An Empirical Investigation of Herding Behavior in the U.S. and the Eurozone

Radu Tunaru

CEQUFIN, Kent Business School University of Kent Co-authors Davide Vioto, University of Kent and Meryem Duygun, Nottingham University

ASE Bucharest Research Seminar November 2018

Radu Tunaru (KBS)

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• This study tests for herding towards the market consensus for the US and the Eurozone equity markets and financial industries.

- E - N

・ロト ・回ト ・ヨト ・

- This study tests for herding towards the market consensus for the US and the Eurozone equity markets and financial industries.
- Applying OLS and quantile regression methods, we find that herding is more likely to be present in the high quantiles, entailing herding effects under turbulent market conditions.

< ロ > < 同 > < 三 > < 三 >

- This study tests for herding towards the market consensus for the US and the Eurozone equity markets and financial industries.
- Applying OLS and quantile regression methods, we find that herding is more likely to be present in the high quantiles, entailing herding effects under turbulent market conditions.
- However, when we condition on the financial crises periods, we find evidence of herding only during the Eurozone crisis.

< ロ > < 同 > < 三 > < 三 >

- This study tests for herding towards the market consensus for the US and the Eurozone equity markets and financial industries.
- Applying OLS and quantile regression methods, we find that herding is more likely to be present in the high quantiles, entailing herding effects under turbulent market conditions.
- However, when we condition on the financial crises periods, we find evidence of herding only during the Eurozone crisis.
- Our results also support the herding presence in case of asymmetric conditions of volatility, credit deterioration, funding illiquidity and economic policy uncertainty.

- This study tests for herding towards the market consensus for the US and the Eurozone equity markets and financial industries.
- Applying OLS and quantile regression methods, we find that herding is more likely to be present in the high quantiles, entailing herding effects under turbulent market conditions.
- However, when we condition on the financial crises periods, we find evidence of herding only during the Eurozone crisis.
- Our results also support the herding presence in case of asymmetric conditions of volatility, credit deterioration, funding illiquidity and economic policy uncertainty.
- Furthermore, we provide evidence that the cross-sectional dispersion of returns of the domestic equity market can be partly explained by the corresponding dispersions of the financial sector and its industries, with the latter having influence on the herding of the domestic equity market.

イロト イポト イヨト イヨト

- This study tests for herding towards the market consensus for the US and the Eurozone equity markets and financial industries.
- Applying OLS and quantile regression methods, we find that herding is more likely to be present in the high quantiles, entailing herding effects under turbulent market conditions.
- However, when we condition on the financial crises periods, we find evidence of herding only during the Eurozone crisis.
- Our results also support the herding presence in case of asymmetric conditions of volatility, credit deterioration, funding illiquidity and economic policy uncertainty.
- Furthermore, we provide evidence that the cross-sectional dispersion of returns of the domestic equity market can be partly explained by the corresponding dispersions of the financial sector and its industries, with the latter having influence on the herding of the domestic equity market.
- We extend this analysis to the last two main crises, introducing new evidences of "spurious" and "intentional" herding activity, suggesting that different crises may affect herding behavior in different ways.

Motivation I

- Policymakers and supervisory authorities are interested in identifying correlated patterns of trades that may aggravate returns' volatility, eroding the financial stability (Demirer et al., 2010).
- A large body of research covered herding effects in several stock markets.
 - Christie and Huang (1995) examined twelve US industries, Gleason et al. (2004) use intra-day data to examine herding on nine S&P500 sectors of Exchange Traded Funds during periods of market's extreme movements.
 - Chang et al. (2000) analyzed US, Hong Kong, Japan, South Korea, and Taiwan.
 - comprehensive analysis of herding in Chinese stock markets (see, Demirer and Kutan, 2006; Tan et al., 2008; Chiang et al., 2010).
 - cross-country herding effects: Chiang and Zheng (2010), herding within eighteen countries, advanced markets (seven), Latin American markets (four) and Asian markets (seven); Economou et al. (2011) provide evidence of cross-country herding for four South European markets, while Mobarek et al. (2014) enlarged the sample under analysis to eleven developed European markets.

イロト イポト イヨト イヨト

Motivation II

- Galariotis et al. (2015) report evidence of herding for US investors when fundamental macroeconomic announcements are released and spillover herding effects from the US to the UK markets. Moreover, they examine the presence of "spurious" and "intentional" herding in these two markets. Lastly, Galariotis et al. (2016) provide new evidence on the relation between herding behavior and equity market's liquidity for the G5 markets, namely US, France, Germany, UK and Japan.
- Overall, emerging markets tend to herd more likely than developed markets.
- Our motivation to study the presence of herding in the Eurozone at aggregate level, rather than considering "stand-alone countries", is that herding threatens the financial stability of the Eurozone, and therefore all the Eurozone markets would experience extreme tail conditions that would call upon the European Central Bank (ECB) intervention.
- We also consider herding under market asymmetry conditions, providing evidence of herding in case of higher/lower volatility, credit deterioration, funding illiquidity, and economic policy uncertainty.

イロト イポト イヨト イヨト

• We analyze the presence of "spurious" and "intentional" herding in the US and Eurozone markets and financial industries during the entire sample period and the last two main crises.

イロト 不得下 イヨト イヨト

• We examine the existence of herding effects in the US and Eurozone equity markets from January 2005 to December 2017, and during the GFC and the EZC.

イロト イヨト イヨト イヨト

- We examine the existence of herding effects in the US and Eurozone equity markets from January 2005 to December 2017, and during the GFC and the EZC.
- GFC covers the period from the 9th August of 2007, when BNP Paribas froze three funds because of subprime mortgage sector problems, to the 31th of March 2009, the day marking the first signs of stabilization

- We examine the existence of herding effects in the US and Eurozone equity markets from January 2005 to December 2017, and during the GFC and the EZC.
- GFC covers the period from the 9th August of 2007, when BNP Paribas froze three funds because of subprime mortgage sector problems, to the 31th of March 2009, the day marking the first signs of stabilization
- EZC covers the period from the 2nd of May 2010, the first bailout package of the International Monetary Fund (IMF) for Greece, to the 31th of December 2012, the month in which the Greek government bought-back EUR 21 billion of their bonds

イロト イポト イヨト イヨト

Measuring Herding

- There are two main types of measures of herding behavior at this moment in time:
 - based on cross-sectional data on stock returns (Christie and Huang, 1995; Chang et al., 2000; Hwang and Salmon, 2004)
 - Spanned by measures constructed on transaction data (Lakonishok et al., 1992; Wermers, 1999; Welch, 2000).
- Christie and Huang (1995) developed the following regression to test for herding: $CSSD_t = \alpha + \beta^L D_t^L + \beta^U D_t^U + e_t$; where

$$CSSD_{t} = \sqrt{rac{\sum_{i=1}^{N} (R_{i,t} - R_{m,t})^{2}}{N-1}}$$

and $D_t^L(D_t^U)$ is a dummy variable that takes the value 1 if the market return at time t lies in the extreme lower (upper) tail of the distribution, and 0 otherwise

• Christie and Huang (1995) can only be used to analyse herding effects during period of market distress. It does not allow to model herding during tranquil periods of the market (Hwang and Salmon, 2004).

$$CSAD_{t} = \frac{1}{N} \sum_{i=1}^{N} |R_{i,t} - R_{m,t}|$$
(1)

where $R_{i,t}$ is the company *i* return at time *t*, $R_{m,t}$ is the cross-sectional average return of all *N* companies at time *t*.

• • • • • • • • • • • •

$$CSAD_t = \frac{1}{N} \sum_{i=1}^{N} |R_{i,t} - R_{m,t}|$$
 (1)

where $R_{i,t}$ is the company *i* return at time *t*, $R_{m,t}$ is the cross-sectional average return of all *N* companies at time *t*.

• Chang et al. (2000) define the non-linear relationship between return dispersions and the market return as follows:

$$CSAD_t = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + e_t$$
(2)

A B A B A B A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

where $R_{m,t}$ is the cross-sectional average of the N returns in the aggregate market portfolio at time *t*.

$$CSAD_t = \frac{1}{N} \sum_{i=1}^{N} |R_{i,t} - R_{m,t}|$$
 (1)

where $R_{i,t}$ is the company *i* return at time *t*, $R_{m,t}$ is the cross-sectional average return of all *N* companies at time *t*.

• Chang et al. (2000) define the non-linear relationship between return dispersions and the market return as follows:

$$CSAD_t = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + e_t$$
(2)

where $R_{m,t}$ is the cross-sectional average of the N returns in the aggregate market portfolio at time *t*.

• The non-linear term $(R_{m,t}^2)$ is introduced to capture the herding effect

$$CSAD_{t} = \frac{1}{N} \sum_{i=1}^{N} |R_{i,t} - R_{m,t}|$$
(1)

where $R_{i,t}$ is the company *i* return at time *t*, $R_{m,t}$ is the cross-sectional average return of all *N* companies at time *t*.

• Chang et al. (2000) define the non-linear relationship between return dispersions and the market return as follows:

$$CSAD_t = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + e_t$$
(2)

where $R_{m,t}$ is the cross-sectional average of the N returns in the aggregate market portfolio at time t.

- The non-linear term $(R_{m,t}^2)$ is introduced to capture the herding effect
- We employ the regression model (2) for each market to test for herding behavior, indicated by a γ_2 negative and statistically significant.

- We examine whether or not the herding effects are more pronounced during the last two main financial crises, namely the GFC and the EZC.
- We augment the Eq. (2) with a dummy variable D^{Crisis} that takes the value 1 during the crisis period and 0 otherwise:

$$CSAD_t = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + \gamma_3 D^{Crisis} R_{m,t}^2 + e_t$$
(3)

• In Eq. (3), herding behavior is detected if γ_3 is negative and significant.

イロト イポト イヨト イヨト

• we capture asymmetric market conditions of higher and lower considering:

イロト イヨト イヨト イヨ

- we capture asymmetric market conditions of higher and lower considering:
 - market volatility;

イロト イヨト イヨト イヨ

- we capture asymmetric market conditions of higher and lower considering:
 - market volatility;
 - 2 credit deterioration;

< ロ > < 同 > < 三 > < 三

- we capture asymmetric market conditions of higher and lower considering:
 - market volatility;
 - 2 credit deterioration;
 - funding illiquidity;

(日) (同) (日) (日)

- we capture asymmetric market conditions of higher and lower considering:
 - market volatility;
 - 2 credit deterioration;
 - funding illiquidity;
 - economic policy uncertainty, respectively.

- we capture asymmetric market conditions of higher and lower considering:
 - market volatility;
 - credit deterioration;
 - Inding illiquidity;
 - economic policy uncertainty, respectively.
- As in Chiang and Zheng (2010), we estimate the asymmetric behavior of return' dispersion

$$CSAD_{t} = \alpha + \gamma_{1}D^{High}|R_{m,t}| + \gamma_{2}(1 - D^{High})|R_{m,t}| + \gamma_{3}D^{High}R_{m,t}^{2} + \gamma_{4}(1 - D^{High})R_{m,t}^{2} + e_{t} \quad (4)$$

where D^{High} equals 1 if the market asymmetry on day t is greater than the previous 22-trading day (1-trading month) moving average and 0 otherwise.

イロト イポト イヨト イヨト

- we capture asymmetric market conditions of higher and lower considering:
 - market volatility;
 - 2 credit deterioration;
 - Inding illiquidity;
 - economic policy uncertainty, respectively.
- As in Chiang and Zheng (2010), we estimate the asymmetric behavior of return' dispersion

$$CSAD_{t} = \alpha + \gamma_{1}D^{High}|R_{m,t}| + \gamma_{2}(1 - D^{High})|R_{m,t}| + \gamma_{3}D^{High}R_{m,t}^{2} + \gamma_{4}(1 - D^{High})R_{m,t}^{2} + e_{t} \quad (4)$$

where D^{High} equals 1 if the market asymmetry on day t is greater than the previous 22-trading day (1-trading month) moving average and 0 otherwise.

Herding effect is present if γ₃ (γ₄) is negative and statistically significant. If γ₃ < γ₄ and these values are significant, the herding effects are more pronounced during the market distressed periods.

イロト イポト イヨト イヨト

$$CSAD_{US,m,t} = \alpha + \gamma_1 |R_{US,m,t}| + \gamma_2 R_{US,m,t}^2 + \delta_1 CSAD_{US,j,t} + \delta_2 R_{US,j,t}^2 + e_t$$
(5)
$$CSAD_{EZ,m,t} = \alpha + \gamma_1 |R_{EZ,m,t}| + \gamma_2 R_{EZ,m,t}^2 + \delta_1 CSAD_{EZ,j,t} + \delta_2 R_{EZ,j,t}^2 + e_t$$
(6)

where

• CSAD_{US,m,t} (CSAD_{EZ,m,t}) is the CSAD referring to the N stock in the aggregate market portfolio at time *t*,

In the U.S., the presence of herding effects between the market "m" and the financial sector, or one of its industry, "j", is highlighted by δ_2 negative and statistically significant.

4 D N 4 🗐 N 4 E N 4

$$CSAD_{US,m,t} = \alpha + \gamma_1 |R_{US,m,t}| + \gamma_2 R_{US,m,t}^2 + \delta_1 CSAD_{US,j,t} + \delta_2 R_{US,j,t}^2 + e_t$$

$$(5)$$

$$CSAD_{EZ,m,t} = \alpha + \gamma_1 |R_{EZ,m,t}| + \gamma_2 R_{EZ,m,t}^2 + \delta_1 CSAD_{EZ,j,t} + \delta_2 R_{EZ,j,t}^2 + e_t$$

$$(6)$$

where

- CSAD_{US,m,t} (CSAD_{EZ,m,t}) is the CSAD referring to the N stock in the aggregate market portfolio at time *t*,
- $R_{US,m,t}$ ($R_{EZ,m,t}$) is the cross-sectional average of the corresponding N returns at time t,

In the U.S., the presence of herding effects between the market "*m*" and the financial sector, or one of its industry, "*j*", is highlighted by δ_2 negative and statistically significant.

$$CSAD_{US,m,t} = \alpha + \gamma_1 |R_{US,m,t}| + \gamma_2 R_{US,m,t}^2 + \delta_1 CSAD_{US,j,t} + \delta_2 R_{US,j,t}^2 + e_t$$
(5)
$$CSAD_{EZ,m,t} = \alpha + \gamma_1 |R_{EZ,m,t}| + \gamma_2 R_{EZ,m,t}^2 + \delta_1 CSAD_{EZ,j,t} + \delta_2 R_{EZ,j,t}^2 + e_t$$
(6)

where

- CSAD_{US,m,t} (CSAD_{EZ,m,t}) is the CSAD referring to the N stock in the aggregate market portfolio at time *t*,
- $R_{US,m,t}$ ($R_{EZ,m,t}$) is the cross-sectional average of the corresponding N returns at time t,
- CSAD_{US,j,t} (CSAD_{EZ,j,t}) is the CSAD referring to the *n* stock in the financial sector portfolio, or financial industry portfolio, at time *t* and

In the U.S., the presence of herding effects between the market "*m*" and the financial sector, or one of its industry, "*j*", is highlighted by δ_2 negative and statistically significant.

$$CSAD_{US,m,t} = \alpha + \gamma_1 |R_{US,m,t}| + \gamma_2 R_{US,m,t}^2 + \delta_1 CSAD_{US,j,t} + \delta_2 R_{US,j,t}^2 + e_t$$
(5)
$$CSAD_{EZ,m,t} = \alpha + \gamma_1 |R_{EZ,m,t}| + \gamma_2 R_{EZ,m,t}^2 + \delta_1 CSAD_{EZ,j,t} + \delta_2 R_{EZ,j,t}^2 + e_t$$
(6)

where

- CSAD_{US,m,t} (CSAD_{EZ,m,t}) is the CSAD referring to the N stock in the aggregate market portfolio at time *t*,
- $R_{US,m,t}$ ($R_{EZ,m,t}$) is the cross-sectional average of the corresponding N returns at time t,
- CSAD_{US,j,t} (CSAD_{EZ,j,t}) is the CSAD referring to the *n* stock in the financial sector portfolio, or financial industry portfolio, at time *t* and
- $R_{US,j,t}^2(R_{EZ,j,t}^2)$ is the squared cross-sectional average of the corresponding *n* returns at time *t*.

In the U.S., the presence of herding effects between the market "*m*" and the financial sector, or one of its industry, "*j*", is highlighted by δ_2 negative and statistically significant.

ヘロト 不得下 不良下 不良う

Fundamental vs Non-fundamental Information I

• CSAD due to non-fundamental information is estimated as the residuals in the regression:

$$CSAD_{t} = \alpha + \beta_{1}(R_{m,t} - Rf_{t}) + \beta_{2}HML_{t} + \beta_{3}SMB_{t} + \beta_{4}MOM_{t} + \varepsilon_{t} | (7)$$

where $(R_{m,t} - Rf_t)$ is the market risk premium, HML_t is the High Minus Low return factor, SMB_t is the Small Minus Big return factor, and MOM_t is the Momentum factor, at time t. The residuals of model (7) represent the measure of clustering due to investors responding to non-fundamental information:

$$CSAD_{NONFUND,t} = \varepsilon_t \tag{8}$$

イロト イポト イヨト イヨト

• It follows that the difference between the total *CSAD_t* and the *CSAD_{NONFUND,t}* represents the measure of clustering due to investors responding to fundamental information:

$$CSAD_{FUND,t} = CSAD_t - CSAD_{NONFUND,t}$$
(9)

Fundamental vs Non-fundamental Information II

• "spurious" and "intentional" herding can be separated:

$$CSAD_{NONFUND,t} = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + e_t$$
(10)

$$CSAD_{FUND,t} = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + e_t$$
(11)

- In Eq. (10) and (11), herding effects driven by non-fundamental and fundamental information correspond to a negative and statistically significant γ_2 .
- We estimate the coefficients of the following two regressions, similar to Eq. (3):

$$CSAD_{NONFUND,t} = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + \gamma_3 D^{Crisis} R_{m,t}^2 + e_t$$
(12)

$$CSAD_{FUND,t} = \alpha + \gamma_1 |R_{m,t}| + \gamma_2 R_{m,t}^2 + \gamma_3 D^{Crisis} R_{m,t}^2 + e_t$$
(13)

イロト イポト イヨト イヨト

Fundamental vs Non-fundamental Information III

 D^{Crisis} is a dummy variable that takes the value 1 during the crisis and 0 otherwise. In the presence of herding effects driven by non-fundamental and fundamental information, during the crisis period, γ_3 is negative and statistically significant in Eq. (12) and (13), respectively.

< ロ > < 同 > < 三 > < 三 >

• daily equity prices from all the stocks of S&P500 and S&P Europe 350, from January 2005 to December 2017, only active stocks.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

- daily equity prices from all the stocks of S&P500 and S&P Europe 350, from January 2005 to December 2017, only active stocks.
- S&P500 captures approximately 80% coverage of available market capitalization; the S&P Europe 350 accounting for around 70% of the region's market capitalization.

< ロ > < 同 > < 三 > < 三 >

- daily equity prices from all the stocks of S&P500 and S&P Europe 350, from January 2005 to December 2017, only active stocks.
- S&P500 captures approximately 80% coverage of available market capitalization; the S&P Europe 350 accounting for around 70% of the region's market capitalization.
- daily equity prices from all the constituent stocks of S&P 500 Banks Industry Group GICS Level 2 (S&P Europe 350 Banks Industry Group GICS Level 2), S&P 500 Diversified Financials Industry Group GICS Level 2 (S&P Europe 350 Diversified Financials Industry Group GICS Level 2), S&P 500 Insurance Industry Group GICS Level 2 (S&P Europe 350 Insurance Industry Group GICS Level 2) and S&P 500 Real Estate Industry Group GICS Level 2 (S&P Europe 350 Real Estate Industry Group GICS Level 2).

イロト イポト イヨト イヨト

- daily equity prices from all the stocks of S&P500 and S&P Europe 350, from January 2005 to December 2017, only active stocks.
- S&P500 captures approximately 80% coverage of available market capitalization; the S&P Europe 350 accounting for around 70% of the region's market capitalization.
- daily equity prices from all the constituent stocks of S&P 500 Banks Industry Group GICS Level 2 (S&P Europe 350 Banks Industry Group GICS Level 2), S&P 500 Diversified Financials Industry Group GICS Level 2 (S&P Europe 350 Diversified Financials Industry Group GICS Level 2), S&P 500 Insurance Industry Group GICS Level 2 (S&P Europe 350 Insurance Industry Group GICS Level 2) and S&P 500 Real Estate Industry Group GICS Level 2 (S&P Europe 350 Real Estate Industry Group GICS Level 2).
- 3271 daily returns for the US, and 3327 daily returns for the Eurozone, from Bloomberg.

イロト イポト イヨト イヨト

- daily equity prices from all the stocks of S&P500 and S&P Europe 350, from January 2005 to December 2017, only active stocks.
- S&P500 captures approximately 80% coverage of available market capitalization; the S&P Europe 350 accounting for around 70% of the region's market capitalization.
- daily equity prices from all the constituent stocks of S&P 500 Banks Industry Group GICS Level 2 (S&P Europe 350 Banks Industry Group GICS Level 2), S&P 500 Diversified Financials Industry Group GICS Level 2 (S&P Europe 350 Diversified Financials Industry Group GICS Level 2), S&P 500 Insurance Industry Group GICS Level 2 (S&P Europe 350 Insurance Industry Group GICS Level 2) and S&P 500 Real Estate Industry Group GICS Level 2 (S&P Europe 350 Real Estate Industry Group GICS Level 2).
- 3271 daily returns for the US, and 3327 daily returns for the Eurozone, from Bloomberg.
- The economic and financial variables are: VIX (VSTOXX), CDX (iTraxx), and the US (EU) TED spread. They are all taken at daily frequency from Bloomberg. We also consider EPU for U.S. and Europe and daily returns of the SMB, HML and MOM factors have been downloaded from Kenneth French's online data library.

Descriptive statistics of CSAD and R_m for the US and Eurozone equity markets, financial sectors and industries.

Panel A: US	equity mark	(et									
	All US E	Equities	All Finan	cial Industries	Banks		Diversified	Financials	Insurance	e	Real Esta
	CSAD	R _m	CSAD	Rm	CSAD	R _m	CSAD	R _m	CSAD	R _m	CSAD
	4 67										
iviean	1.07	0.03	1.00	0.02	0.82	-0.00	0.98	0.03	0.83	0.01	0.84
Median	0.93	0.08	0.77	80.0	0.54	0.02	0.79	0.08	0.60	0.07	0.67
Max	5.31	10.61	8.36	16.27	11.43	19.85	8.30	14.69	11.99	14.58	7.94
Min	0.37	-10.93	0.28	-17.95	0.13	-22.88	0.23	-16.48	0.10	-14.62	0.21
Std	0.51	1.32	0.77	1.86	0.91	2.44	0.70	1.88	0.88	1.76	0.64
N	3271		3271		3271		3271		3271		3271
Panel B: Eur	ozone equit	y market									
	All Euro	zone Equities	All Finan	cial Industries	Banks		Diversified	Financials	Insurance	2	Real Esta
	CSAD	Rm	CSAD	Rm	CSAD	Rm	CSAD	Rm	CSAD	Rm	CSAD
Mean	1.07	0.02	1.06	0.00	1.13	-0.01	0.93	0.02	0.87	0.01	0.78
Median	0.95	0.07	0.89	0.03	0.94	0.01	0.79	0.08	0.68	0.06	0.61
Max	4.63	8.56	7.53	12.67	14.21	15.48	5.71	14.99	8.24	13.33	7.11
Min	0.40	-8.05	0.36	-12.37	0.23	-15.86	0.20	-12.00	0.19	-13.90	0.00
Std	0.45	1.21	0.63	1.64	0.76	1.93	0.53	1.54	0.67	1.67	0.62
N	3327		3327		3327		3327		3327		3327
	AIL NA				P. L.		D:	Et a state	1		DIE
	All Mark	et Equities	All Finan	cial Equities	Banks		Diversified	Financials	Insurance	9	Real Esta
H ₀ : CSAD	0.36		3.91***		15.49***		-3.45***		1.96**		-3.80***
H ₀ : R _m	-0.40		-0.39		-0.18		-0.12		-0.13		-0.55

イロト イポト イヨト イヨ

Estimates of herding behavior for the US and Eurozone equity markets and financial industries, during the period from January 2005 to December 2017.

		Panel A: Un	ited States			Panel B:	Eurozone	
	γ_1	γ_2	α	Adj. R ²	γ_1	γ_2	α	Adj. R ²
All Market Equities	-	_						
OLS	0.261***	1.568***	0.008***	46.98%	0.209***	2.765***	0.009***	41.52%
Quantile Regression								
$\tau = 10$ th	0.106***	1.936***	0.006***	12.57%	0.079***	3.088***	0.007***	13.42%
$\tau = 25$ th	0.112***	2.639***	0.007***	14.96%	0.092***	3.677***	0.007***	16.00%
$\tau = 50$ th	0.139***	3.729***	0.008***	20.40%	0.127***	4.212***	0.008***	19.97%
$\tau = 75$ th	0.214***	4.382***	0.009***	27.15%	0.211***	3.894***	0.009***	25.22%
$\tau = 95$ th	0.646***	-1.964**	0.012***	39.38%	0.581***	-1.229	0.012***	30.29%
$\tau = 99$ th	0.517***	-1.621*	0.021***	36.07%	0.685***	-4.308**	0.020***	31.02%
Banks								
OLS	0.278***	0.466*	0.004***	53.64%	0.220***	1.774*	0.008***	44.74%
Quantile Regression								
$\tau = 10$ th	0.077*	0.913	0.002***	14.31%	0.138***	1.011***	0.004***	15.54%
$\tau = 25$ th	0.114***	0.947***	0.003***	19.36%	0.164***	1.315***	0.005***	18.34%
$\tau = 50$ th	0.178***	0.993***	0.004***	26.04%	0.189***	1.797**	0.007***	21.93%
$\tau = 75$ th	0.301***	0.775***	0.005***	32.86%	0.182***	3.155***	0.010***	26.23%
$\tau = 95$ th	0.632***	0.039	0.009***	46.46%	0.328***	4.088***	0.015***	32.82%
$\tau = 99$ th	1.091***	-2.887***	0.016***	47.56%	0.465***	2.602***	0.025***	33.15%
Diversified Financials								
OLS	0.281***	0.576	0.006***	47.93%	0.198***	1.111^{***}	0.007***	32.53%
Quantile Regression								
$\tau = 10$ th	0.132***	0.585***	0.004***	13.08%	0.067***	1.634***	0.004***	9.03%
$\tau = 25$ th	0.128***	1.716***	0.005***	16.37%	0.100***	1.390***	0.005***	10.54%
$\tau = 50$ th	0.180***	1.768***	0.006***	21.94%	0.141***	1.817***	0.006***	13.56%
$\tau = 75$ th	0.283***	1.186***	0.008***	29.52%	0.225***	1.343***	0.008***	17.93%
$\tau = 95$ th	0.540***	-0.293	0.012***	37.38%	0.466***	0.080	0.012***	26.10%
$\tau = 99$ th	0.991***	-3.839***	0.020***	38.54%	0.318	3.649	0.022***	25.54%

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Estimates of herding behavior for the US and Eurozone equity markets and financial industries, during the period from January 2005 to December 2017.

	,	0			5			
		Panel A: Un	ited States			Panel B: E	Eurozone	
Insurance								
OLS	0.306***	2.001***	0.005***	60.21%	0.223***	1.969***	0.006***	46.32%
Quantile Regression								
$\tau = 10$ th	0.047	3.045*	0.003***	13.96%	0.073***	2.023***	0.004***	13.52%
$\tau = 25$ th	0.087***	3.349***	0.004***	19.63%	0.073***	3.113***	0.004***	16.95%
$\tau = 50$ th	0.143***	3.325***	0.005***	26.69%	0.121***	3.116***	0.005***	21.77%
$\tau = 75$ th	0.267***	3.502***	0.006***	35.47%	0.215***	2.599**	0.007***	27.15%
$\tau = 95$ th	0.809***	-0.483	0.008***	51.48%	0.725***	-1.440**	0.010***	37.49%
$\tau = 99$ th	1.175***	-3.346	0.016***	52.39%	0.992***	-3.847***	0.019***	36.35%
Real Estate								
OLS	0.274***	0.251	0.005***	58.90%	0.131***	2.708***	0.006***	25.92%
Quantile Regression								
$\tau = 10$ th	0.105***	0.701***	0.004***	15.47%	0.023	2.298*	0.003***	5.46%
$\tau = 25$ th	0.128***	1.050*	0.004***	19.49%	0.046***	2.698***	0.004***	8.25%
$\tau = 50$ th	0.174***	1.169	0.005***	26.10%	0.069***	3.466***	0.005***	10.78%
$\tau = 75$ th	0.206***	1.683*	0.007***	35.22%	0.141***	3.637***	0.007***	14.96%
$\tau = 95$ th	0.482***	-0.144	0.009***	49.70%	0.457***	1.714	0.012***	21.57%
$\tau = 99$ th	0.967***	-3.128***	0.013***	48.45%	0.603	0.996	0.022***	21.07%

A D N A B N A B

Quantile regression estimates of herding behavior for the US and Eurozone equity markets and financial industries, during the period from January 2005 to December 2017.

A (□) > A ≥

Herding behavior during crises

	0	Pane	A: United St.		Pa	anel B: Eurozo	ne			
		1 dile	in the officed be	ates	A.I: D ²			Inci D. Editoro		A.I: D ²
AU 5 10	γ_1	γ_2	γ_3	α	Adj. R	γ_1	γ_2	γ_3	α	Adj. R
All Equities										
OLS	0.372***	-5.908***	6.605***	0.008***	53.00%	0.29***	-2.64	5.124***	0.008***	45.78%
Quantile										
$\tau = 10$ th	0.22***	-3.48*	4.56***	0.006***	15.04%	0.15***	-0.21	3.25***	0.007***	15.85%
$\tau = 25$ th	0.21***	-2.69**	5.09***	0.007***	18.53%	0.19***	-1.61*	4.72***	0.007***	18.65%
$\tau = 50$ th	0.25***	-3.75***	6.62***	0.008***	24.38%	0.22***	-1.66	5.53***	0.008***	23.07%
$\tau = 75$ th	0.28***	-3.87**	8.85***	0.009***	31.89%	0.26***	-1.48	8.81***	0.009***	28.94%
$\tau = 95$ th	0.47	-6.26	11.31*	0.013***	41.86%	0.22	-0.11	20.02	0.013***	34.36%
$\tau = 99$ th	0.48	-5.78	5.28	0.021***	37.26%	-0.16	7.39	26.89	0.023***	32.63%
Banks										
OLS	0.362***	-3.83***	3.851***	0.004***	57.19%	0.23***	0.35	1.840***	0.008***	46.76%
Quantile										
$\tau = 10$ th	0.11***	-0.61	1.39*	0.002***	14.76%	0.14***	0.64	0.63	0.004***	15.77%
$\tau = 25$ th	0.15***	-0.65	1.64***	0.003***	20.69%	0.17***	0.65***	0.92***	0.005***	18.69%
$\tau = 50$ th	0.26***	-2.54***	3.08***	0.003***	28.76%	0.19***	1.22***	1.80***	0.007***	22.91%
$\tau = 75$ th	0.41***	-5.19***	5.58***	0.004***	36.38%	0.23***	0.84***	2.77***	0.009***	27.53%
$\tau = 95$ th	0.61***	-5.83***	6.30***	0.009***	48.72%	0.26***	0.43	7.38*	0.016***	35.63%
$\tau = 99$ th	1.15***	-8.81***	5.68***	0.015***	49.08%	0.41***	-0.89	5.60**	0.025***	35.04%
Financials										
OLS	0.371***	-4.32***	4.318***	0.006***	52.12%	0.25***	-2.11	2.846***	0.007***	34.44%
Quantile										
$\tau = 10$ th	0.23***	-3.74**	3.72***	0.003***	14.95%	0.12***	-0.93	2.04**	0.004***	9.68%
$\tau = 25$ th	0.21***	-2.03**	3.28***	0.005***	19.08%	0.17***	-1.80**	2.70***	0.005***	11.55%
$\tau = 50$ th	0.27***	-3.22***	4.41***	0.006***	24.82%	0.19***	-1.64**	3.22***	0.006***	14.84%
$\tau = 75$ th	0.34***	-3.65***	4.94***	0.008***	32.14%	0.28***	-2.65***	4.43***	0.008***	19.61%
$\tau = 95$ th	0.51***	-5.06***	5.52***	0.012***	39.57%	0.42*	-3.33	7.12	0.012***	27.58%
$\tau = 99$ th	0.91	-8.79	7.40	0.020*	40.32%		0.34 -0.49	3.70	0.02***	26.01%
				-						

Estimates of herding behavior for the US and Eurozone equity markets and financial industries, during the GFC.

イロン イヨン イヨン イヨン 三日

Herding behavior during crises

		Pane	el A: United St	ates		Panel B: Eurozone						
	γ_1	γ_2	γ_3	α	Adj. R ²	γ_1	γ_2	γ_3	α	Adj. R ²		
Insurance												
OLS	0.430***	-5.35***	6.436***	0.004***	64.17%	0.29***	-1.80	3.441***	0.005***	49.40%		
Quantile												
$\tau = 10$ th	0.11***	0.26	2.60***	0.003***	16.88%	0.13**	-0.29	2.25**	0.003***	14.96%		
$\tau = 25$ th	0.16***	-0.70	3.62***	0.003***	22.10%	0.14***	-0.15	2.76***	0.004***	18.71%		
$\tau = 50$ th	0.22***	-1.24	4.34***	0.004***	28.98%	0.19***	-0.52	3.12***	0.005***	23.54%		
$\tau = 75$ th	0.38***	-4.08***	6.62***	0.006***	38.42%	0.28***	-1.56**	4.36***	0.007***	29.42%		
$\tau = 95$ th	0.73***	-8.51***	11.46***	0.009***	53.83%	0.38	-0.47	13.77**	0.011***	40.47%		
$\tau = 99$ th	0.84	-8.98	15.47	0.018***	54.38%	0.67	-4.28	11.05	0.020	37.61%		
Real Estate												
OLS	0.33***	-4.55***	4.40***	0.005***	62.93%	0.15***	0.17	2.98**	0.006***	28.17%		
Quantile												
$\tau = 10$ th	0.19***	-3.51***	3.82***	0.003***	18.28%	0.08***	-0.89	3.06***	0.003***	7.67%		
$\tau = 25$ th	0.20***	-3.12**	3.54***	0.004***	22.56%	0.13***	-1.53*	3.25***	0.003***	9.91%		
$\tau = 50$ th	0.26***	-3.70***	4.16***	0.005***	29.38%	0.15***	-1.71	4.80***	0.005***	12.73%		
$\tau = 75$ th	0.28***	-3.59***	4.64***	0.006***	38.29%	0.19***	-1.43	5.83***	0.007***	17.25%		
$\tau = 95$ th	0.48***	-4.44***	4.38***	0.009***	51.39%	0.13	2.32***	14.07***	0.013***	24.83%		
$\tau = 99$ th	1.00***	-10.19***	6.90***	0.013***	50.27%	-0.09	3.45	22.40	0.025***	23.96%		

Estimates of herding behavior for the US and Eurozone equity markets and financial industries, during the GFC.

A D > A B > A B >

Quantile regression estimates of herding behavior for the US and Eurozone equity markets and financial industries, during the EZC.

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

イロト イヨト イヨト イヨト

Estimates of herding behavior for the US and Eurozone equity markets and financial industries, during days of high and low funding illiquidity.

	Panel A: United States						Panel B: Eurozone							
	γ_1	γ_2	γ 3	74	α	Adj. R ²	$\gamma_3 = \gamma_4$	γ ₁	γ_2	73	74	α	Adj. R ²	$\gamma_3 = \gamma_4$
All Market Equities														
OLS	0.215^{***}	0.302***	1.649***	1.698*	0.008***	48.24%	-0.049	0.172^{***}	0.242***	3.062***	2.548^{***}	0.009***	41.97%	0.515
Quantile Regression														
$\tau = 10$ th	0.092***	0.114	2.005***	2.443	0.006***	12.96%	-0.438	0.075***	0.083***	3.214***	3.020***	0.007***	13.45%	0.194
$\tau = 25$ th	0.101***	0.117***	2.149^{***}	3.546***	0.007***	15.85%	-1.398***	0.102***	0.093***	3.087***	3.880***	0.007***	16.04%	-0.793
$\tau = 50$ th	0.119***	0.159***	3.365***	4.205***	0.008***	21.13%	-0.840	0.126***	0.137***	3.817***	4.757***	0.008***	20.11%	-0.940
$\tau = 75$ th	0.161***	0.299***	3.503**	3.135*	0.009***	28.22%	0.368	0.197***	0.276***	3.411***	3.363***	0.009***	25.59%	0.048
$\tau = 95$ th	0.407^{**}	0.729***	2.487	-2.939***	0.012***	40.04%	5.426	0.373***	0.768***	1.765	-4.538***	0.012***	31.53%	6.304***
$\tau = 99$ th	0.542***	0.517***	-2.584***	-1.621*	0.021***	36.10%	-0.963	0.496***	0.737***	-1.609	-5.480***	0.020***	31.39%	3.870*
Banks														
OLS	0.222***	0.331***	0.793**	0.157	0.004***	54.35%	0.637	0.202***	0.186***	1.196***	3.169^{**}	0.008***	46.70%	-1.973
Quantile Regression														
$\tau = 10$ th	0.073***	0.098***	0.746***	0.896***	0.002***	15.14%	-0.150	0.128***	0.132***	1.025***	1.366***	0.005***	15.76%	-0.341
$\tau = 25$ th	0.086***	0.140***	1.136***	0.761***	0.003***	20.05%	0.374	0.151***	0.162***	1.265***	1.976**	0.005***	18.66%	-0.711
$\tau = 50 \text{th}$	0.132***	0.206***	1.539***	0.819***	0.004***	26.54%	0.720***	0.195***	0.178***	1.211***	2.896**	0.007***	22.26%	-1.685
$\tau = 75 \text{th}$	0.235***	0.393***	1.082***	-0.076	0.005***	33.73%	1.157***	0.168***	0.232***	2.996***	3 454***	0.009***	26.80%	-0.458
$\tau = 95$ th	0.471***	0.690***	1 118**	-0.142	0.009***	47.02%	1 260	0.034	0.396***	7 958***	3 581***	0.015***	34 04%	4 377**
$\tau = 90$ th	0.875***	1 186***	-1 942***	-3 579	0.016***	48.08%	1.637	0.089	0.607***	9.865	1 562	0.026***	33 93%	8 303
Diversified Financials	10.010	1.100	1.012	0.010	0.010	4010070	1.001				1.002	0.020	00.0070	0.000
OLS	0.261***	0.208***	0.584	0.625	0.006***	48 10%	-0.041	0.170***	0.216***	1 185***	1.163**	0.007***	32.88%	0.022
Quantile Regression	0.201	0.200	0.004	0.020	0.000	40.1070	0.041	0.110	0.210	1.100	1.100	0.001	02.0070	0.022
τ−10th	0 193***	0.131***	0.638***	1 977***	0.004***	13 53%	-0.638**	0.058***	0.086***	1 713***	1 3/1***	0.004***	0.20%	0.379*
τ-25th	0.136***	0.152***	1.060***	1.633***	0.004	16.06%	-0.579*	0.000	0.107***	1 50/***	1 851***	0.004	10.73%	-0.346
7-50th	0.159***	0.103	1.740***	1 040***	0.006***	22.20%	-0.200	0.119***	0.159***	2.001***	1.760***	0.000	13 79%	0.941
τ=75th	0.244***	0.302	1.441	1.401	0.008***	20.78%	0.030	0 104***	0.941***	1.487***	1 760	0.008***	18 91%	-0.273
τ-05th	0.480***	0.545***	-0.153	-0.340	0.012***	37.40%	0.187	0.303***	0.546***	-0.358	-0.746	0.012***	26 51%	0.388
τ-00th	1 998***	1.003***	-5 803**	-3 007***	0.010***	38 71%	-1.916	-0.036	0.335	16.410	3 337	0.012	26.16%	13 073
Insurance	1.220	1.000	-0.020	-0.001	0.013	00.1170	-1.510	-0.000	0.000	10.410	0.001	0.022	20.1070	10.010
OLS	0.951***	0.363***	2 360***	1.584***	0.005***	60.69%	0.785	0.186***	0.250***	9 137***	1.814***	0.006***	46 79%	0.322
Quantile Regression	0.201	0.000	2.000	1.004	0.000	0010070	0.100	0.100	0.200			0.000	40.1070	0.022
σ=10th	0.084***	0.074***	1.961***	2 200***	0.002***	16 19%	9.120***	0.061***	0.085***	9.114***	9.004***	0.004***	12 81%	0.110
7-25th	0.074***	0.198***	3 111***	3 189***	0.004***	20.63%	-0.071	0.060**	0.078***	3 019***	3 170***	0.004***	17.05%	-0.158
7-50th	0.100***	0.184***	3 535***	3 030***	0.004	27.0076	0.505**	0.110***	0.143***	9.767***	3 096***	0.004	22.00%	-0.260
7-75th	0.185***	0.374***	4 300***	9.033**	0.006***	36 13%	9.976**	0.179***	0.145	9 195**	9 111	0.000	22.0376	1.024
$\tau = 05th$	0.643***	0.015***	2.607	-2.000	0.008***	51.05%	5 143	0.447*	0.860***	1.447	-2.431***	0.010***	38 50%	3.877
τ-00th	1.060***	0.784	-2.001	7 730	0.018***	52.76%	-10.015	1 107***	1 915***	-6.401***	.5 257***	0.017***	36.45%	-1.044
Real Estate	1.005	0.104	2.210	1.105	0.010	02.1070	10.010	1.1.2.1	1.210	0.401	0.001	0.011	00.4070	1.044
OLS	0.238***	0.310***	0.319	0.103	0.005***	59 72%	0.216	0.071***	0.198***	3.620***	1.653**	0.006***	26.88%	1.967**
Quantile Regression	0.200	0.010	0.010	0.100	01000	0011270	0.210	0.011	0.100	0.020	11000	0.000	2010070	11001
$\tau = 10$ th	0.101***	0.117***	0.658***	1.095***	0.004***	16.52%	-0.436*	0.031	0.026*	1.511	2.965***	0.003***	6.14%	-1.454
$\tau = 25 \text{th}$	0.122***	0.141***	0.542***	1.065***	0.004***	20.32%	-0.523***	0.042**	0.062***	2 507***	2 659***	0.004***	8.58%	-0.151
$\tau = 50 \text{th}$	0 142***	0.206***	1 502	0.978***	0.005***	26 71%	0.524	0.043***	0.113***	3 797***	2 769***	0.005***	11 17%	1.028
τ=75th	0 173***	0.302***	1 652***	0.729	0.006***	36 35%	0.924	0.098***	0.220***	4 959***	2.052***	0.007***	15 39%	2 100***
$\tau = 95$ th	0.206***	0.565***	3 433***	-1 100***	0.010***	50.64%	4 533***	0.205*	0.710***	5 175	-4 189*	0.012***	22.35%	9.364*
$\tau = 00$ th	0.856***	1 132***	-3.915***	-3 021***	0.013***	40.49%	0.706	-0.304	0.680*	20.080***	-3.467	0.024***	22.00%	94 455**
Radu Tunaru (KRS)		A	n Empir	ical Inve	stigatio	on of Herding F	Rehavior	in the			Nov	ember	6 2018

25 / 37

Estimates of herding behavior for the US and Eurozone equity markets and financial industries, during days of high and low economic policy uncertainty.

	Panel A: United States							Panel B: Eurozone						
	γ_1	γ_2	γ_3	γ_4	α	Adj. R ²	$\gamma_3 = \gamma_4$	γ_1	γ_2	γ_3	γ_4	α	Adj. R ²	$\gamma_3 = \gamma_4$
All Market Equities														
OLS	0.219^{***}	0.277***	2.785^{***}	1.032	0.008***	47.35%	1.753*	-0.144	0.525	295.732***	141.891	0.009***	39.94%	153.840
Quantile Regression														
$\tau = 10$ th	0.060	0.117^{***}	3.689^{*}	1.759^{***}	0.006***	12.96%	1.930	-0.506	-0.469	241.969^{***}	263.042***	0.008***	12.87%	-21.073
$\tau = 25$ th	0.070^{***}	0.131***	4.132^{***}	1.874^{***}	0.007^{***}	15.59%	2.258^{***}	-0.938***	-0.614^{***}	412.230^{***}	268.875^{***}	0.009^{***}	15.48%	143.355^{***}
$\tau = 50$ th	0.110^{***}	0.151***	4.451***	3.524^{***}	0.008^{***}	20.58%	0.928	-0.628^{**}	-0.149	372.704^{***}	208.573***	0.009^{***}	20.89%	164.130**
$\tau = 75 \text{th}$	0.210^{***}	0.250***	4.480***	3.051	0.009^{***}	27.22%	1.428	-0.347	-0.031	322.590^{***}	192.417***	0.011***	26.35%	130.173
$\tau = 95$ th	0.648^{***}	0.675***	-1.987^{**}	-3.090***	0.012^{***}	39.47%	1.103	3.333***	7.924^{***}	-88.036	-765.310***	0.011***	37.12%	677.274***
$\tau = 99$ th	0.498^{***}	0.459***	-1.113	-1.826^{***}	0.021***	36.35%	0.712	4.059^{***}	8.451***	-192.436	-853.523***	0.012***	54.65%	661.087***
Banks														
OLS	0.253^{***}	0.295***	0.935^{***}	0.125	0.004^{***}	54.24%	0.810**	-0.034	0.964	168.478^{***}	43.904	0.009***	52.41%	124.574^{**}
Quantile Regression														
$\tau = 10$ th	0.075^{***}	0.075***	0.812^{***}	1.012^{***}	0.002^{***}	14.48%	-0.200*	-0.042	0.190^{*}	110.604^{***}	71.943***	0.006***	20.15%	38.662***
$\tau = 25$ th	0.092^{***}	0.117***	1.412^{***}	0.909^{***}	0.003***	19.58%	0.503	-0.221	0.307	131.659***	61.025**	0.007***	21.27%	70.634*
$\tau = 50$ th	0.155^{***}	0.183***	1.436^{***}	0.923^{***}	0.004***	26.38%	0.513^{***}	-0.665*	0.045	220.582***	136.443***	0.009***	23.10%	84.139*
$\tau = 75$ th	0.265^{***}	0.338***	1.541^{***}	0.182^{**}	0.005^{***}	33.35%	1.359^{***}	0.081	0.783^{**}	157.782***	67.374**	0.010***	31.58%	90.408**
$\tau = 95$ th	0.608***	0.596***	0.502	0.229	0.009***	46.47%	0.273	0.006	3.801^{***}	310.837**	-121.043	0.013***	52.71%	431.881***
$\tau = 99 \text{th}$	1.055^{**}	1.172***	-2.132	-3.914***	0.015***	47.77%	1.782	1.754^{**}	2.423^{***}	93.445	-14.547	0.017***	62.91%	107.992
Diversified Financials	1													
OLS	0.259***	0.296***	0.907*	0.352	0.006***	48.02%	0.555	-0.648**	0.265	275.358***	123.095^*	0.008***	33.72%	152.264*
Quantile Regression														
$\tau = 10$ th	0.121***	0.145***	0.538***	0.505^{***}	0.004***	13.30%	0.033	-0.373	-0.032	132.906***	66.991**	0.006***	8.73%	65.916
$\tau = 25$ th	0.125^{***}	0.148	1.830***	1.168	0.005***	16.51%	0.662	-0.716^{**}	-0.677**	177.097***	193.616***	0.008***	6.92%	-16.519
$\tau = 50$ th	0.175***	0.201***	1.831***	1.387***	0.006***	22.02%	0.444*	-1.229^{***}	-0.579^{***}	370.579***	174.965***	0.008***	13.81%	195.614***
$\tau = 75$ th	0.273***	0.291***	1.150***	1.112**	0.008***	29,60%	0.037	-0.789^{*}	-0.553	315.137***	269.621***	0.009***	20,98%	45.515
$\tau = 95$ th	0.459***	0.545***	1.130	-0.341	0.012***	37.39%	1.472	-0.311	4.662***	391.515**	-239.725	0.012***	40.95%	631.240***
$\tau = 99$ th	1.044***	0.761***	-4.598***	-2.219*	0.020***	39.06%	-2.379*	0.944**	6.670***	141.004**	-584.031***	0.013***	51.64%	725.035***
Insurance														
OLS	0.294***	0.319***	2.290***	1.708**	0.005***	60.27%	0.581	0.363	0.359	105.748***	126.095***	0.007***	45.91%	-20.347
Quantile Regression														
$\tau = 10$ th	0.028*	0.083***	3.584***	1.846***	0.003***	14.50%	1.738***	-0.254 **	-0.433***	145.243***	181.699***	0.005***	17.95%	-36.456*
$\tau = 25$ th	0.080***	0.098***	3.419***	3.058***	0.004***	19.73%	0.361	-0.260	-0.424**	143.530***	176.221***	0.006***	20.57%	-32.691
$\tau = 50$ th	0.139***	0.127***	3.271***	3.885***	0.005***	26.83%	-0.614***	-0.067	-0.348**	129.919***	200.610***	0.007***	25.32%	-70.691***
$\tau = 75$ th	0.264***	0.285***	3 537***	3.072***	0.006***	35.52%	0.465	0.717***	0.525**	82 625***	126.336***	0.007***	31.39%	-43 711
$\tau = 95$ th	0.763***	0.773***	1.514	-0.716	0.008***	51.68%	2.230	4.004***	7.386***	-114,554	-446.877**	0.008***	39.71%	332.323
$\tau = 99$ th	0.910	1.176*	10.229	-3.593	0.017	52.46%	13.821	-9.258***	-0.040	1426.186***	-9.886	0.034***	28.26%	1436.072***
Real Estate														
OLS	0.258***	0.288***	0.433**	0.099	0.005***	59.02%	0.334	0.047	-0.296	137.499***	189.716***	0.007***	33.99%	-52.217
Quantile Regression														
$\tau = 10$ th	0.082***	0.109***	1.051***	0.621***	0.004***	15.72%	0.430***	-0.477***	-0.583***	187.079***	192.655***	0.005***	15.33%	-5.576
$\tau = 25$ th	0.112***	0.137***	1.209***	0.918**	0.004***	19.65%	0.292	-0.358**	-0.371**	174.612***	170.393***	0.005***	17.91%	4.218
$\tau = 50$ th	0.171***	0.184***	0.903***	1.046	0.005***	26.29%	-0.143	-0.080	-0.169	145.732***	150.116***	0.006***	20.89%	-4.384
$\tau = 75$ th	0.220**	0.222***	1.295	1.526*	0.006***	35.35%	-0.231	-0.163	-1.048	137.492	357.26***	0.008***	22.89%	-219.767*
$\tau = 95$ th	0.530***	0.494***	-0.628	-0.448	0.009***	49.76%	-0.180	-0.247	1.320	392.088	28,558	0.012***	27.89%	363.530
$\tau = 99$ th	0.951***	1.021***	-3.049***	-4.016***	0.013***	48.74%	0.967	-10.220***	-5.471***	1326.608***	473.041**	0.037***	10.52%	853.567***
Radu Tunaru (K	(BS)		A	n Empir	ical Inv	estigat	ion of Herd	ing Beha	vior in t	he		No	vembe	r 6. 2018

26 / 37

Main results on Asymmetric Market Conditions I

- for the implied volatility OLS estimates for the US and Eurozone equity markets and financial industries show that there is no evidence of herding effects during higher and lower volatility conditions of the market. However, the quantile regression provides evidence of herding effects in higher volatility conditions for the equity market and all the financial industries, except the insurance, in the U.S.. The herding effects is encountered for high quantiles, indicating a more likely herding behavior during extreme stressed market in case of higher volatility.
- for credit deterioration the OLS shows no effects, neither in the lower nor in the higher credit deterioration conditions, for equity markets and the financial industries. The quantile estimates, the US equity market and all its financial industries tend to herd more in the case of higher credit deterioration conditions, in the high quantiles; in the Eurozone, the equity market, the diversified financials and the insurance are found to herd in larger size in the case of higher credit deterioration. There is no evidence of herding for the banks, while, the real estate tend to herd in case of lower credit deterioration, in the extreme quantiles.

イロト 不得下 イヨト イヨト

Main results on Asymmetric Market Conditions II

• for the economic policy uncertain the OLS analysis does not show any evidence of herding effects. The quantile regression shows herding effects during higher economic policy uncertainty conditions for the US equity market and the related banking and real estate industries. In the Eurozone, there was no evidence of herding effects related to γ_3 , but γ_4 is negative and significant for the equity market and the related diversified financials and insurance industries, in the upper extreme quantiles.

< ロ > < 同 > < 三 > < 三 >

		Panel A: Ur	nited States			Panel B: Eurozone					
	CSADNON	FUND,t	CSADFUND),t	CSADNON	FUND,t	CSADFUN	D,t			
	γ_1	γ_2	γ_1	γ_2	γ_1	γ_2	γ_1	γ_2			
AllEquities											
OLS	0.253***	1.693***	0.008**	-0.133	0.184***	2.751***	0.019***	0.071			
Quantile											
$\tau = 10$ th	0.108***	1.737***	-0.014***	-0.204***	0.056**	2.840***	-0.009	0.024			
$\tau = 25$ th	0.120***	2.472	-0.013*	-0.007	0.084***	2.908***	-0.001	-0.024			
$\tau = 50$ th	0.147***	3.261***	0.001	0.014	0.120***	3.821***	0.017***	0.039			
$\tau = 75$ th	0.211***	4.011*	0.017***	0.018	0.229***	3.032***	0.028***	0.374***			
$\tau = 95$ th	0.608***	-1.797***	0.028*	0.082	0.546***	-1.115	0.070***	0.101			
$\tau = 99$ th	0.473***	-1.380**	0.027	0.330	0.661***	-4.362***	0.099***	-0.127			
<u>Banks</u>											
OLS	0.274***	0.451*	0.005**	0.006	0.204***	1.767*	0.010***	0.034			
Quantile											
$\tau = 10$ th	0.077***	0.814	-0.027***	0.107***	0.107***	1.259***	-0.003	-0.043			
$\tau = 25$ th	0.110***	0.998***	-0.011***	0.066***	0.148***	1.372***	-0.006*	0.139***			
$\tau = 50$ th	0.176***	0.996***	0.003	0.029	0.174***	1.981**	0.006	0.082			
$\tau = 75$ th	0.297***	0.763***	0.024***	-0.074***	0.165***	3.226***	0.020***	0.003			
$\tau = 95$ th	0.640***	-0.229	0.047***	-0.120**	0.324***	4.039***	0.033	0.210			
$\tau = 99$ th	1.156***	-3.210***	0.055***	-0.167	0.466***	2.447***	0.064***	-0.120			
Financials											
OLS	0.272***	0.634	0.005**	-0.040	0.176***	1.154***	0.016***	-0.001			
Quantile											
$\tau = 10$ th	0.124***	0.631***	-0.011***	-0.062***	0.038***	1.801***	-0.008	0.050			
$\tau = 25$ th	0.124***	1.726***	-0.007***	-0.013	0.079***	1.480***	-0.003	0.073***			
$\tau = 50$ th	0.175***	1.715***	0.003*	-0.021	0.138***	1.257***	0.012**	0.005			
$\tau = 75$ th	0.259***	1.598**	0.013***	0.010	0.192***	1.541***	0.021***	0.205**			
$\tau = 95$ th	0.501***	0.036	0.027***	-0.063	0.429***	0.569	0.057***	-0.146**			
$\tau = 99$ th	0.902***	-3.165***	0.036***	-0.100	0.331	2.925	0.072	0.154			

Estimates of herding behavior due to non-fundamentals and fundamentals for the US and Eurozone equity markets and financial industries.

イロン イロン イヨン イヨン

		Panel A: U	nited States		Panel B: Eurozone						
	CSADNON	FUND,t	CSADFUND),t	CSADNON	FUND,t	CSAD _{FUN}	D,t			
	γ_1	γ_2	γ_1	γ_2	γ_1	γ_2	γ_1	γ_2			
Insurance											
OLS	0.301***	2.034***	0.005**	-0.037	0.204***	1.995***	0.014***	0.010			
Quantile											
$\tau = 10$ th	0.051	2.832**	-0.026***	0.106***	0.050***	1.987***	-0.008*	0.044			
$\tau = 25$ th	0.082***	3.452***	-0.014***	0.062	0.053***	3.024***	0.000	0.035			
$\tau = 50$ th	0.139***	3.324***	0.002	0.016	0.098***	3.070***	0.010**	0.079			
$\tau = 75$ th	0.270***	3.203***	0.019***	-0.075**	0.201***	2.922**	0.023***	0.027			
$\tau = 95$ th	0.790***	-0.373	0.033***	-0.070***	0.730***	-1.440***	0.050***	0.033			
$\tau = 99$ th	1.201***	-3.791***	0.037***	-0.070	0.971***	-3.639***	0.100***	-0.514***			
Real Estate											
OLS	0.274***	0.240	0.002	-0.004	0.113***	2.783***	0.011***	-0.003			
Quantile											
$\tau = 10$ th	0.116***	0.594***	-0.012***	-0.031	0.028	1.839	-0.004	-0.072			
$\tau = 25$ th	0.125***	1.112***	-0.010***	0.061***	0.029*	2.711***	-0.001	0.032			
$\tau = 50$ th	0.172***	1.213**	0.001	0.005	0.058***	3.479***	0.003	0.075			
$\tau = 75$ th	0.204***	1.899***	0.010***	-0.026***	0.123**	3.609*	0.016*	0.065			
$\tau = 95$ th	0.466***	0.020	0.018***	0.050	0.428***	1.187	0.045***	-0.042			
$\tau = 99$ th	0.989***	-3.249***	0.025*	0.002	0.359	4.824	0.059	0.203			

Estimates of herding behavior due to non-fundamentals and fundamentals for the US and Eurozone equity markets and financial industries.

イロン イロン イヨン イヨン

Quantile regression estimates of herding behavior for the US and Eurozone equity markets and financial industries, during the EZC.

			Panel A: Uni	ted States	es Panel B: Eurozone							
	CSADN	ONFUND	, include the one	CSADer	ND 4		CSADN	ONFUND	T GHCT IN IN	CSADEUNDA		
	24	20	<u> </u>	21	20	22	24	20	0.2	21	20	22
All Market Equities	/1	14	13	/4	14	19	//	14	19	14	14	10
OLS	0.297***	1.494***	-4.667***	0.007*	-0.128	0.121	0.209***	2.764***	-3.011***	0.019***	0.071	-0.015
Quantile Regression												
$\tau = 10$ th	0.104***	1.779***	0.000	-0.014***	-0.204***	0.000	0.051**	2.844***	0.000**	-0.013**	0.065	0.000*
$\tau = 25$ th	0.113	2.771	0.000	-0.013*	-0.006	0.000	0.071***	3.070***	0.000***	0.000	-0.036	0.000*
$\tau = 50$ th	0.152***	3.158***	0.000***	0.001	0.010	0.000	0.118***	3.855***	0.000**	0.016***	0.050	0.000
$\tau = 75$ th	0.206***	3.992^{*}	-0.001***	0.017^{***}	0.019	0.000	0.231***	2.998^{***}	0.000	0.028***	0.372***	0.000
$\tau = 95$ th	0.510^{***}	-0.630	-0.005***	0.025	0.179	0.000	0.463^{***}	-0.275	-0.003***	0.070***	0.110	0.000
$\tau = 99$ th	0.415^{***}	-0.796	-0.011***	0.026	0.329	0.000***	0.575^{***}	-3.440***	-0.008***	0.117***	-0.325	0.000***
Banks												
OLS	0.310***	0.270	-2.531***	0.004	0.011	0.068	0.217^{***}	1.818*	-1.114**	0.012***	0.038	-0.100
Quantile Regression												
$\tau = 10$ th	0.056^{***}	0.901***	0.002***	-0.026***	0.105^{***}	0.000	0.090***	1.378^{***}	0.002***	-0.007	-0.025	0.000^{***}
$\tau = 25$ th	0.091***	1.136^{***}	0.001***	-0.012***	0.070^{***}	0.000	0.120^{***}	1.597^{***}	0.002***	-0.006*	0.140^{***}	0.000**
$\tau = 50$ th	0.152^{***}	1.156^{***}	0.001***	0.004	0.026	0.000	0.168^{***}	1.874^{***}	0.002***	0.006	0.080	0.000
$\tau = 75$ th	0.288^{***}	0.811***	0.001***	0.024^{***}	-0.073***	0.000	0.153^{***}	3.361***	0.002***	0.022^{***}	-0.005	0.000
$\tau = 95$ th	0.625^{***}	-0.150	-0.001	0.045^{***}	-0.112^{**}	0.000**	0.323^{***}	4.026^{***}	-0.001	0.038	0.131	0.000
$\tau = 99$ th	1.088***	-2.964^{***}	-0.008***	0.054^{***}	-0.131	-0.001***	0.378^{***}	2.949^{***}	-0.012***	0.062***	-0.123	-0.001***
Diversified Financials												
OLS	0.312^{***}	0.425	-3.293***	0.005^{**}	-0.037	0.048	0.197^{***}	1.017^{***}	-1.984***	0.015^{***}	0.002	0.044
Quantile Regression												
$\tau = 10$ th	0.123^{***}	0.641^{***}	0.000***	-0.011***	-0.062***	0.000	0.039***	1.794^{***}	0.000	-0.009	0.067	0.000*
$\tau = 25$ th	0.124^{***}	1.727^{***}	0.000	-0.007***	-0.015	0.000	0.079^{***}	1.484^{***}	0.000	-0.004	0.078^{***}	0.000*
$\tau = 50$ th	0.174^{***}	1.720^{***}	0.000*	0.003^{**}	-0.022	0.000	0.140^{***}	1.231^{***}	0.000	0.012^{**}	0.003	0.000
$\tau = 75$ th	0.260^{***}	1.457	-0.001***	0.012^{***}	0.012	0.000	0.200^{***}	1.443^{***}	0.000	0.021^{***}	0.208^{**}	0.000
$\tau = 95$ th	0.448^{***}	0.332	-0.005***	0.025^{***}	-0.037	0.000**	0.408^{***}	0.716	-0.002***	0.057^{***}	-0.151^{**}	0.000
$\tau = 99$ th	0.805^{***}	-2.600**	-0.012***	0.036^{***}	-0.114	0.000***	0.424	2.457	-0.010***	0.077^{*}	0.096	0.000
Insurance												
OLS	0.366^{***}	1.607^{***}	-5.005***	0.004^{*}	-0.035	0.031	0.237^{***}	1.872^{***}	-2.480***	0.016^{***}	0.004	-0.114
Quantile Regression												
$\tau = 10$ th	0.037	2.885^{**}	0.001***	-0.026***	0.102^{***}	0.000**	0.047^{***}	2.021^{***}	0.000	-0.011**	0.066*	0.000***
$\tau = 25$ th	0.073^{***}	3.523^{***}	0.001***	-0.014***	0.064	0.000	0.053^{***}	3.029***	0.000	0.000	0.039	0.000^{**}
$\tau = 50$ th	0.135***	3.369***	0.000	0.002	0.014	0.000	0.098***	3.066***	0.000	0.010**	0.078	0.000
$\tau = 75$ th	0.271^{***}	3.171***	0.000**	0.020^{***}	-0.081**	0.000	0.211^{***}	2.759^{**}	-0.001**	0.022^{***}	0.025	0.000*
$\tau = 95$ th	0.776***	-0.365	-0.002***	0.032^{***}	-0.065***	0.000***	0.686***	-1.181***	-0.004***	0.052^{***}	0.017	0.000^{**}
$\tau = 99$ th	0.980***	-1.329	-0.011***	0.035^{***}	-0.024	0.000***	0.788^{***}	-2.503^{**}	-0.012***	0.096***	-0.487**	0.000
Real Estate												
OLS	0.301***	0.090	-3.021***	0.002	-0.003	0.019	0.152^{***}	2.511^{***}	-4.669***	0.009***	0.008	0.188
Quantile Regression												
$\tau = 10$ th	0.115***	0.605***	0.000	-0.012***	-0.031	0.000	0.028	1.837	0.000	-0.007	-0.006	0.000^{**}
$\tau = 25$ th	0.126***	1.099***	0.000***	-0.010***	0.061^{***}	0.000	0.029*	2.711***	0.000	0.000	0.025	0.000
$\tau = 50$ th	0.173***	1.153^{*}	-0.001***	0.001	0.010	0.000	0.057***	3.487***	0.000	0.003	0.084	0.000^{*}
$\tau = 75$ th	0.206***	1.780**	-0.001***	0.010***	-0.025***	0.000	0.129**	3.332**	-0.001***	0.016^{*}	0.070	0.000
$\tau = 95$ th	0.447***	0.133	-0.003***	0.019***	0.037	0.000	0.403***	1.325	-0.004***	0.045***	-0.040	0.000
	- 0.767***	2 262***	0.007888	0.0068	0.011	0.0008	0.224	4 000	0.012888	0.011	0.454	0.000**

Radu Tunaru (KBS)

An Empirical Investigation of Herding Behavior in the

November 6, 2018 31 / 37

Conclusion I

- Our analysis based on the entire sample period (January 2005 December 2017) documents a diverse presence of herding behavior.
- We found evidence of herding in the high quantiles for the US
 - equity market,
 - banks,
 - diversified financials
 - real estate industries,

while for the Eurozone,

- equity market
- insurance industry
- presence of herding only for distressed market states
- no evidence of herding during the GFC, even with quantile regressions.
- significant herding effects, with both OLS and quantile regressions, during the EZC for both equity markets and all the financial industries.
- The results suggest that during the EZC, US investors tended to herd also when the market was moderately turbulent while, in the Eurozone herding is detected only for high quantiles.

Conclusion II

- herding in US is more likely during extreme distressed market states in case of higher volatility, while, in the Eurozone, this trend is documented only for the diversified financials industry.
- Eurozone's banks and insurance industries tend to herd more in case of lower volatility
- credit deterioration impacts herding in the US and Eurozone equity markets and financial industries, except of the banks industry in the Eurozone.
- Similar results are found in the case of funding illiquidity market asymmetry conditions.
- presence of spillover herding effects from the insurance industry to the domestic market in the U.S. and from the banks to the domestic market in the Eurozone.
- evidence of "intentional" herding in the US equity market and all the financial industries while in the Eurozone, it is detected for the equity market and the insurance industry,
- presence of "spurious" herding for the diversified financials and, again, the insurance industries.

Radu Tunaru (KBS)

- during the GFC, our results indicate that the herding behavior was "spurious" more than "intentional".
- contrary to what we find during the GFC, the US and the Eurozone equity markets and financial industries tended to herd due to non-fundamental information – "intentional" herding, during the EZC.

(日) (同) (三) (三)

Summary of the results.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Pan	el A: United S	tates			p	anel B: Eurozo	ne	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		All Market	Banks	Diversified	Insurance	Real Estate	All Market	Banks	Diversified	Insurance	Real Estate
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Equities		Financials			Equities		Financials		
$ \begin{array}{c} \label{eq:homore} \begin{tabular}{lllllllllllllllllllllllllllllllllll$	Herding behavior during the full sample (Dec. 2005 - Jan 2017)	$e \text{ Yes} - \tau = 95^{th}$. and 99^{th}	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	No	No	Yes - $\tau = 95^{th}$ and 99^{th}	No
Clobal financial crisis No	Herding behavior during crise.	8									
Eurosone Crisis $Yes - OLS Yes - OL$	Global financial crisis	No	No	No	No	No	No	No	No	No	No
$ \begin{array}{c} \operatorname{and} \tau = 50^{h} \ \operatorname{and} \tau = 90^{h} $	Eurozone Crisis	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		and $\tau = 50^{th}$ to 99^{th}	and $\tau = 99^{th}$	and $\tau = 75^{th}$ to 99^{th}	and $\tau = 95^{th}$ and 99^{th}	and $\tau = 50^{th}$ to 99^{th}	and $\tau = 95^{th}$ and 99^{th}	and $\tau = 99^{th}$	and $\tau = 95^{th}$ and 99^{th}	and $\tau = 95^{th}$ and 99^{th}	and $\tau = 95^{th}$ and 99^{th}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Herding behavior under asym	metric market	conditions								
(i) Low veaking $V_{26} - \tau = 95^{th} N_0$, $V_{26} - \tau = 99^{th} N_0$, $V_{26} - \tau = 95^{th} N_0$, N_0 , $V_{26} - \tau = 95^{th} N_0$, V_{26	 High volatility 	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 95^{th}$	Yes - $\tau = 99^{th}$	No
(ii) ligh croßin deterioration $Y_{08} - \tau = 95^{th} Y_{08} - \tau = 99^{th} Y_{08} - \tau = 99^{t$	(i) Low volatility	Yes - $\tau = 95^{th}$	No	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 95^{th}$ and 99^{th}	Yes - $\tau = 95^{th}$ and 99^{th}	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 95^{th}$ and 99^{th}	No
(ii) Low credit deterioration No Yes $\tau = 90^{th}$ Yes $\tau = 90^{th}$ Yes $\tau = 90^{th}$ Yes $\tau = 90^{th}$ No No No Yes $\tau = 90^{th}$ No No No No Yes $\tau = 90^{th}$ No	(ii) High credit deterioration	Yes - $\tau = 95^{th}$ and 99^{th}	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 95^{th}$ and 99^{th}	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 95^{th}$	Yes - $\tau = 95^{th}$ and 99^{th}	No
(iii) High funding illiquidity Yes - $\tau = 90^{th}$ Yes - $\tau = 90^{th}$ Yes - $\tau = 90^{th}$ No Yes - $\tau = 90^{th}$ No Yes - $\tau = 90^{th}$ No No No Yes - $\tau = 90^{th}$ No No No Yes - $\tau = 90^{th}$ No No No No Yes - $\tau = 90^{th}$ No No No No Yes - $\tau = 90^{th}$ No No No No Yes - $\tau = 90^{th}$ No No No No No Yes - $\tau = 90^{th}$ No Heritary - $\tau = 90^{th}$ No Yes - $\tau = 90^{th}$ No Yes - $\tau = 90^{th}$ No	(ii) Low credit deterioration	No	Yes - $\tau=99^{th}$	Yes - $\tau=99^{th}$	No	Yes - $\tau=99^{th}$	No	No	No	Yes - $\tau = 95^{th}$ and 99^{th}	Yes - $\tau=99^{th}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	(iii) High funding illiquidity	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 99^{th}$	No	No	No	Yes - $\tau = 99^{th}$	No
$ \begin{array}{c} \operatorname{and} \operatorname{got}^{hh} & \operatorname$	(iii) Low funding illiquidity	Yes - $\tau = 95^{th}$	No	Yes - $\tau = 99^{th}$	Yes - $\tau = 95^{th}$	Yes - $\tau = 95^{th}$	Yes - $\tau = 95^{th}$	No	No	Yes - $\tau = 95^{th}$	Yes - $\tau = 95^{th}$
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		and 99 th				and 99 th	and 99 th			and 99 th	and 99 th
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	 (iv) High economic policy un- certainty 	- Yes - $\tau = 95^{th}$	No	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 99^{th}$	No	No	No	No	No
$ \begin{array}{lll} lersing spillnerses \\ eq:linear_li$	(iv) Low economic policy un- certainty	 Yes - τ = 95th and 99th 	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	No	Yes - $\tau = 99^{th}$	Yes - $\tau = 95^{th}$ and 99^{th}	No	Yes - $\tau = 99^{th}$	Yes - $\tau = 95^{th}$	No
Non-fundamental and fundamental herding Full sample (Dec. 2007) Non-fundamental herding Nes. $\tau = 99^{th}$ Nes. $\tau = 99^{th}$ No Non-fundamental herding Nes. $\tau = 10^{th}$ Nes. $\tau = 10^{th}$ No Nes. $\tau = 10^{th}$ No	Herding spillovers Financial sector Banks Diversified Financials Insurance Real Estate	No Yes - $\tau = 10^{t}$ Yes - $\tau = 99^{t}$ Yes - OLS an No	^h h d $\tau = 10^{th}$ to 5	50 th and 95 th			Yes - OLS an Yes - $\tau = 95^t$ Yes - $\tau = 25^t$ Yes - $\tau = 10^t$ No	$t \tau = 10^{th}$ and	1 75 th		
Full sample (Dec. 2005 - Jan. 2017) Non-fundamental herding Yes - $\tau = 99^{th}$ Yes - $\tau = 99^{th}$ No And 99^{th} Fundamental herding Yes - $\tau = 10^{th}$ Yes - $\tau = 10^{th}$ Yes - $\tau = 10^{th}$ Yes - $\tau = 95^{th}$ Yes - $\tau = 95^{th}$ Yes - $\tau = 75^{th}$ No Yes - $\tau = 25^{th}$ No Yes - $\tau = 25^{th}$ No Yes - $\tau = 10^{th}$ No	Non-fundamental and fundam	ental herding									
Non-fundamental herding Yes - $\tau = 55^{th}$ Nos - $\tau = 90^{th}$ Yes - $\tau = 90^{th}$ No No Yes - $\tau = 55^{th}$ No and 90^{th} Fundamental herding Yes - $\tau = 10^{th}$ Yes - $\tau = 10^{th}$ Yes - $\tau = 55^{th}$ Yes - $\tau = 75^{th}$ No Yes - $\tau = 25^{th}$ No Yes - $\tau = 25^{th}$ No Yes - $\tau = 10^{th}$ No	Full sample (Dec. 2005 - Jan.	2017)									
Fundamental herding $V_{SS} \cdot \tau = 10^{4h}$ $V_{SS} \cdot \tau = 10^{4h}$ $V_{SS} \cdot \tau = 35^{4h}$ $V_{SS} \cdot \tau = 75^{4h}$ No $V_{SS} \cdot \tau = 25^{4h}$ No $V_{SS} \cdot \tau = 25^{4h}$ No $V_{SS} \cdot \tau = 25^{4h}$ No $V_{SS} \cdot \tau = 10^{4h}$ No $V_{SS} \cdot \tau = 10^{4h}$	Non-fundamental herding	Yes - $\tau = 95^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	Yes - $\tau = 99^{th}$	No	No	Yes - $\tau = 95^{th}$	No
	Fundamental herding	and 99^{th} Yes - $\tau = 10^{th}$	Yes - $\tau = 75^{th}$ and 95^{th}	Yes - $\tau = 10^{th}$	Yes - $\tau = 95^{th}$	Yes - $\tau=75^{th}$	No	Yes - $\tau = 25^{th}$	No	and 99^{th} Yes - $\tau = 10^{th}$	No
Giodal financial crisis	Global financial crisis										
Non-fundamental herding No	Non-fundamental herding	No	No	No	No	No	No	No	No	No	No
Fundamental herding Yes - $\tau = 75^{th}$ No Yes - $\tau = 75^{th}$ Yes - $\tau = 05^{th}$ Yes - $\tau = 05^{th}$ Yes - $\tau = 25^{th}$ Yes - $\tau = 25^{th}$ Yes - $\tau = 25^{th}$ Yes - $\tau = 55^{th}$ and 99^{th} and 99^{th} and 99^{th}	Fundamental herding	Yes - τ = 75 th	No	Yes - $\tau = 75^{th}$	Yes - $\tau = 95^{th}$ and 99^{th}	Yes - $\tau = 95^{th}$ and 99^{th}	Yes - $\tau = 25^{th}$	Yes - $\tau = 25^{th}$	Yes - OLS and $\tau = 25^{th}$ and 99^{th}	No	Yes - $\tau = 95^{th}$ and 99^{th}
Eurozone Crisis	Eurozone Crisis										
Non-fundamental herding Yes - OLS Y	Non-fundamental herding	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS	Yes - OLS
and $r = ro^{-1}$ and $r = so^{-1}$ and $r = ro^{1}$ and $r = so^{1}$ and $r = so^{-$		and $\tau = 75^{to}$ to 90^{th}	and $\tau = 99m$	and $\tau = 75^{m}$ to 90^{th}	and $\tau = 95^{m}$	to 90^{th}	and $7 = 95^{m}$ and 90^{th}	and 7 = 99m	and $T = 95^{m}$ and 90^{th}	and $\tau = \tau 5^{m}$ to 90^{th}	and $T = T5^{th}$ to 90^{th}
Fundamental herding No Yes $-\tau = 90^{0h}$ No No No No Yes $-\tau = 90^{0h}$ No No No	Fundamental herding	No	$\operatorname{Yes}\text{-}\tau=99^{th}$	No	No	No	No	Yes - $\tau = 99^{th}$	No	No	No

An Empirical Investigation of Herding Behavior in the

References I

- Chang, E. C., J. W. Cheng, and A. Khorana (2000). An examination of herd behavior in equity markets: An international perspective. *Journal of Banking & Finance* 24(10), 1651–1679.
- Chiang, T. C., J. Li, and L. Tan (2010). Empirical investigation of herding behavior in Chinese stock markets: Evidence from quantile regression analysis. *Global Finance Journal 21*(1), 111–124.
- Chiang, T. C. and D. Zheng (2010). An empirical analysis of herd behavior in global stock markets. Journal of Banking & Finance 34(8), 1911–1921.
- Christie, W. G. and R. D. Huang (1995). Following the pied piper: Do individual returns herd around the market? *Financial Analysts Journal* 51(4), 31–37.
- Demirer, R. and A. M. Kutan (2006). Does herding behavior exist in Chinese stock markets? Journal of International Financial Markets, Institutions and Money 16(2), 123–142.
- Demirer, R., A. M. Kutan, and C.-D. Chen (2010). Do investors herd in emerging stock markets?: Evidence from the Taiwanese market. *Journal of Economic Behavior & Organization 76*(2), 283–295.
- Economou, F., A. Kostakis, and N. Philippas (2011). Cross-country effects in herding behaviour: Evidence from four south European markets. *Journal of International Financial Markets, Institutions and Money* 21(3), 443–460.
- Galariotis, E. C., S.-I. Krokida, and S. I. Spyrou (2016). Herd behavior and equity market liquidity: Evidence from major markets. *International Review of Financial Analysis* 48, 140–149.
- Galariotis, E. C., W. Rong, and S. I. Spyrou (2015). Herding on fundamental information: A comparative study. Journal of Banking & Finance 50, 589–598.
- Gleason, K. C., I. Mathur, and M. A. Peterson (2004). Analysis of intraday herding behavior among the sector ETFs. Journal of Empirical Finance 11(5), 681–694.
- Hwang, S. and M. Salmon (2004). Market stress and herding. Journal of Empirical Finance 11(4), 585-616.

- Lakonishok, J., A. Shleifer, and R. W. Vishny (1992). The impact of institutional trading on stock prices. Journal of Financial Economics 32(1), 23–43.
- Mobarek, A., S. Mollah, and K. Keasey (2014). A cross-country analysis of herd behavior in Europe. Journal of International Financial Markets, Institutions and Money 32, 107–127.
- Tan, L., T. C. Chiang, J. R. Mason, and E. Nelling (2008). Herding behavior in Chinese stock markets: An examination of A and B shares. *Pacific-Basin Finance Journal* 16(1-2), 61–77.
- Welch, I. (2000). Herding among security analysts. Journal of Financial Economics 58(3), 369–396.
- Wermers, R. (1999). Mutual fund herding and the impact on stock prices. The Journal of Finance 54(2), 581–622.

イロト イポト イヨト イヨト