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Abstract 

  

The paper analyses the way in which monetary and fiscal policy influences the 

performances of economic growth. The analysis is made on the basis of a dynamic 

model with discrete variables of the Sidrauski- Brock type, with infinite-lived 

households and money in the utility function. The model is with a representative 

private agent and a government sector consisting of a consolidated fiscal authority and 

central bank. Households receive an exogenous perishable endowment each period, 

decide about consumption and pay net real lump-sum tax. 

 The state variable of the model is government debt, and the decision variables 

are: consumption and the amount of money detained by the agent. 

 The optimality conditions are obtained by using the Maximum Principle for 

discrete dynamic systems. A qualitative analysis of the optimal trajectories is 

performed, on the basis of the information provided by the Maximum Principle, 

concerning the dynamics of the dual variable and the properties of the Lagrange 

multipliers. 

 Finally, we analyze the influence of several monetary and fiscal decisions on 

the optimal trajectories and on the performance-function of the model. 
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1.  Introduction 

 
In recent years relative effectiveness of monetary and fiscal policy action on 

economic growth has been debated by both economists and policy makers. 

The traditional optimal currency areas literature pointed out long ago that, in a 

monetary union, fiscal policy has to play a more important role in cyclical 

stabilization given the loss of national monetary independence. This is particularly the 

case if shocks are not perfectly correlated across frontiers. Fiscal flexibility, together 

with budgetary discipline and co-ordination, has come to be seen as a central pillar of 

fiscal policy in a currency area (Commission, 1990). The Stability and Growth Pact 

(SGP) has been the operational response of EU countries to the quest for budgetary 

discipline in EMU. 

Recent theoretical and empirical developments have shed new light on the 

‘old’ issue of the interaction between monetary and fiscal authorities. 

There are numerous studies, both theoretical and empirical, analyzing the 

relation between inflation and long-run growth. 

In the past decade the development of the endogenous growth literature 

pioneered by Romer (1986), Lucas (1988), and Rebelo (1991) has enhanced our 

understanding about how an economy’s growth performance can be affected by public 

policies. For instance, Barro (1990) and King and Rebelo (1990) study the effects of 

fiscal policies, such as government spending and taxation, on economic growth. The 

general conclusion is that taxation adversely affects long-run growth performance and 

that the quantitative impacts are much larger than those found in exogenous growth 

models. Chari, Jones, and Manuelli (1995) and van der Ploeg and Alogoskoufis 

(1994) examine the effects of monetary policies, such as changes in the growth rates 

of nominal money supply, on long-run real activity. These authors find support for the 

conventional wisdom that inflation and long-run growth are inversely related. These 

studies also represent an advance in our understanding of the impact of alternative 

policies on inflation and growth. 

Recently economists have been paying increasing attention to a dynamic 

general equilibrium approach to the theory of price level that is often called the fiscal 

theory of the price level, or FTPL. This way of thinking emphasizes the role of fiscal 

and monetary policy in determining the risk and return properties of government 
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liabilities. It is particularly useful in analyzing proposals for large-scale institutional 

changes that imply shifts in monetary and fiscal policies. When dollarization is 

considered from this perspective, some disadvantages are brought to light that may 

not be so apparent from other points of view. 

The so-called fiscal theory of the price level (FTPL) has highlighted that, if 

government solvency is not guaranteed, monetary policy will not be able to control 

the price level. In order to ensure stability, fiscal policy has to react sufficiently 

strongly to a rise in the interest rate in the event of inflationary pressures by increasing 

the primary surplus. In other words, monetary policy aiming at keeping inflation in 

check – as the ECD is mandated to behave – has to go hand-in-hand with a fiscal 

policy obeying a solvency constraint. Once the FTPL is applied to the EMU 

institutional set-up, however, seemingly different conclusions are drawn. While Sims 

(1999) considers the Maastricht cum SGP rules insufficient to rule out FTPL’s doom 

scenario, Canzoneri and Diba (2001) conclude that the SGP appears far too strict from 

the point of view of guaranteeing fiscal solvency. The latter authors, in particular, call 

for shifting attention from actual to cyclically-adjusted budget balances in assessing 

the compliance of EMU members with budgetary prudence so as not to hamper fiscal 

stabilization. 

 

 

 

 

2. The model 
2.1 Household and government behavior 

 

In this section we study a dynamic model, originally due to Obstfeld and 

Rogoff (1983), that shows how standard monetary models have a continuum of 

equilibrium time paths for the inflation rate. The model is a Sidrauski – Brock type 

model with infinite-lived households and money in the utility function. Such models 

are ones in which it is common for Ricardian equivalence results to be obtained, 

which makes the fiscalist theory’s claim more remarkable than if developed in a 

model of the overlapping generations type. This type of models was used by several 
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authors, such as Woodford (1994, 1995, 2000), Sims (1994, 1996), McCallum (1998), 

Buiter (1999, 2001), Kocherlakota and Phelan (1999), Chanda and Nolan (2002). 

The model is with a representative private agent and a government sector, 

consisting of a consolidated fiscal authority and central bank. 

There is no uncertainty and markets are complete. Time indexed by t is 

measured in discrete intervals of equal length, normalized to unity. 

Households receive an exogenous perishable endowment, yt>0, each period, 

consume ct≥0 and pay net real lump-sum tax ht. 

The money price of output in period t is Pt. The quantities of money and 

nominal bonds outstanding at the beginning of period t (and the end of period t-1) are 

denoted Mt, respectively Bt. The it is one-period risk-free nominal interest rate in 

period t, and rt the one-period risk-free real interest rate in period t. 

The Fisher equation is: 

t

t
t 1

i1
r1

π+
+

=+  
(1) 

 

 where  

t

1t
t P

P
1 +=π+ . 

The single-period household budget constraint is: 

0,
1

1
1 ≥∀−++≤

+
++ +

+ thPyPBM
i

B
McP tttttt

t

t
ttt  (2) 

 

 

We denote: 

ttt MBW +=  (3) 

In order to transform inequalty (2) into an equation, we introduce the slack 

variable xt: 

( ) 0t,0x,
i1

x
M

i1
i

chyPW
i1

W
t

t

t
1t

t

t
ttttt

t

1t ≥∀≥
+

−
+

−−−+=
+ +

+  
  

(4) 

In equilibrium, when planned expenditure equals supply, it follows that the 

economy-wide resource constraint is given by: 

0t,ygc ttt ≥∀=+    (5) 
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where we denoted by tg  real government expenditure in period t. Equation (4) 

becomes: 

( ) 0t,0x,
i1

x
M

i1
i

hgPW
i1

W
t

t

t
1t

t

t
tttt

t

1t ≥∀≥
+

−
+

−−+=
+ +

+  (6) 

or, 

( )
t

t
1t

t

t
ttt

t

1t
t i1

x
M

i1
i

ghP
i1

W
W

+
+

+
+−+

+
= +

+  ( 6′ ) 

where tt gh −  is primary surplus. 

The difference equation can be solved forward to yield: 

∏
−

=
+

+

+










+
=+=

1T

0j
jt
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                           ( )∑ ∏
−

=
+++

+

+
+++

−

= +








+

+
+−











+
+

1T

0k
kt1kt

kt

kt
ktktkt

1k

0j jt

xM
i1

i
ghP

i1
1        

(7) 

If the transversality condition: 

0W
i1
1lim jT

1T

0j jt
T

=










+ +

−

= +
∞→ ∏  (8) 

is satisfied, then, from (7), it follows: 

( )∑ ∏
∞

=
+++

+

+
+++

−

= +








+

+
+−











+
=+

0k
kt1kt

kt

kt
ktktkt

1k

0j jt
tt xM

i1
i

ghP
i1
1MB  (9) 

            

Relationship (9) represents a solvency condition for the government, or a non-

Ponzi game condition (Artis and Marcellino – 1998). 

From (9), substituting ttt cyg −= , we obtain the solvency condition for 

households: 

∑ ∏
∞

=
++

+

+
−

= +




−

+










+
=+

0k
1kt

kt

kt
1k

0j jt
tt M

i1
i

i1
1MB  

                                                                     ( ) ]ktktktktkt xchyP +++++ +−−−  

(10) 
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2.2 The Optimization Problem 

 

The representative consumer maximizes the functional J given by (11): 

∑
∞

=








γ=

0t t

t
t

t

P
Z

,cUJ  (11) 

where ( )⋅⋅,U  denotes the utility, increasing in both arguments, strictly concave and 

twice differentiable, i.e.: 

( ) ( ) 0,U,0,U zc >⋅⋅′>⋅⋅′  (12) 

and the Hessian: 









′′′′
′′′′

zzzc

czcc

UU
UU

 (13) 

is negative definite. 

Moreover, 

∞=





′=






′

→→ P
Z,cUlim

P
Z,cUlim z0zc0c

 
  

(14) 

0
P
Z,cUlim cc

=





′

∞→
 (15) 

We denoted by: 

1tt MZ +=  (16) 

and  γ  is the discount factor which equals: 

0;
1

1
>δ

δ+
=γ

 

      (17) 

where δ>0 is the subjective rate of time preference. 

 

The representative agent maximizes (11) subject to the following dynamic 

equation: 

( ) ( )[ ] ttttttttt1t xZichyPWi1W −−−−++=+  (18) 

W0 given and: 

t1t ZW ≥+  (19) 

0x t ≥  (20) 

0W
i1
1lim jT

1T

0j jt
T

=










+ +

−

= +
∞→ ∏  (21) 
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Condition (19) can be written as: 

0Bor  MMB 1t1t1t1t ≥≥+ ++++  (19`) 

 

In order to obtain the optimality conditions, we shall apply the Maximum 

Principle for dynamic systems with discrete variables (Altar, 1976). 

 

The Hamiltonian is: 

( ) ( )[ ]{ }+−−−−++ψ+







γ= tttttttttt

t

t
t

t
t xZichyPWi1

P
Z

,cUH  

         ( ) ( )[ ] ( ){ }+−+−−−++λ+ tttttttttt xZi1chyPWi1 tt xµ  

(22) 

 

where we denoted by tψ  the dual variable, tλ  and tµ  are the Lagrange multipliers 

corresponding to constraints (19) and (20). 

 

The optimality conditions are: 















=
∂
∂

=
∂
∂

=
∂
∂

0
x

H

0
Z

H

0
c

H

t

t

t

 (23) 

    

or 

 

 

( ) ( )

( )
















µ=ψ

λ++ψ=⋅







γ

λ+ψ+=







γ

tt

tttt
tt

t
t

'
z

t

tttt
t

t
t

'
c

t

   

i1i
P
1

P
Z

,cU   

Pi1
P
Z

,cU   

 (24) 

The dynamic equation of the dual variable ψt is: 
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t

t
1t W

H
∂
∂

=ψ −  
(25) 

or 

( ) ( ) tttt1t i1i1 λ++ψ+=ψ −  (26) 

Concerning the Lagrange multipliers, the Maximum Principle provides the 

following information: 

[ ] 0ZW          ;  0 t1ttt =−λ≥λ +  

0x           ; 0 ttt =⋅µ≥µ  
(27) 

 

From the second condition (29) we can see that xt > 0 implies µt = 0. 

In this case, from the third relation (24) it would follow 0tt =µ=Ψ , which 

would make the problem senseless. It follows that 0x t = 0, ≥∀t  , hence the 

consumer budget constraint (2) on the optimal trajectory is satisfied as an equality. 

From the first relation (27) it follows that 0t >λ  implies 0ZW t1t =−+ , i.e. 

0B 1t =+ . In other words, if 0t >λ , then the agent will not buy bonds in the given 

period.  

We perform the substitutions: 

t
t

tt
t

t ;q
γ
λ

=α
γ
ψ

=  (28) 

 

In this case, the optimality conditions (24) become: 

 

( ) ( )

( )











α++=







′

α++=







′

ttttt
t

t
tc

tttt
t

t
tc

i1qiP
P
Z

,cU

qPi1
P
Z

,cU
 

  

(29) 

 

 

and the dynamic equation becomes: 

))(1(1 tttt qiq αγ ++=−  

or 
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)1(

1
 1 tt

t
t q

i
q α

γ
−

+
= −  (30) 

 

 

2.3 Qualitative analysis of optimal trajectories 

 

In what follows, to facilitate the analysis, we assume that the utility function         

is separable in both arguments: 

         )()(),(
t

t
t

t

t
t P

Z
cV

P
Z

cU ϕ+=  (31) 

In this case, the optimality conditions (29) become: 

                       )()1()(' ttttt qPicV α++=  (32) 

      )1()(' tttttt
t

t iPqPi
P
Z

αϕ ++=  (33) 

If 0B 1t >+ , in other words, if the agent buys bonds the nth multiplier αt 

vanishes and the relations (30) – (33) become: 

           
)1(

1
1−+

= t
t

t q
i

q
γ

 (34) 

 

          )1()(' tttt qPicV +=  (35) 

 

           )(' ttt
t

t qiP
P
Z

=ϕ  (36) 

 

Writing the optimality condition (35) for two consecutive periods, we have: 

tttt qP)i1()c('V +=  

1t1t1t1t qP)i1()c('V −−−− +=  

and, taking into account relation (34), it follows: 

       
1

11
)('

)('

111 −−− +
=

t

t

tt

t

P
P

icV
cV

γ
 (37) 
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Denoting 

1t

t
1t P

P
1

−
− =π+  

(38) 

where πt-1 stands for inflation rate, relation (37) becomes: 

1t1t

t

r1
1

)c('V
)c('V

−− +
δ+

=  
(39) 

where δ is the subjective rate of preference and r is the risk-free real interest rate. 

Relation (39) allows to identify the following situations: 

a) if δ=−1tr , then 1tt cc −=  

b) if δ>−1tr , then 1tt cc −>  

c) if δ<−1tr , then 1tt cc −<  

Therefore, depending on the evolution of inflation and of the risk-free nominal 

interest rate, consumption can be constant, increasing or decreasing. 

To identify the evolution of the demand for money, we use optimality 

condition (36). We obtain: 

 

( )t1t

t

1t

t

1t

1t

t

t

i1
1

i
i

P
P

P
Z

'

P
Z

'

+γ
=









ϕ









ϕ

−−

−

−

 (40) 

 

or 

 

t1t

t

1t

t

1t

1t

t

t

i1
1

i
i

P
P

P
Z

'

P
Z

'

+
δ+

⋅⋅=









ϕ









ϕ

−−

−

−

 (41) 

 

If we admit that: 

a) inflation is constant: π+=
−

1
P
P

1t

t  

b) 1tt ii −=  
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c) 
π+

+
==δ

1
i1r  

 

then, from (41), we obtain: 

 

1

P
Z

'

P
Z

'

1t

1t

t

t

=









ϕ









ϕ

−

−

 

or 

1t

1t

t

t

P
Z

P
Z

−

−=  
(42) 

and 

π+==
−

+ 1
P
P

M
M

1t

t

t

1t . 

Thus, under assumptions (a), (b), (c), the demand for money growths with the 

same rate as inflation: 

( ) t1t M1M ⋅π+=+  (43) 

 

 

2.4. Transversality conditions 

 

For the optimal trajectories, the Maximum Principle provides the 

transversality condition:  

0Wlim TTT
=ψ

∞→
 (44) 

                                                                                               

Taking into account the substitution (28), relation (44) becomes:  

0Wqlim TT
T

T
=γ

∞→
 (45) 

                                                                  

Since TTT MBW +=   with 0BT ≥  and 0MT ≥ , the transversality condition  

(45) becomes: 

0Bqlim TT
T

T
=γ

∞→  (46) 
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0Mqlim TT
T

T
=γ

∞→
 (47) 

                                                                                                    

From the dynamic equation (34) for the dual variable, we obtain: 

∏
=









+γ

=
T

1k
0

k
TT q

i1
11q  (48) 

                                                                                            

Taking into account relation (48), the transversality conditions can be written 

as: 

0B
i1

1lim
T

1k
T

k
T

=







+∏

=
∞→

 (46’) 

0M
i1

1lim
T

1k
T

k
T

=







+∏

=
∞→

 (47’) 

                                                                                                          

Remark:  Relation (20), given earlier, follows from (46’) and (47’). 

If the nominal risk-free interest rate is constant: 

0k,iii 1kk ≥∀== +  (49) 

           

then the transversality conditions become: 

 

0B
i1

1lim T

T

T
=







+∞→

 (46”) 

0M
i1

1lim T

T

T
=







+∞→

 (47”) 

 

This means that the sequences { Ntt }B ∈  and { Ntt }M{ ∈  should increase slower 

than the sequence  
Nt

t

i1
1

∈



















+
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2.5. The case of Bernoulli type utility functions 

 

In order to have a convenient parametric example, we assume that the utility 

functions V(.) and φ(.) are of Bernoulli type , i.e. their elasticity of marginal utility is 

constant. 

Let us suppose that : 

( ) σ−

σ−
= 1c

1
1cV  

θ−









θ−

=







ϕ

1

t

t

t

t

P
Z

1
1

P
Z  

(50) 

where σ ∈  (0,1). 

In this case, condition (39) deduced from the optimality conditions becomes: 

1t

1

1t
t c

1
r1

c −

σ
− 







δ+
+

=  (51) 

Relation (51) represents a dynamic equation for the control variable tc .  

As a matter of fact , it is known that the Bernoulli type utility functions are the 

only utility functions allowing the inference of a dynamic equation for the control 

variable. 

Relation (51) shows that, in order to know the dynamics of optimal 

consumption, it is sufficient to know the evolution of the risk-free real interest rate, as 

well as the initial value  0c  of consumption. 

From (51) it follows: 

0

1t

0k

1

k
t c

1
r1

c ∏
−

=

σ








δ+
+

=  (51’) 

or 

t

T

0k

1

kt
Tt c

1
r1

c ∏
=

σ
+

+ 







δ+
+

=  (52) 

As concerns the demand for money, from relations (35) and (36) we obtain: 

( ) t

t

t

t

t

i1
i

cV
P
Z

+
=

′









ϕ′

 
(53) 

Substituting the expressions of the derivatives, we obtain  
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θ
σθ








 +
= t

1

t

t

t

t c
i

i1
P
Z

 (54) 

Taking into account that 1tt MZ +=    , relation (54) can be written as: 

θ
σθ

+ 






 +
= t

1

t

t
t1t c

i
i1

PM  (55) 

                                                   

It can be seen that the demand for money 1tM +  increases as tP  and tC  

increase and decreases as ti  increases, which is consistent with the properties that a 

function of money demand should have. 

We denote: 

1t

1t
1t P

M
m

+

+
+ =  (56) 

From (55), it follows:  

θ
σθ

+ 






 +
π+

= t

1

t

t

t
1t c

i
i1

1
1m  (57) 

It can be seen that 1tm +  decreases as the inflation rate tπ  increases. 

If the nominal interest rate and inflation rate are constant and, moreover,  

δ+=
π+

+
=+ 1

1
i1r1  (58) 

 

then, from (51), it follows that consumption is constant, i.e. 

t,cc 1tt ∀= −  (59) 

In this case, the real demand for money will also be constant: 

θ
σ

θ






 +

π+
= c

i
i1

1
1m

1

 (60) 

From (58) we obtain the nominal interest rate: 

( )( ) 111i −π+δ+=  (61) 

and formula (60) becomes  
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( )( )

θ
σ

θ



















π+δ+
−π+

= c

11
11

1
1

1m

1

 (62) 

 

Therefore, under the above assumption, if the Central Bank decides about the 

magnitude of the inflation rate π  , the magnitude of the nominal interest rate will be 

given by (61), and the real demand for money will be given by (62). 

  

 

3. Compatibility between Monetary and Fiscal Policy. Fiscal Solvency. 

 

The interaction between monetary and fiscal policy remains a topic of intense 

interest to macroeconomists. 

In this section, we adopt several simple assumptions concerning monetary and 

fiscal policy, in order to see how the Fiscal Solvency conditions are satisfied (these 

are, in fact, transversality conditions (46’) and (47’) ). 

As it concerns the monetary policy of the Central Bank, we assume that the 

following conditions are satisfied: 

a). constant inflation rate; 

b). constant nominal interest rate. 

Moreover, we assume that the nominal interest rate is that given by the 

formula (61), which implies constant consumption. 

For the sake of simplicity, we assume that the exogenous endowment y is the 

same in each period: 

        0t      yyy t1t ≥∀==−  (63) 

 

Since the real government expenditure in each period is  

 

ttt cyg −=  

it follows that this is also constant, hence  

         0t      ggg t1t ≥∀==−  (64)  
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Dividing by tP  the budget equation (2) of the household, we obtain  

      hy
P
B

P
M

i1
1

P
P

P
B

P
P

P
M

c t
t

t

t

t

t

1t

1t

1t

t

1t

1t

1t
t −++=

+
++ +

+

++

+

+  (65)  

Denoting 

     
P
M

m  ;  
P
B

b
t

t
t

t

t
t ==  (66)  

and taking into account that y-c=g, relation (66) can be written as 

  ]m)1(m[)hg(b
r1

b
t1ttt

1t −π+−−+=
+ +
+  (67)  

 Taking into account the assumptions concerning inflation rate and nominal 

interest rate, it follows that the real demand for money is also constant: 

0tmmm t1t ≥∀==+  (68) 

its magnitude being given by relation (62). 

Formula (67) can be written as: 

    m-)h-(gb
r1

b
tt

1t π+=
+
+  (69)  

or 

 S-b
r1

b
tt

1t =
+
+  )(69'  

where we denoted by tS  primary surplus inclusive of seignorage; 

       g-mhS tt π+=  (70)  

 

As it concerns fiscal policy, we assume a constant lump-sum tax: 

   0t            h         h t ≥∀=  (71)   

In this case, the primary surplus inclusive of seignorage is constant : 

      0t                      SSt ≥∀=  (72)  

and equation (69’) becomes: 

      S-b
r1

b
t

1t =
+
+  (73)  

or  

   r)S(1-r)b(1b t1t ++=+  )(73'  

 

 The solution of the difference equation (73’) is 
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  1)-r)[(1
r

r1-br)(1b T
0

T
T +

+
+=  (74)  

where from: 

( ) ( )
S

r1
11

r
r1b

r1
b

T0T
T










+
−

+
−=

+
 (75) 

Taking into account that  

T

T
T P

Bb =  (76) 

( ) 0
T

T P1P π+=  

we obtain from (75)  

( )
S

r1
11

r
r1

P
B

i1
B T

0

0
T

T



















+

−
+

−=
+

 (77) 

and  

( )
S

r
r1b

i1
Blim 0T

T

T

+
−=

+∞→
 (78) 

The transversality conditions will be satisfied only if  

0b
r1

rS
+

=  (79) 

i.e if the magnitude of the lump-sum tax is  

0b
r1

rm gh
+

+π−=  (80) 

 

                                                                                        

We remark that if the value of the tax is given by (80), then from the dynamic 

equation (73), we obtain  

Nt,b...bbb t210 ∈∀====  (81) 

i.e. the real debt is constant, and the nominal debt increases at the inflation rate: 

( ) 0
T

T B1B π+=  (82) 

From the budget constraint equation for 0t =  , we have 

0mm =  (83) 

 where 
0

0
0 P

M
m =  is given. 



 19 

Taking into account the relation (62) it follows that: 

( ) ( )( )
( )( )

σ
θσ

σ
θ









π+δ+
−π+δ+

π+= 0

1

m
11

1111c  (84) 

For the considered hypotheses the optimal solution is as follows: 

0t,cc...cc t10 ≥∀====  (85) 

where c  is given in (84) 

0t,mm...mm t10 ≥∀====  (86) 

It follows that the nominal money demand is given by: 

( ) 0t,M1M 0
t

t ≥∀π+=  (87) 

Taking into account  (11), (31) and (50) the objective function becomes: 

∑
∞

=

θ−

+σ−




















θ−

+
σ−

γ=
0t

1

t

1t1
t

t

P
M

1
1c

1
1J  (88) 

Using the optimal solution given by (85) and (86) we have: 









π−δ
δ+

+
δ
δ+

=
0

0

P
M1c1J  (89) 

Considering (84) it follows 

( ) ( ) ( )( )
( )( ) 0o

1

m1m
11

11111J
π−δ
δ+

+







π+δ+
−π+δ+

π+
δ
δ+

=π σ
θσ

σ
θ

 (90) 

    

One can observe that the objective function depends on the inflation rate π , 

set by the Central Bank, as well as on the initial real money balances. 

 

4. Conclusions 

 
We studied in this paper a discrete time economic growth model, having 

elements of monetary and fiscal policy. For the case when the utility function of the 

household is of Bernoulli type, we obtained the dynamic equation of consumption. 

The dynamics depend on the nominal interest rate and on the inflation rate. If the real 

interest rate coincides with the subjective discount rate, then optimal consumption is 

constant on the whole horizon. The real demand for money is also constant. 
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Assuming a monetary policy rule with constant nominal interest rate and 

constant inflation rate, we inferred the fiscal policy rules compatible with this one. 

Fiscal solvency is an important concern in the design of macroeconomic 

policy in EMU. Within the model, fiscal solvency conditions practically coincides 

with the transversality conditions provided by the Maximum Principle. 

There are a number of directions in which our analysis can be developed. 

Obvious extensions include the incorporation of distortionary taxation and of “useful” 

government expenditure and the way in which these contribute to the “welfare” of the 

agent. 
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