0.0000
R-squared	0.924188	Mean deper	ndent var	6.631046
Adjusted R-squared	0.924007	S.D. depend	dent var	0.070936
S.E. of regression	0.019555	Akaike info	criterion	-5.026448
Sum squared resid	0.159838	Schwarz crit	erion	-5.007208
Log likelihood	1057.554	F-statistic		5095.644
Durbin-Watson stat	2.035363	Prob(F-stati	stic)	0.000000
Inverted AR Roots	1.00			
Inverted MA Roots	.23			

Nonlinear dependence GARCH(1,1)

Dependent Variable: RASDAQRETURN

Method: ML - ARCH Sample(adjusted): 3 421


Included observations: 419 after adjusting endpoints

Convergence achieved after 39 iterations

Backcast: 2

	Coefficient	Std. Error	z-Statistic	Prob.
AR(1)	-0.736256	0.324897	-2.266120	0.0234
MA(1)	0.627347	0.344147	1.822905	0.0683
	Variance	Equation		
С	8.42E-05	1.02E-05	8.295741	0.0000
ARCH(1)	0.374551	0.040243	9.307325	0.0000
GARCH(1)	0.513172	0.045388	11.30643	0.0000
R-squared	0.034994	Mean deper	ndent var	-0.000831
Adjusted R-squared	0.025671	S.D. depend	dent var	0.020131
S.E. of regression	0.019871	Akaike info	criterion	-5.343085
Sum squared resid	0.163476	Schwarz cri	terion	-5.294901
Log likelihood	1124.376	F-statistic		3.753251
Durbin-Watson stat	2.265926	Prob(F-stati	stic)	0.005174
Inverted AR Roots	74	_	_	
Inverted MA Roots	63			

Distribution of returns:

Series: RASDAQCRETURN Sample 1 421 **Observations 421** -0.000682 0.000221 0.146814 -0.155484 0.019917 -0.293185 30.85077 Jarque-Bera 13612.50 0.000000

According to the unit root test, RASDAQC is an *I*(1) series with 5% significance level. According to the linear dependence test, there is linear dependence between the returns. Also, RASDAQC is a GARCH(1,1) process. The distribution of the returns in not Normal, but Leptokurtotik. So, the RASDAQC series is not random walk.

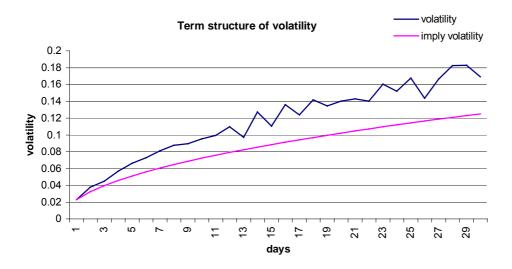
2.2. Implications of Nonrandom Walks

2.2.1. Volatility

If the stock prices do not follow a random walk, estimating volatility through a linear rescaling (the $T^{\frac{1}{2}}$) may be badly misleading. The table below⁴ reports a quantification of the mistakes an investor could make if he or she estimates monthly risk on the basis of daily data.

Symbol	nbol Daily Average S volatility day/month		Square root of time	Imply volatility	Monthly volatility	Relative difference	
ALR	0.03175	21.5	4.6368092	0.147214	0.16122	9.51%	
ARC	0.04834	21.5	4.6368092	0.224155	0.23512	4.89%	
ATB	0.02209	21.5	4.6368092	0.10243	0.05093	-50.28%	
AZO	0.04021	21.5	4.6368092	0.186455	0.25029	34.24%	
DAC	0.02711	21.5	4.6368092	0.125708	0.13438	6.90%	
ELJ	0.04549	21.5	4.6368092	0.210911	0.37179	76.28%	
OIL	0.02777	21.5	4.6368092	0.12875	0.08637	-32.92%	
OLT	0.04173	21.5	4.6368092	0.193472	0.21074	8.93%	
PCL	0.04002	21.5	4.6368092	0.185588	0.09133	-50.79%	
TLV	0.03283	21.5	4.6368092	0.15224	0.15926	4.61%	

⁴ For the testing were used ten of the most liquid companies traded on the Bucharest Stock Exchnage in 1999


Imply volatility is the product between square root of time and daily volatility. Generally, imply volatility was lower than the observed volatility.

These findings show that, in short horizons, volatility scales at a faster rate than implied by the random walk, and the investors who mistakenly assuming that stock prices follow a random walk process will underestimate risk. These findings, also shows that volatility has a term structure. For the Bucharest Stock Exchange index - BET 5 , the term structure of volatility is presented in the table below:

Day	Square root of time	Volatility	Imply volatility	Relative difference
1	1	0.022839	0.022839	0.0%
2	1.414214	0.037558	0.032299	16.3%
3	1.732051	0.044847	0.039558	13.4%
4	2	0.056939	0.045678	24.7%
5	2.236068	0.066378	0.05107	30.0%
6	2.44949	0.072752	0.055944	30.0%
7	2.645751	0.081103	0.060426	34.2%
8	2.828427	0.087581	0.064598	35.6%
9	3	0.089391	0.068517	30.5%
10	3.162278	0.095059	0.072223	31.6%
11	3.316625	0.09961	0.075748	31.5%
12	3.464102	0.109711	0.079117	38.7%
13	3.605551	0.097277	0.082347	18.1%
14	3.741657	0.127237	0.085456	48.9%
15	3.872983	0.110499	0.088455	24.9%
16	4	0.135982	0.091356	48.8%
17	4.123106	0.123953	0.094168	31.6%
18	4.242641	0.141826	0.096898	46.4%
19	4.358899	0.134555	0.099553	35.2%
20	4.472136	0.140225	0.102139	37.3%
21	4.582576	0.142876	0.104661	36.5%
22	4.690416	0.14014	0.107124	30.8%
23	4.795832	0.160443	0.109532	46.5%
24	4.898979	0.151969	0.111888	35.8%
25	5	0.16746	0.114195	46.6%
26	5.09902	0.143771	0.116457	23.5%
27	5.196152	0.166298	0.118675	40.1%
28	5.291503	0.182565	0.120853	51.1%
29	5.385165	0.182895	0.122992	48.7%
30	5.477226	0.169121	0.125094	35.2%

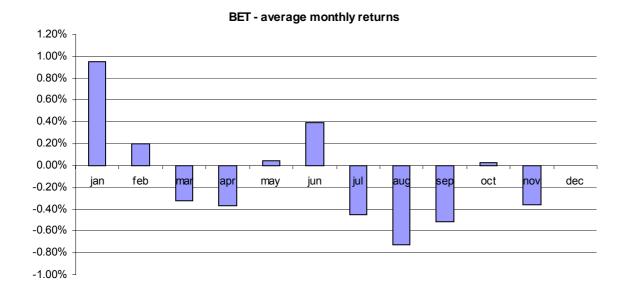
_

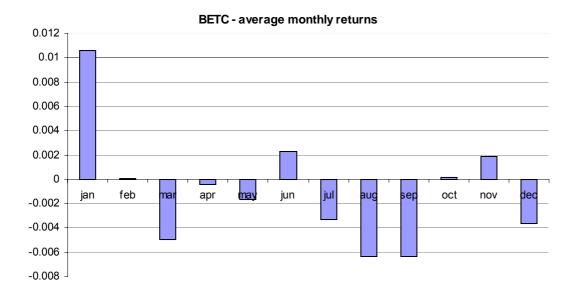
⁵ For analysis were used the daily average values of the BET index between 09/22/1997 – 04/28/2000

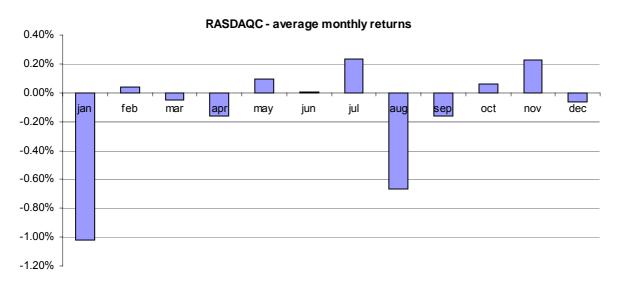
2.2.2. Betas

The table below reports observed betas for the most liquid companies on the Bucharest Stock Exchange computed on the basis on both daily data and monthly data. Under the random walk hypothesis, the betas should be independent from the frequency of the data used to compute them. However, the table shows that, generally, monthly betas are larger than daily betas. Hence, use of daily data to compute monthly betas will lead investors to underestimate the systematic risk.

Symbol	Daily beta	Monthly beta	Relative difference
ALR	1.511494	1.82895941	21.00%
ARC	1.442529	2.2319071	54.72%
ATB	0.317241	0.43849276	38.22%
AZO	0.856322	2.05233165	139.67%
DAC	0.781609	0.77061367	-1.41%
ELJ	0.274138	2.63914173	862.71%
OIL	0.479885	-0.0050161	-101.05%
OLT	1.051724	1.99275122	89.47%
PCL	0.913793	0.4725385	-48.29%
TLV	0.775862	1.25808334	62.15%

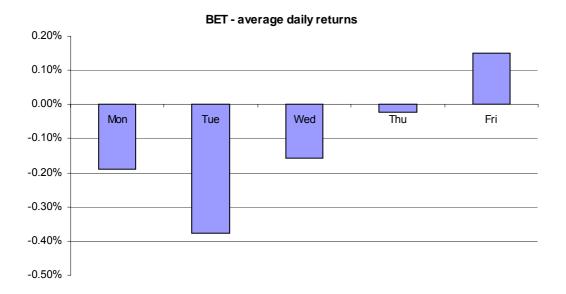

3. Tests for the Weak Form of Market Efficiency

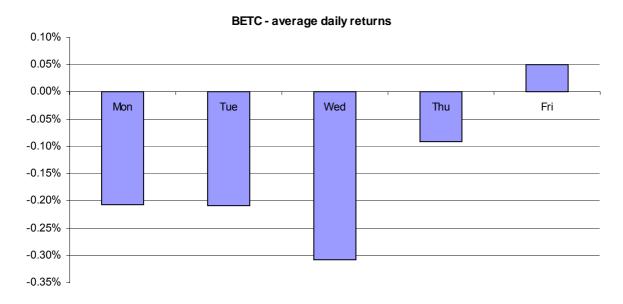

3.1. Seasonality of Returns

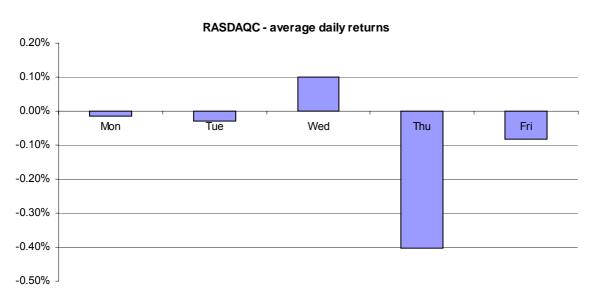

If the random walk hypothesis is valid, there should not be any consistent patterns in security returns. Some studies detect evidence of systematic patterns in stock returns. In the pictures below are presented the January Effect and the Weekly Effect for the Romanian capital market.

The January Effect refers to the fact that stock returns in January are greater than returns in other months. An explanation of that fact is tax-selling hypothesis: in December, individuals sell stocks that have declined in value during the year in order to realize a capital loss for tax purposes. Then, in January they reinvest their money, the demand rises and the returns are greater. But, this effect appeared in some countries with different tax legislation.

For the Bucharest Stock Exchange indexes (BET, BETC) and for the OTC market index (RASDAQC) the average monthly returns are shown below:






Although, the tax legislation is different from the countries in which the January Effect was discovered, there is a January Effect on the Bucharest Stock Exchange. But, on the OTC market, the January returns are the lower than any other month of the year.

The Weekly Effects refers to the unusual behavior of the stock returns on Monday versus other days of the week. On the evolved capital markets, evidence shows that Monday stock returns are substantially lower, on average, than those on other days of the week. An explanation is that firms release the bad news to the public on Friday.

The average daily return for the Romanian capital market are presented below:

On the Bucharest Stock Exchange the lowest return are in the first days of the week, but on the OTC market on Thursday.

3.2. Tests of the Trading Rules

Another group of tests of the weak form are the test of the trading rules. Advocates of an efficient market hypothesized that investors using any technical trading rule could not derive rates of return greater than returns from any buy and hold policy if the trading rule depended only on past market information. In a trading rule test, a simple buy and hold strategy is compared with the investment results of a trading rule simulation.

3.2.1. Tests of the Filter Rules

A filter rule is a mathematical rule that can be applied to produce buy and sell signals. In a filter rule, the stock is traded when its price change exceeds the filter set for it.

One type of filter rule: assuming an x% filter, when the stock price has risen x% from some base, the technical analyst thinks that this movement indicates a breakout, meaning that stock prices will continue to rise (so technical traders would acquire the stock to take advantage of the rise). An x% decline for some peak price would be a breakout on the downside, meaning the prices will continue to decline (so traders would sell the stock acquired previously). In the table below are the returns of the trading rules (applied on the most liquid shares traded on the Bucharest Stock Exchange in 1999) for a range of filters from 2% to 10%. The trading commission is set to 0.5%.

Symbol	Buy and hold	2%	3%	4%	5%	6%	7 %	8%	9%	10%
ALR	89%	69%	50%	40%	23%	19%	30%	28%	28%	29%
ARC	12%	4%	10%	13%	1%	1%	6%	2%	7%	17%
ATB	-8%	-3%	-3%	-8%	-8%	-13%	-24%	-26%	-27%	-17%
AZO	120%	167%	164%	171%	184%	184%	141%	126%	110%	110%
DAC	20%	40%	43%	41%	37%	31%	29%	18%	25%	21%
ELJ	-41%	-46%	-45%	-34%	-41%	-39%	-34%	-34%	-42%	-39%
OIL	21%	17%	17%	11%	11%	11%	11%	11%	10%	10%
OLT	-12%	24%	22%	26%	30%	40%	25%	25%	25%	25%
PCL	-7%	-42%	-52%	-51%	-48%	-53%	-56%	-60%	-52%	-53%
TLV	5%	17%	9%	12%	-2%	1%	1%	1%	5%	4%
BETC	2%	3%	4%	3%	1%	-4%	-4%	5%	2%	4%
Average	20%	25%	21%	22%	19%	18%	13%	9%	9%	11%

The returns of the 2%, 3% and 4% filter are above the returns of a buy and hold strategy. This means that the market is not efficient in the weak form.

3.2.1. Tests of Moving Average Rules

The moving average rule is: if the stock's price moves above its moving average by x%, buy and hold until the price moves x% below its moving average and then sell.

In the tables below are the returns of the different moving average rules (applied on the most liquid shares traded on the Bucharest Stock Exchange in 1999) for 60, 100, 150 and 200-day moving average and a range of filters from 2% to 10%. The trading commission is set to 0.5%.

60-day moving average rule:

Symbol	Buy and hold	2%	3%	4%	5%	6%	7%	8%	9%	10%
ALR	89%	41%	47%	42%	42%	41%	23%	20%	20%	20%
ARC	31%	56%	49%	60%	50%	12%	9%	6%	4%	24%
ATB	1%	-16%	-19%	-29%	-24%	-14%	-1%	-1%	-1%	-13%
AZO	122%	113%	107%	130%	122%	122%	122%	122%	120%	160%
DAC	22%	-25%	-23%	-28%	-6%	-7%	-11%	-16%	-16%	-20%
ELJ	-40%	-2%	-3%	-6%	-7%	-9%	-9%	-13%	-14%	-14%
OIL	25%	-18%	-10%	-22%	-24%	-16%	-11%	-13%	-13%	-15%
OLT	-8%	43%	41%	47%	44%	44%	42%	40%	27%	27%
PCL	-7%	-34%	-34%	-35%	-36%	-44%	-45%	-37%	-35%	-43%
TLV	7%	-5%	11%	11%	15%	-10%	-11%	-13%	-13%	9%
BET	31%	2%	4%	9%	4%	16%	14%	8%	6%	6%
Average	24%	15%	17%	17%	18%	12%	11%	10%	8%	13%

100-day moving average rule:

Symbol	Buy and hold	2%	3%	4%	5%	6%	7 %	8%	9%	10%
ALR	89%	50%	37%	36%	28%	28%	23%	23%	22%	17%
ARC	31%	36%	45%	44%	36%	36%	35%	28%	32%	23%
ATB	1%	-19%	-10%	-10%	0%	-3%	-7%	-10%	-10%	-16%
AZO	122%	127%	127%	105%	105%	135%	135%	135%	135%	129%
DAC	22%	-7%	-8%	-11%	-18%	-22%	-9%	-9%	-9%	-12%
ELJ	-40%	-12%	-9%	-11%	-13%	-14%	-14%	-18%	-18%	-2%
OIL	25%	-34%	-36%	-30%	-34%	-28%	-2%	-2%	-2%	-2%
OLT	-8%	16%	27%	30%	29%	23%	23%	23%	12%	8%
PCL	-7%	-30%	-25%	-27%	-34%	-34%	-38%	-23%	-24%	-5%
TLV	7%	26%	26%	26%	9%	9%	9%	9%	-9%	-9%
BET	31%	12%	8%	6%	3%	1%	13%	10%	6%	6%
Average	24%	15%	17%	15%	11%	13%	16%	16%	13%	13%

150-day moving average rule:

Symbol	Buy and hold	2%	3%	4%	5%	6%	7%	8%	9%	10%
ALR	89%	38%	44%	60%	60%	43%	43%	37%	36%	28%
ARC	31%	47%	44%	39%	34%	13%	13%	9%	9%	9%
ATB	1%	-11%	-12%	-16%	-16%	-21%	-24%	-11%	-15%	-15%
AZO	122%	125%	125%	121%	121%	121%	107%	107%	107%	107%
DAC	22%	-13%	-16%	-20%	-10%	0%	0%	-3%	-3%	-6%
ELJ	-40%	-21%	-20%	-13%	-2%	-2%	-2%	-2%	-2%	-2%
OIL	25%	-23%	-30%	-35%	-41%	-10%	-4%	-4%	-4%	-15%
OLT	-8%	-7%	-22%	-22%	-12%	-2%	-2%	-2%	-2%	-2%
PCL	-7%	-21%	-17%	-17%	-17%	-24%	-18%	-18%	-17%	-17%
TLV	7%	-18%	-13%	-13%	-5%	-5%	-3%	-10%	-10%	-10%
BET	31%	23%	19%	17%	12%	8%	8%	3%	3%	29%
Average	24%	9%	8%	8%	11%	11%	11%	10%	10%	8%

200-day moving average rule:

Symbol	Buy and hold	2%	3%	4%	5%	6%	7%	8%	9%	10%
ALR	89%	68%	68%	68%	68%	68%	66%	68%	68%	68%
ARC	31%	17%	16%	16%	16%	13%	13%	13%	13%	9%
ATB	1%	-12%	-16%	-20%	-24%	-25%	-29%	-29%	-28%	-15%
AZO	122%	103%	103%	95%	95%	95%	95%	87%	87%	87%
DAC	22%	-9%	-4%	-4%	10%	1%	1%	1%	21%	21%
ELJ	-40%	-2%	-2%	-2%	-2%	-2%	-2%	-2%	-2%	-26%
OIL	25%	-28%	-25%	-19%	-28%	-29%	-24%	-28%	-28%	-8%
OLT	-8%	-2%	-2%	-2%	-2%	-2%	-2%	-2%	-2%	-2%
PCL	-7%	-20%	-26%	-27%	-38%	-28%	-34%	-34%	-34%	-34%
TLV	7%	-10%	-10%	-10%	-10%	-10%	-12%	-12%	-12%	-14%
BET	31%	35%	35%	35%	31%	31%	31%	27%	27%	27%
Average	24%	11%	10%	10%	9%	8%	7%	6%	8%	9%

The returns of the moving average rules are below the returns of a buy and hold strategy, and, according to this test a trader cannot obtain higher than average profits using moving average rules.

4. Tests for the Semi-strong Form of Market Efficiency

4.1. The Response of Stock Prices to the Announcement of a Stock Split

The methodology for studying the response of stock prices to the announcement of a stock split was employed for the first time by Fama, Fisher, Jensen and Roll (FFJR) in 1969. According to the CAPM, stock returns are affected by both aggregate-market and company-unique information. In an attempt to isolate that part of a security's return, which was unique, to company events alone, FFJR examined the residual errors from the market model: $\widetilde{R}_t = a + b(\widetilde{R}\widetilde{M}) + \widetilde{e}_t$, where \widetilde{R}_t is the return on day t; a is the constant average daily return; b – the beta estimate for the stock; $\widetilde{R}\widetilde{M}_t$ – the return of the aggregate market portfolio during period t and \widetilde{e}_t – the residual error in period t, the proportion of the return due to firm-unique events. Estimates of a and b can be developed using a regression equation relating stock's historical return to historical market return. The \widetilde{e}_t values for each stock split during the period before the stock split and after the stock split, are calculated by using estimates of the

a's and b's. Then, the average market model residual in month t is calculated: $AR_t = \frac{\sum_{i=1}^{N} e_{i,t}}{N}$, where AR_t is the average firm-unique return for month t. Second, a cumulative average firm-unique return (CAR) was calculated for each month: $CAR_t = \sum_{k=-20}^{t} AR_k$.

Testing virtually all splits on the United States capital market between 1927 and 1959, FFJR found that: (1) Stocks that split appear to have had a dramatic increase in price during the 29 months prior to the split. This is reflected in the substantial growth in the *CAR* prior to the split date. However, these price increases cannot be attributed to the eventual split, since rarely was a split announced more than four months prior to the effective date of the split. (2) After the split date, the *CAR* is remarkably stable. This implies that from the split date forward, firm-unique returns were zero. The split had no immediate or long run impact on security prices.

On the Bucharest Stock Exchange, only four stock splits took place (companies Banca Agricola, Impact and Imsat split their shares). The cumulative average firm-unique returns are presented below. According to these tests, Romanian capital market is not semi-strong form efficient.

Banca Agricola (AGR)⁶

The stock split took place on September 29, 1999.

Regression $\widetilde{R}_t = a + b(\widetilde{R}\widetilde{M}) + \widetilde{e}_t$ before the stock split:

Dependent Variable: AGRRET

Method: Least Squares

Sample: 1 203

Included observations: 203 AGRRET=C(1)+C(2)*BETCRET

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.003149	0.004755	-0.662288	0.5085
C(2)	1.157502	0.392959	2.945601	0.0036
R-squared	0.041381	Mean dependent var		-0.001970
Adjusted R-squared	0.036611	S.D. dependent var		0.068773
S.E. of regression	0.067503	Akaike info criterion		-2.543499
Sum squared resid	0.915876	Schwarz criterion		-2.510856
Log likelihood	260.1651	F-statistic		8.676566
Durbin-Watson stat	1.547148	Prob(F-stati	stic)	0.003604

Regression $\widetilde{R}_t = a + b(\widetilde{R}\widetilde{M}) + \widetilde{e}_t$ after the stock split:

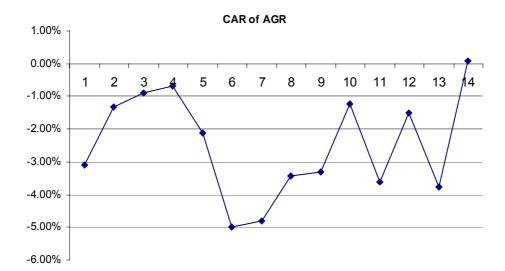
Dependent Variable: AGRRET

Method: Least Squares

Sample: 172

Included observations: 72 AGRRET=C(1)+C(2)*BETCRET

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.013676	0.021884	-0.624919	0.5341
C(2)	2.582281	1.021827	2.527122	0.0138
R-squared	0.083606	Mean deper	ndent var	-0.015694
Adjusted R-squared	0.070514	S.D. depend	dent var	0.192477
S.E. of regression	0.185567	Akaike info	criterion	-0.503420
Sum squared resid	2.410451	Schwarz crit	terion	-0.440179
Log likelihood	20.12310	F-statistic		6.386344
Durbin-Watson stat	_ 1.925152_	Prob(F-stati	stic)	0.013762


Table of average firm-unique return (AR) and cumulative average firm-unique return (CAR):

Month/	AR (CAR
1	-3.09%	-3.09%
2	1.76%	-1.34%
3	0.44%	-0.90%
4	0.21%	-0.69%
5	-1.44%	-2.13%
6	-2.86%	-4.99%
7	0.18%	-4.81%
8	1.37%	-3.45%
9	0.14%	-3.31%
10	2.09%	-1.22%

-

⁶ For the calculation of the *CAR* were used the daily average prices between December 1998 – January 2000

11	-2.40%	-3.62%
12	2.11%	-1.51%
13	-2.25%	-3.76%
14	3.84%	0.08%

The stock split took place in the tenth month. Before the split, the CAR rose, and after the split CAR fluctuated, but in a certain limits. The evolution of CAR after the split may not contradict the efficient market hypothesis.

Imsat (IMS)⁷

The stock split took place on the February 28, 2000.

Regression $\widetilde{R}_t = a + b(\widetilde{R}\widetilde{M}) + \widetilde{e}_t$ before the stock split:

Dependent Variable: RETIMS

Method: Least Squares

Sample: 1 462

Included observations: 462 RETIMS=C(1)+C(2)*RETBETC

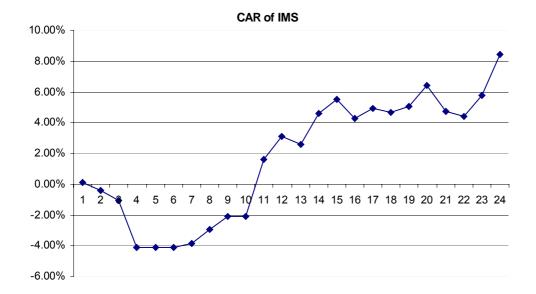
	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.001226	0.001977	0.620078	0.5355
C(2)	0.608058	0.117989	5.153516	0.0000
R-squared	0.054585	Mean deper	ndent var	0.000541
Adjusted R-squared	0.052530	S.D. dependent var		0.043566
S.E. of regression	0.042406	Akaike info	criterion	-3.478733
Sum squared resid	0.827205	Schwarz crit	erion	-3.460830
Log likelihood	805.5873	F-statistic		26.55872
Durbin-Watson stat	_ 1.822244_	Prob(F-stati	stic)	0.000000
	- · · · · · · · · · · · · · · · · · · ·			

_

⁷ For the calculation of the *CAR* were used the daily average prices between April 1998 – April 2000

Regression $\widetilde{R}_t = a + b \left(\widetilde{R} \widetilde{M} \right) + \widetilde{e}_t$ after the stock split:

Dependent Variable: RETIMS Method: Least Squares


Sample: 1 41

Included observations: 41
RETIMS=C(1)+C(2)*RETBETC

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.033504	0.021927	-1.527958	0.1346
C(2)	-2.206194	1.868443	-1.180766	0.2448
R-squared	0.034515	Mean deper	ndent var	-0.023902
Adjusted R-squared	0.009759	S.D. depend	dent var	0.131032
S.E. of regression	0.130391	Akaike info	criterion	-1.189007
Sum squared resid	0.663071	Schwarz criterion		-1.105418
Log likelihood	26.37463	F-statistic		1.394210
Durbin-Watson stat	1.231332	Prob(F-stati	stic)	0.244847

Table of average firm-unique return (AR) and cumulative average firm-unique return (CAR):

Month	AR	CAR
1	0.11%	0.11%
2	-0.49%	-0.38%
3	-0.66%	-1.03%
4	-3.06%	-4.10%
5	-0.05%	-4.14%
6	0.06%	-4.09%
7	0.21%	-3.87%
8	0.91%	-2.97%
9	0.87%	-2.10%
10	0.02%	-2.08%
11	3.69%	1.61%
12	1.52%	3.12%
13	-0.56%	2.56%
14	2.04%	4.60%
15	0.88%	5.49%
16	-1.18%	4.31%
17	0.65%	4.96%
18	-0.29%	4.66%
19	0.40%	5.07%
20	1.36%	6.42%
21	-1.67%	4.75%
22	-0.32%	4.43%
1	1.35%	5.78%
2	2.68%	8.46%

Stock split took place in the twentysecond month. After the split, *CAR* raised, which contradicts the efficient market hypothesis. A possible explanation is that the company took the decision to split the shares in order to make the shares more accessible to the general public.

Impact (IMP)⁸

The stock splits took place on August 3 1998 and November 9 1999.

Regression $\widetilde{R}_t = a + b(\widetilde{R}\widetilde{M}) + \widetilde{e}_t$ before the stock split on August 3 1998:

Dependent Variable: IMPRET Method: Least Squares

Sample: 172

Included observations: 72 IMPRET=C(1)+C(2)*BETCRET

	Coefficient	Std. Error	t-Statistic	Prob.
C(1) C(2)	0.007767 -0.039614	0.008877 0.590403	0.874989 -0.067097	0.3846 0.9467
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.000064 -0.014220 0.072604 0.368999 87.68705 2.940102	Mean deper S.D. depend Akaike info Schwarz cri F-statistic Prob(F-stati	dent var criterion terion	0.007926 0.072094 -2.380196 -2.316955 0.004502 0.946696

-

⁸ For the calculation of the *CAR* were used the daily average prices between April 1998 – April 2000

Regression $\widetilde{R}_t = a + b(\widetilde{R}\widetilde{M}) + \widetilde{e}_t$ between August 3 1998 and November 9 1999:

Dependent Variable: IMPRET Method: Least Squares

Sample: 1 327

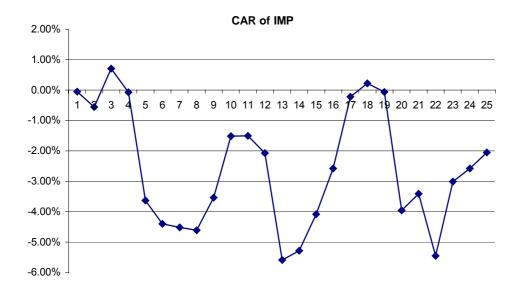
Included observations: 327 IMPRET=C(1)+C(2)*BETCRET

	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	0.002394	0.004248	0.563519	0.5735
C(2)	0.095726	0.257892	0.371185	0.7107
R-squared	0.000424	Mean dependent var		0.002283
Adjusted R-squared	-0.002652	S.D. dependent var		0.076528
S.E. of regression	0.076630	Akaike info	criterion	-2.293562
Sum squared resid	1.908445	Schwarz crit	erion	-2.270382
Log likelihood	376.9974	F-statistic		0.137778
Durbin-Watson stat	1.904382	Prob(F-statis	stic)	0.710742

Regression $\widetilde{R}_t = a + b(\widetilde{R}\widetilde{M}) + \widetilde{e}_t$ after November 9 1999:

Dependent Variable: IMPRET Method: Least Squares

Sample: 1 104

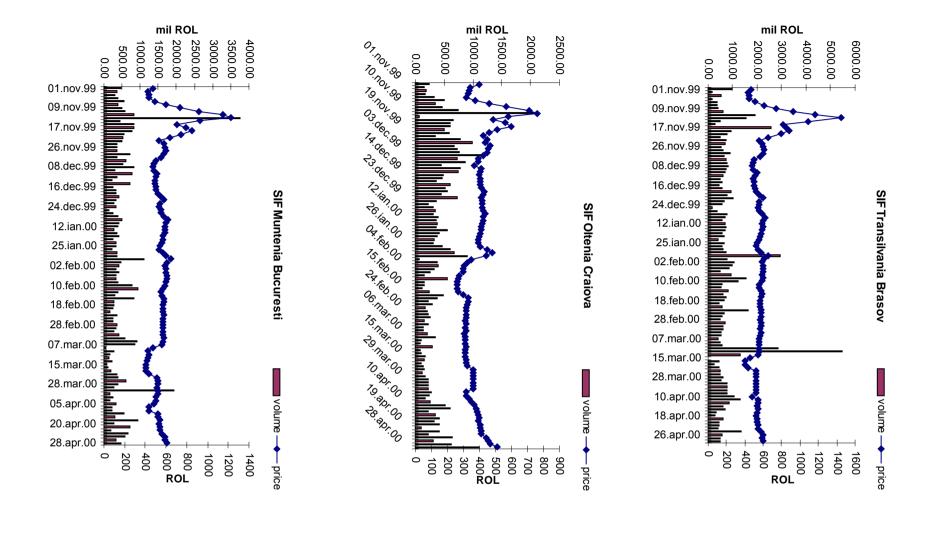

Included observations: 104 IMPRET=C(1)+C(2)*BETCRET

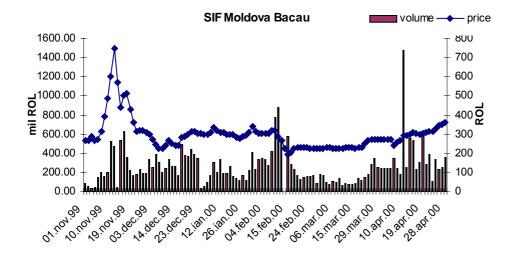
	Coefficient	Std. Error	t-Statistic	Prob.
C(1)	-0.005716	0.010184	-0.561320	0.5758
C(2)	0.621094	0.595752	1.042537	0.2996
R-squared	0.010543	Mean deper	ndent var	-0.005870
Adjusted R-squared	0.000843	S.D. depend	S.D. dependent var	
S.E. of regression	0.103844	Akaike info criterion		-1.672803
Sum squared resid	1.099933	Schwarz criterion		-1.621949
Log likelihood	88.98575	F-statistic		1.086884
Durbin-Watson stat	2.041920	Prob(F-stati	stic)	0.299627

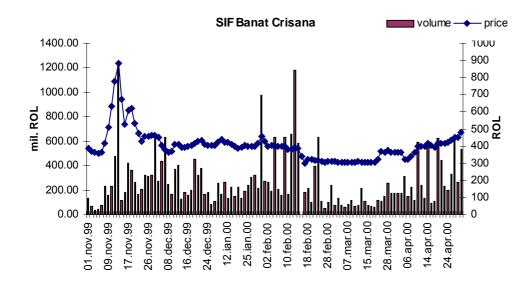
Table of average firm-unique return (AR) and cumulative average firm-unique return (CAR):

Month	AR	CAR
1	-0.05%	-0.05%
2	-0.51%	-0.56%
3	1.26%	0.71%
4	-0.78%	-0.08%
5	-3.55%	-3.63%
6	-0.77%	-4.40%
7	-0.11%	-4.51%
8	-0.09%	-4.61%
9	1.07%	-3.54%
10	2.02%	-1.52%
11	0.01%	-1.50%
12	-0.57%	-2.08%
13	-3.52%	-5.59%
14	0.30%	-5.29%
15	1.21%	-4.08%
16	1.51%	-2.57%
17	2.35%	-0.22%

18 0.45%	0.22%
19 -0.29%	-0.07%
20 -3.89%	-3.96%
21 0.55%	-3.41%
22 -2.05%	-5.45%
23 2.44%	-3.01%
24 0.44%	-2.58%
25 0.53%	-2.05%




Splits took place in the fourth month and in the nineteenth month. After the first stock split, *CAR* decreased and after the second split the *CAR* raised. Both reactions contradict the efficient market hypothesis.


4.2. The Response of the Stock Prices after a New Company is Listed on a Stock Exchange

Another economic event that is expected to have a significant impact on a firm and its stock is the decision to become listed on a national exchange. There are two questions of interest. First, does the listing on a major exchange permanently increase the value of the firm? Second, given the change in expectations or perceptions surrounding the listing, it is possible to derive abnormal returns from investing in the stock at the time of actual listing? According to the efficient market hypothesis, an investor cannot obtain abnormal profits from this event.

In the pictures below is shown the evolution of the share price of five "Financial Investment Companies (SIF)" after their listing on the Bucharest Stock Exchange. Those companies are closed end funds, and because of that, the "real" value of their stocks is easy to estimate, because their portfolio is accessible to the general public.

After the listing, the stock price of all companies rose sharply, and then it decreased sharply and became stable. These events suggest that it was an over-reaction of the market, which contradicts the semi-strong form of market efficiency. The abnormal price changes could generate large abnormal profits (after taking into account the transaction costs), which also contradict the semi-strong form of market efficiency.

5. Tests for the Strong Form of Market Efficiency

One category of individuals who could have monopolistic access to the information, and their investment performance can be measured are portfolio managers. If the strong form of market efficiency is valid, the return of a mutual fund cannot exceed the return of a buy and hold strategy.

For testing the strong form of market efficiency for the Romanian capital market, I compared the performance of the mutual funds in 1999 with the return of a buy and hold strategy. The excess return is the difference between the realized returns of the mutual funds and the return of a buy and hold strategy. If the excess return is significant and positive, the portfolio managers could have monopolistic access to information.

The mutual funds used were:

- Active Clasic
- Active Dinamic
- Active Junior
- Ardaf
- Armonia
- Capital Plus
- FCE
- FIDE
- Fortuna Clasic
- Stabilo
- Tezaur
- Transilvania

Aggregate portfolio structure of mutual funds:

Month	Cash (%)	Treasury Bonds (%)	Deposits (%)	Stocks (%)	Other instruments (%)
Jan	1.4577	21.5459	63.8073	2.8093	10.3797
Feb	1.1318	30.7556	50.8695	2.3329	14.8923
Mar	2.0294	45.5122	40.0638	2.4652	9.9420
Apr	4.0792	45.0512	36.9476	1.7918	12.1302
May	8.6513	61.4811	25.1148	1.6090	3.1436
Jun	2.2765	72.5609	21.0963	0.8443	3.2351
Jul	1.7773	73.4176	20.8656	0.6262	3.3142
Aug	2.1870	74.5352	20.2917	0.5424	2.4323
Sep	1.1402	65.2318	29.6013	0.3995	3.6387
Oct	0.7547	69.9136	21.1069	0.5076	7.7314
Nov	0.6126	69.7395	19.9723	0.5790	9.0966
Dec	0.6954	74.2801	13.3261	0.5508	11.3631

Mutual funds aggregate realized return:

Month	Monthly realized return	Annualized return
Jan	4.3974%	68%
Feb	6.0743%	103%
Mar	7.2286%	131%
Apr	7.0861%	127%
May	7.3352%	134%
Jun	7.1895%	130%
Jul	6.6706%	117%
Aug	5.5318%	91%
Sep	4.4416%	68%
Oct	3.9377%	59%
Nov	3.6605%	54%
Dec	4.0573%	61%

Annualized rates of return for a buy and hold strategy:

Month	Current Account	Treasury Bonds	Bank Deposits	Stocks	Other Instruments	Annual Return (buy and hold)
Jan	5.00%	70.36%	68.06%	1.68%	70.36%	66.01%
Feb	5.00%	89.57%	110.24%	-2.16%	110.24%	100.05%
Mar	5.00%	78.51%	132.89%	-5.98%	132.89%	102.14%
Apr	5.00%	111.80%	143.57%	-5.54%	143.57%	120.93%
May	5.00%	106.97%	84.97%	13.47%	106.97%	91.12%
Jun	5.00%	100.40%	88.84%	16.47%	100.40%	95.09%
Jul	5.00%	74.40%	72.54%	-3.28%	74.40%	72.29%
Aug	5.00%	68.99%	54.63%	10.91%	68.99%	64.35%
Sep	5.00%	55.85%	42.74%	-7.45%	55.85%	51.14%
Oct	5.00%	52.11%	46.40%	0.50%	52.11%	50.29%
Nov	5.00%	62.79%	50.61%	-4.36%	62.79%	59.62%
Dec	5.00%	73.47%	65.78%	-4.90%	73.47%	71.70%

The rate of return for "other instruments" is set to the maximum between the rates of return for current account, treasury bonds, bank deposits and stocks. The rate of return for stocks is set to the rate of return of the Bucharest Stock Exchange Composite Index (BETC).

Excess return of the mutual funds:

Month	Return	Buy and Hold Return	Excess Return
Jan	67.60%	66.01%	1.59%
Feb	102.92%	100.05%	2.87%
Mar	131.06%	102.14%	28.92%
Apr	127.40%	120.93%	6.47%
May	133.83%	91.12%	42.72%
Jun	130.05%	95.09%	34.96%
Jul	117.04%	72.29%	44.75%
Aug	90.81%	64.35%	26.46%
Sep	68.45%	51.14%	17.31%
Oct	58.96%	50.29%	8.66%
Nov	53.94%	59.62%	-5.67%
Dec	61.16%	71.70%	-10.53%
Average	95.27%	78.73%	16.54%

The excess returns are significant, which contradicts the strong form of market efficiency.

6. Alternatives to the Efficient Market Hypothesis

Peters in 1994⁹ proposed a theory – Fractal Market Hypothesis - in which he said that information didn't have a uniform impact on stock prices; each investor according to his investment horizon assimilates it differently.

Peters' theory proposes the following:

- 1. The market is stable when it consists of investors covering a large number of investment horizons.
- 2. The information set is more related to market sentiment and technical factors in the short term than in the longer term. As investment horizons increase, longer-term fundamental information dominates. Thus, price changes may reflect information important only to that investment horizon
- 3. In an event occurs that makes the validity of fundamental information questionable, long-term investors either stop participating in the market or begin trading based on the short-term information set. When the overall investment horizon of the market shrinks to a uniform level, the market becomes unstable. There are no long-term investors to stabilize the market by offering liquidity to short-term investors.
- 4. Price reflects a combination of short-term technical trading and long-term fundamental valuation. Thus, short-term price changes are likely to be more volatile, or noisier, than long term trades. The underlying trend in the market is reflective of changes in expected earnings, based on the changing economic environment. Short-term trends are more likely the result of crowd behavior. There is no reason to believe that the length of the short-term trends is related to the long-term economic trend.
- 5. If a security has no tie to the economic cycle, then there will be no long-term trend. Trading, liquidity and short-term information will dominate.

⁹ Peters, Edgar E. (1994); "Fractal Market Analysis. Applying Chaos Theory to Investment and Economics"; John Wiley & Sons, Inc.

Bibliography

Annin, Michael; Domonic Falaschetti (Jan/Feb 1998); "Equity Risk Premium Still Produces Debate"; Valuation Strategies

Bodie, Zvi; Alex Kane; Alan J.Marcus (1989); "Investment", Irwin

Bollerslev, Tim; Robert F.Engle; Daniel B.Nelson; "ARCH Models"; Handbook of Econometrics, Volume 4, Chapter 49; http://www.elsevier.co.jp/hes/books/02/04/049/0204049.htm

Brav, Alon; J. B.Heaton (January 2000); "Competing Theories of Financial Anomalies"; Social Sciences Research Network http://www.ssrn.com

Daniel, Kent; David Hirshleifer; Avanidhar Subrahmanyam (February 1997); "A Theory of Overconfidence, Self-Attribution and Security Market Under- and Overreactions"; Social Sciences Research Network http://www.ssrn.com

Daniel, Kent; David Hirshleifer; Avanidhar Subrahmanyam (May 1998); "Investor Psychology and Security Market Under- and Overreactions"; Social Sciences Research Network http://www.ssrn.com

Dimson, Elroy; Paul Marsh (August 1998); "Murphy's Law and the Market Anomalies"; Social Sciences Research Network, http://www.ssrn.com

Edmonds, Bruce; "From Complexity to Agent Modelling and Back Again – some implications for economics"; http://www.cpm.mmu.ac.uk/~bruce

Estrada, Javier (1997); "Random Walks and the Temporal Dimension of Risk", Departamento de Economia de la Empresa, Universidad Carlos III de Madrid; Working Paper 97 – 24, Business Economic Series 03, April 1997; Social Sciences Research Network http://www.ssrn.com

Fama, Eugene F. (1970); "Efficient Capital Markets: a Review of Theory and Empirical Work"; The Journal of Finance

Fama, Eugene F. (June 1997); "Market Efficiency, Long-Term Returns, and Behavioral Finance"; Social Sciences Research Network http://www.ssrn.com

Farmer, J. Doyne; Andrew W. Lo (April 1999); "Frontiers of Finance: Evolution and Efficient Markets"

Fisher, Donald E.; Ronald J. Jordan (1991); "Security Analysis and Portfolio Management. Fifth Edition"; Prentice Hall

Flondor, P.; C. Ionescu (1999); "Introducere în algoritmi genetici", București ed. BIC ALL

Geisendorf, Sylvie (1998); "Genetic Algorithms in Resource Economic Models"; Social Sciences Research Network http://www.ssrn.com

Grabbe, J. Orlin (1999); "Chaos and Fractals in Financial Markets"; Part 1, 2, 3, 4, 5, 6; http://www.aci.net/kalliste/chaos2.htm; http://www.aci.net/kalliste/chaos2.htm; http://www.aci.net/kalliste/chaos4.htm; http://www.aci.net/kalliste/chaos6.htm din "The Laissez Faire City Times"; Vol 3, No 22, May 31, 1999

Green, David G. (1993); "Fractals and Scale", Environmental and Information Sciences, Charles Stunrt University, http://life.csu.edu.au/complex/tutorials

Gujarati, Damodar N. (1995); "Basic Econometrics, Third Edition"; McGraw-Hill, Inc.

Hamilton, Jones D. (1994); "Time Series Analysis"; Princeton University Press; Princeton, New Jersey

Haugen, Robert A. (1990); "Modern Investment Theory. Second Edition"; Prentice Hall

Hong, Harrison; Jeremy C. Stein (November 1998); A Unified Theory of Underreaction, Momentum Trading and Overreaction in Asset Markets; Social Sciences Research Network http://www.ssrn.com

Jacob, Nancy L.; R. Richardson Pettit (1988); "Investments. Second Edition"; Irwin

Joshi, Shareen; Mark A. Bedau (December 1998); "An Explanation of Generic Behavior in an Evolving Financial Market"; Reed College; http://www.reed.edu

Kahn, Michael (1997); "More Elliot Waves for Novices"; Tips on Technicals, 9 April, 1997 - Vol. 4, No. 8

Kaiser, Thomas (December 1996); "One-Factor GARCH Models for German Stocks – Estimation and Forecasting"; Social Sciences Research Network http://www.ssrn.com

LeBaron, Blake (October 1994); Chaos and Nonlinear Forecastability in Economics and Finance; University of Wisconsin - Madison

Lindgren, Kristian (August 1995); "Evolutionary Dynamics in Game-Theoretic Models"; Santa Fe Institute

Mc Fadden, Daniel (September 1998); "Rationality for Economists?"; Department of Economics, University of California, Bercley

Mandelbrot, Benoit B. (February 1999); "A Multifractal Walk Down Wall Street"; Scientific American

Mandelbrot, Benoit (1998); "Obiecte Fractale, formă, hazard, dimensiune"; Editura Nemira

Munshi, Jamal; "Fractal Structure of Capital Market", http://munshi.sonoma.edu/working/

Negoiță, C.V.; D. A.Ralescu (1974); "Mulțimi vagi și aplicațiile lor"; Editura Tehnică București

Peters, Edgar E. (1994); "Fractal Market Analysis. Applying Chaos Theory to Investment and Economics"; John Wiley & Sons, Inc.

Pretcher, Robert R. Jr. (June 1999); "Science is Validating the Concept of the Wave Principle", http://www.elliottwave.com

Preutu, Adriana; Alina Călinescu; Marian Burlacu; Dorian Macovei (1998); "Teoria Eficienței Piețelor Financiare"; din Articole Fundamentale în Teoria Financiară cu explicații și aplicații practice; culegere editată și comentată de Ion Stancu, Școala Doctorală de Finanțe Bănci, București

Radcliffe, Robert C. (1990); "Investment. Concepts, Analysis, Strategy. Third Edition"; Scott, Foresman/Little, Brawn Higher Education

Reilly, Frank K. (1989); "Investment Analysis and Portfolio Management. Third Edition"; The Dryden Press

Sales, Mark; David McLaughlin (April 1997); "Fractals in Financial Markets"; http://ftp.ec.vanderbilt.edu/Chaos/FMH/main.html Vanderbilt University

Shubik, Martin (October 1997); Game Theory, Complexity and Simplicity; Santa Fe Institute

Stancu, Ion (1997); "Finanțe, teoria piețelor financiare, finanțele întreprinderilor, analiza și gestiunea financiară"; Editura Economică

Stancu, Ion (1998); Comentariu asupra articolului "Efficient Capital Markets: a Review of Theory and Empirical Work" de Eugene Fama din "The Journal of Finance" 1970; din Articole Fundamentale in Teoria Financiară cu explicații și aplicații practice; culegere editată și comentată de Ion Stancu, Școala Doctorală de Finanțe Bănci, București 1998

Thomas, Susan (July 19995); "Heteroskedasticity on the Bombay Stock Exchange"; Social Sciences Research Network http://www.ssrn.com

Zaman, Constantin (1998); "Econometrie"; Pro Democratia București

- ***: Chaos Theory, http://library.thinkquest.org/3493/noframes/chaos.html
- ***; Fractals and Fractal Geometry, http://library.advanced.org/3493/noframes/fractal.html
- ***; Fractal Prediction of the Stock Market, http://www.bhs-ms.org/fractapp/fractalinterp.htm
- ***; Introduction to Fractals and Chaos Theory, http://www.gate.net/~svaughen/chaos
- ***; Scientific Controversy: Who Discovered Financial Fractals?, http://www.elliottwave.com/socionomics/SciAmerican

- ***; Stocks, Horses, Chaos and Efficient Markets, http://www.maths.tcd.ie/pub/enconrev/ser/html
- ***; The Fractal Market hypothesis Proposes the Following, http://www.phase-locked.com/faqs
- *** Banca Națională a României; Rapoarte anuale și trimestriale; http://www.bnro.ro
- ***; Bursa de Valori București; "Rapoarte zilnice de tranzacționate"; http://bse.ccir.ro
- ***; RASDAQ S.R.L.; "Rapoarte zilnice de tranzacționare"; http://www.rasd.ro