Dynamic Adverse Selection and Liquidity

Ioanid Roșu, HEC Paris

ASE, București, 5 November 2018

Traditional View

 More informed traders makers larger bid-ask spreads (less liquidity)

Bagehot (1971)

"The essence of market making, viewed as a business, is that in order for the market maker to survive and prosper, his gains from liquidity-motivated transactors must exceed his losses to information motivated transactors. [...] The spread he sets between his bid and asked price affects both: the larger the spread, the less money he loses to information-motivated, transactors and the more he makes from liquidity-motivated transactors."

- Risky asset has liquidation value $v \in \{0, 1\}$
- Competitive risk-neutral dealer \implies sets $p_t = \mathsf{E}_t(v)$
- Trading at $t = 0, 1, 2, \ldots$
 - At most one unit
 - Buy order executes at ask a_t, sell order executes at bid b_t
- At each t, trader selected at random:
 - Informed (fraction ρ): observes v, buys if v > a_t or sells if v < b_t
 - Uninformed (fraction ρ): buys or sells with equal probability

Equilibrium is non-stationary

- Eventually the dealer learns v and spread becomes zero
- Evolution in time: when ρ is large (many informed traders)
 - Initially: the bid-ask spread is larger
 - Subsequently: the bid-ask spread decreases faster to zero

Equilibrium is non-stationary

- Eventually the dealer learns v and spread becomes zero
- Evolution in time: when ρ is large (many informed traders)
 - Initially: the bid-ask spread is larger
 - Subsequently: the bid-ask spread decreases faster to zero
- What happens in a stationary equilibrium?

Equilibrium is non-stationary

- Eventually the dealer learns v and spread becomes zero
- Evolution in time: when ρ is large (many informed traders)
 - Initially: the bid-ask spread is larger
 - Subsequently: the bid-ask spread decreases faster to zero
- What happens in a stationary equilibrium?
- We need time-varying v to make it interesting

Model

Same as GM85, except v_t follows a random walk

• $v_{t+1} - v_t$ is normal $\mathcal{N}(0, \sigma_v^2)$

• σ_v is called fundamental volatility

► Simplifying assumption 1: an informed trader observing v_t ∈ [b_t, a_t]) is immediately replaced by an uninformed trader

Otherwise there may be no trade at t

Simplifying assumption 2: dealer is approximately Bayesian

- Regards v_t as normally distributed $\mathcal{N}(\mu_t, \sigma_t^2)$
- Correctly computes posterior first and second moments

Results

- Equilibrium converges to a stationary equilibrium
 - Non-stationary behavior is similar to GM85
- Stationary equilibrium
 - Spread is constant, equal to $2\sigma_v$
 - Spread does not depend on informed share ρ
- Positive shock to informed share spread initially jumps, then gradually reverts to stationary value
 - Liquidity is resilient, for purely informational reasons

Efficient Density

• The dealer regards v_t as normally distributed: $\mathcal{N}(\mu_t, \sigma_t^2)$

- This is called the *efficient density*
- μ_t is the *efficient mean*
- σ_t is the *efficient volatility*

Efficient volatility measures dealer's uncertainty about v_t

Equilibrium: Evolution of Efficient Density

Efficient mean evolves according to:

$$\mu_{t+1} = \mu_t \pm \delta \sigma_t$$

where δ is an increasing function of ρ

Efficient volatility evolves according to

$$\sigma_{t+1}^2 = (1-\delta^2)\sigma_t^2 + \sigma_v^2$$

Therefore

$$\sigma_t^2 - \sigma_*^2 = (\sigma_0^2 - \sigma_*^2)(1 - \delta^2)^t$$

where

$$\sigma_* = \frac{\sigma_v}{\delta}$$

Equilibrium: Evolution of Bid-Ask Spread

Spread is always proportional to efficient volatility:

$$s_t = 2\delta\sigma_t$$

Spread converges to

$$s_* = 2\sigma_v$$

Stationary Equilibrium

Efficient mean evolves according to:

$$\mu_{t+1} = \mu_t \pm \sigma_v$$

Efficient volatility is constant

$$\sigma_* = \frac{\sigma_v}{\delta}$$

Spread is constant

$$s_* = 2\sigma_v$$

Note: Spread does not depend on informed share ρ

- \blacktriangleright By symmetry, spread = 2 \times mean update after buy order
- How large is the update after a buy order?

- By symmetry, spread = $2 \times$ mean update after buy order
- How large is the update after a buy order?
- Suppose $\rho = 1\%$, and dealer observes buy order at t

- By symmetry, spread = $2 \times$ mean update after buy order
- How large is the update after a buy order?
- ▶ Suppose $\rho = 1\%$, and dealer observes buy order at t
 - ▶ In 99% of cases, order is uninformed \implies no update
 - ► Spread \: Adverse selection effect

- By symmetry, spread = $2 \times$ mean update after buy order
- How large is the update after a buy order?
- Suppose $\rho = 1\%$, and dealer observes buy order at t
 - ▶ In 99% of cases, order is uninformed \implies no update
 - ► Spread \: Adverse selection effect
 - In 1% of cases, order is informed ⇒ trader saw v_t above ask, from a very wide density (σ_{*} = σ_v/δ)

- By symmetry, spread = $2 \times$ mean update after buy order
- How large is the update after a buy order?
- Suppose $\rho = 1\%$, and dealer observes buy order at t
 - ▶ In 99% of cases, order is uninformed \implies no update
 - ► Spread \: Adverse selection effect
 - ► In 1% of cases, order is informed \implies trader saw v_t above ask, from a very wide density $(\sigma_* = \sigma_v / \delta)$
- ► Dynamic efficiency: many informed trades (ρ is high) ⇒ dealer learns fast ⇒ uncertainty ↘, spread ↘

Why do the two effects exactly cancel each other?

- Why do the two effects exactly cancel each other?
- Recall that $\mu_{t+1} = \mu_t \pm \Delta$
 - Price volatility = Δ

- Why do the two effects exactly cancel each other?
- Recall that $\mu_{t+1} = \mu_t \pm \Delta$
 - Price volatility = Δ
 - Spread = 2Δ
- In any stationary filtration
 - Price volatility = Value volatility

- Why do the two effects exactly cancel each other?
- Recall that $\mu_{t+1} = \mu_t \pm \Delta$
 - Price volatility = Δ
 - Spread = 2Δ
- In any stationary filtration
 - Price volatility = Value volatility
- So $\Delta = \sigma_v \implies$ spread independent of the informed share

Evolution after Shocks

Collin-Dufresne and Fos (2015,2016)

- In those papers, more informed trading is associated with more liquidity
- Intuition similar to Admati and Pfleiderer (1988):
 - Discretionary liquidity traders cluster in time
 - Discretionary informed traders prefer to trade in more liquid times
 - Despite the increase in informed trading in liquid times, market remains more liquid in those times
- Current mechanism: dynamic efficiency
 - Even when liquidity trading is constant over time

Conclusion

- Equilibrium converges to a stationary equilibrium
 - Non-stationary behavior is similar to GM85
- Stationary equilibrium
 - Spread is constant, equal to $2\sigma_v$
 - Spread does not depend on informed share ρ
- Positive shock to informed share spread initially jumps, then gradually reverts to stationary value
 - Liquidity is resilient, for purely informational reasons