Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

Inflation Dynamics under the Sticky Information Phillips Curve

Supervisor: Professor Moisă Altăr Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

July, 2010

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

Contents

1 Introduction

- 2 Theoretical issues
- 3 Methodology
- 4 Empirical application
- **5** Conclusions

DOFIN, Bucharest Academy of Economic Studies

(日)

Author: Iulian Ciobîcă

Introduction (1)

- Mankiw and Reis (2002) (MR (2002) hereafter) propose the sticky information model of price adjustments to address some of the failures of the sticky prices model
- specifically, the sticky prices model has problems in explaining the following stylized facts:
 - inflation is high persistent
 - disinflations always have contractionary effects
 - monetary policy shocks affect inflation with a substantial delay
- the assumption of sticky prices brings forth the new Keynesian Phillips curve (NKPC), while the assumption of sticky information yields the sticky information Phillips curve (SIPC)
- MR (2002) offer the analitical derivation of the SIPC model from microeconomic fundamentals, propose some calibration values and perform a series of simulations to argue the usefulness of the model.

Introduction (2)

- the empirical validity of the SIPC is tested by applying the methodology of Coibion (2010)
- this consists in estimating both SIPC and NKPC conditional on the same measure of inflation expectations
- in order to generate inflation and output gap expectations, I will use the methodology outlined by Stock and Watson (2003) and applied by Khan and Zhu (2006) in the case of the sticky information model
- briefly, the procedure consists in constructing measures of expectations as VAR out-of-sample forecasts
- this methodology is consistent with the testing procedure of Coibion (2010), as he uses the VAR expectations data set as an alternative to survey data

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

NKPC vs SIPC

inflation dynamics under the NKPC

$$\pi_t = \frac{(1-\theta)(1-\beta\theta)}{\theta} \alpha y_t + \beta E_t \pi_{t+1}$$
(1)

where

- $\boldsymbol{\theta}$ is the probability that a firm uses old prices in a given period
- $\alpha\,$ is the coefficient of real rigidity (degree of strategic complementarity)
- inflation dynamics under the SIPC

$$\pi_t = \frac{(1-\lambda)}{\lambda} \alpha y_t + (1-\lambda) \sum_{j=0}^{\infty} \lambda^j E_{t-j-1} \left(\pi_t + \alpha \Delta y_t \right)$$
(2)

where

 $\lambda\,$ is the probability that a firm optimizes prices using old information in a given period

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Interpretation of the parameters

- using the theoretical structure of each model, it can be shown that:
 - 1/(1- heta) is equivalent to the average time of price change
 - $1/(1-\lambda)$ is equivalent to the average time of information arrival
- the coefficient of real rigidity, α, denotes the weight that firms give to the conditions of aggregate demand in their pricing decisions
- alternatively, according to Cooper and Andrew (1988), α can be interpreted as the degree of strategic complementarity

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

General issues regarding the estimation of the SIPC

 it is necessary to make a truncation of the lag length in equation (2) and to introduce an error term:

$$\pi = \frac{\lambda \alpha}{1 - \lambda} y_t + \lambda \sum_{j=0}^{j_{max}-1} (1 - \lambda)^j E_{t-j-1} \left(\pi_t + \alpha \Delta y_t \right) + \epsilon_t \quad (3)$$

- following Khan and Zhu (2002, 2006) and Coibion (2010) expectations are proxied using simulated data obtained as out of sample forecasts from VAR and AR models
- according to Coibion (2010), output gap is subject to the endogeneity problem
- parameter values are estimated using a numerical procedure which can lead to more than one result; for all estimates, I will use as starting values the ones proposed by MR (2002) for calibration, i.e. $\lambda = 0.75$ and $\alpha = 0.1$.

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

Expectations simulation procedure (1)

• we define two sets of bivariate VARs of the form:

$$\begin{bmatrix} Z_t \\ X_t \end{bmatrix} = \mu + \beta(L) \begin{bmatrix} Z_t \\ X_t \end{bmatrix}$$
(4)

where X_t corresponds to output or inflation and Z_t is one of the indicators that is believed to be relevant for output, in the first set, and inflation, in the second set.

definition of the two central series:

inflation calculated using the quarterly CPI: $\Delta log(CPI)$ output gap calculated by applying the HP filter with $\lambda = 1600$ to real GDP

similar to Coibion (2010), the forecasting variables are:

 ROBOR1M, capacity utilization (cu), crude oil price (oil), registred unemployment (ureg), industrial production (yind), M0.

Expectations simulation procedure (2)

- the specification of each VAR from (4) is chosen as to minimize the mean square prediction error:
 - for inflation we use: ROBOR1M, log(cu), Δ∆log(oil), Δureg, Δygap, log(yind)
 - for output gap we use: ROBOR1M, Δlog(cu), ΔΔM0, ΔΔureg, Δlog(yind)
 - all VARs, with one exception, have a length of two lags
- forecasts are also performed using an AR(2) model for inflation and an AR(1) model for output gap
- all the forecasts for a given variable are averaged excluding the minimum and the maximum values and imposing the AR forecast as one of the forecasts to be averaged over.

Author: Iulian Ciobîcă

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References
Model of	comparison				

- the two models are compared on statistical grounds using the nonnested Davidson-Mackinnon J test
 - we test the validity of one model relative to the other
 - testing the null of NKPC $H_0: \delta_{SI} = 0$

$$\pi_t = k y_t + E_t \pi_{t+1} + \delta_{SI} \widehat{\pi}_t^{SI} + \epsilon_t \tag{5}$$

• testing the null of SIPC $H_0: \delta_{SP} = 0$

$$\pi_t = \frac{(1-\lambda)\alpha}{\lambda} y_t + (1-\lambda) \sum_{j=0}^{j_{max}-1} \lambda^j E_{t-j-1} \left(\pi_t + \alpha \Delta y_t\right) + \delta_{SP} \widehat{\pi}_t^{SP} + \epsilon_t$$
(6)

DOFIN, Bucharest Academy of Economic Studies

Author: Iulian Ciobîcă

Implementation of the simulation procedure (1)

- I chose a forecasting horizon of 8 periods $(j_{max} = 8)$
- available data sample 1998Q1 2009Q4 (48 observations)
- VAR estimation sample $t_0 = 1998Q1 t_1$, where $t_1 = \overline{2002Q4, 2009Q4}$ (29 iterations)
- VAR forecasting sample $t_{f1} t_{f2}$, where $t_{f1} = \overline{2003Q1, 2010Q1}$, and $t_{f2} = t_{f1} + 8$ (29 iterations)
- for AR models $t_1 = \overline{2000Q4, 2009Q4}, t_{f_1} = \overline{2001Q1, 2010Q1}$
- after applying this procedure and arranging the forecasts we obtain 16 series of expectations:

 $E_{t-1}(\pi_t),\ldots,E_{t-8}(\pi_t), E_{t-1}(y_t),\ldots,E_{t-8}(y_t)$

Author: Iulian Ciobîcă

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Implementation of the simulation procedure (2)

 to test the robustness of the results, the estimation is performed using the following expectations series, calculated as outlined in section 3:

> AR simple AR forecasts VAR_1 averaged VAR forecasts VAR_2 averaged AR and VAR forecasts.

 we also test the robustness to varying the sample: short sample 2004Q4 - 2009Q4 extended sample 2002Q4 - 2009Q4

DOFIN, Bucharest Academy of Economic Studies

Author: Iulian Ciobîcă

Results of the simulation (1)

Figure: VAR expectations, AR expectations and actual inflation

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Image: Image:

Results of the simulation (2)

Figure: VAR expectations, AR expectations and actual output gap

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Results for the SIPC (1)

Table: Estimates of the SIPC using nonlinear least squares

	estimation sample					
	2002Q4-	-2009Q4		2005Q1-2009Q4		
	expectati	ons series		expectations series		
	AR	VAR ₂	AR	VAR ₁	VAR ₂	
		j = 8				
λ	0.78***(0.03)	0.82***(0.02)	0.69***(0.08)	0.81***(0.12)	0.79***(0.04)	
α	0.23*(0.12)	0.37***(0.13)	0.14**(0.07)	0.38***(0.12)	0.35***(0.12)	
S	0.87	0.79	0.95	0.82	0.84	
Q	0.15	0.10	0.12	0.09	0.10	
		j = 6				
λ	0.73***(0.04)	0.77***(0.02)	0.59***(0.12)	0.73***(0.05)	0.72***(0.05)	
α	0.17(0.11)	0.26***(0.09)	0.07(0.05)	0.25***(0.07)	0.23***(0.07)	
S	0.84	0.80	0.96	0.85	0.86	
Q	0.09	0.08	0.15	0.10	0.11	
-		j = 4				
λ	0.58***(0.05)	0.62***(0.03)	-0.50***(-0.05)	0.62***(0.07)	0.60***(0.08)	
α	0.06(0.04)	0.12***(0.04)	-0.00(0.01)	0.14***(0.05)	0.12***(0.05)	
S	0.88	0.86	0.94	0.86	0.87	
Q	0.22	0.20	0.72	0.12	0.13	

For λ and α Newey-West standard errors are reported in brackets. S denotes the sum of the coefficients of the second right hand side term in (3). Q denotes the asymptotic p-value of the Ljung-Box statistic for one lag autocorelation test of the residuals.

* significant at 10%; ** significant at 5%; *** significant at 1%.

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

(日)

Results for the SIPC (2)

- global results
 - all estimates of \(\lambda\), with one exception, are statistically significant and consistent with the underlying theory
 - the average time of information arrival, $1/(1 \lambda)$, ranges between 2.4 and 5.6 quarters
 - this corresponds to a slightly higher degree of informational rigidity than previously estimated in the literature
 - the sum of the weights in (3) is in most cases close to 1, the lowest value reported being 0.79
 - ${\scriptstyle \bullet}\,$ in most of the cases, α is also statistically significant
 - almost all estimates of α exceed the 0.1 value proposed by MR (2002), indicating a low degree of real rigidity (firms give a bigger weight to aggregate demand conditions when optimizing their prices).

Results for the SIPC (3)

- robustness analysis
 - in both samples the estimates corresponding to the autoregressive expectations indicate a lower degree of informational stickiness
 - the expanded sample indicates a higher degree of informational stickiness
 - using the VAR₂ series we find lower values for λ than when using the VAR₁ series, as a result of incorporating the AR information
 - in all cases a lower j_{max} yields a lower degree of informational stickiness and a higher degree of real rigidity, but surprisingly, it does not have a clear effect on the value of S, as we might expect.

Assessing the endogeneity problem of the regressors (1)

- variables suspect of endogeneity:
 - $E_t(\pi_{t+1})$: specific to the NKPC framework (see Gali and Gertler (1999))
 - output gap: according to Coibion (2010), shocks to the Phillips curve are correlated to the output gap
- the problem of endogeneity is addressed by GMM estimation
- following Coibion (2010), we use the following instruments:
 - for $E_t(\pi_{t+1})$: $E_{t-1}(\pi_{t+1})$
 - for ygap: $ygap_{t-1}, ygap_{t-2}$.

DOFIN, Bucharest Academy of Economic Studies

Author: Iulian Ciobîcă

Assesing the endogeneity problem of the regressors (2)

- we address the problems common to the GMM framework in the reduced form NKPC:
 - validity of the orthogonality conditions: Hansen's J test for overidentification
 - the relevance of the instruments: Stock and Yogo (2002) weak instruments test
 - endogeneity of the regressors: Durbin-Wu-Hausman (DWH) test
- according to Adam and Padula (2003), using survey data mitigates the problem of weak instruments in NKPC.

Results for the NKPC (1)

Table: GMM estimates of the reduced form NKPC. Output gap treated as endogenous

			estimation sample		
	2002Q4-	2009Q4		2005Q1-2009Q4	
	expectati	ons series		expectations series	
	AR	VAR ₂	AR	VAR ₁	VAR ₂
k	0.003 (0.008)	0.02 (0.02)	0.001 (0.007)	0.02(0.03)	0.02(0.02)
β	$1.01^{***}(0.01)$	0.98***(0.02)	0.99***(0.02)	0.95***(0.03)	0.95***(0.03)
J	1.73 (0.42)	1.77(0.41)	2.89 (0.23)	2.45 (0.29)	2.52 (0.28)
CD	41.58	40.84	38.28	34.19	34.87
DWH_1	0.09 (0.77)	0.58 (0.45)	0.006(0.93)	0.16 (0.69)	0.18 (0.67)
DWH_2	3.25 (0.07)	3.38 (0.07)	1.35(0.24)	1.30 (0.25)	1.18 (0.17)
DWH_3	3.73 (0.15)	3.99 (0.14)	1.90(0.39)	2.09 (0.35)	1.88 (0.39)

In brackets are reported, for k and β , Newey-West standard errors, and for J,DWH₁,DWH₂ and DWH₃, asymptotic p-values. GMM estimation method: Newey West HAC weighting matrix, iteration to convergence. Endogeneity tests are performed individually for output gap (DWH₁), $E_{t-1}(\pi_{t+1})$ (DWH₂) and jointly for the two regressors (DWH₃).

* significant at 10%; ** significant at 5%; *** significant at 1%

- the estimates of the output gap coefficient are not statistically significant
- output gap could be treated as exogenous
- the null of weak instruments is rejected in each case.

Results for the NKPC (2)

Table: GMM estimates of the reduced form NKPC.Output gap treated as exogenous

			estimation sample		
2002Q4-2009Q4				2005Q1-2009Q4	
	expectati	ons series		expectations series	
	AR	VAR ₂	AR	VAR ₁	VAR ₂
k	0.0007 (0.006)	0.025* (0.01)	-0.0006 (0.006)	0.0226 (0.02)	0.019(0.01)
β	$1.01^{***}(0.01)$	0.96***(0.03)	0.99***(0.02)	0.91***(0.06)	0.91***(0.05)
J	1.56 (0.21)	0.06(0.93)	2.61 (0.11)	2.30 (0.13)	1.97 (0.16)
CD	490.58	483.2	195.44	165.55	178.49
H_2	3.34 (0.07)	4.36 (0.04)	1.40(0.24)	0.23 (0.63)	0.68 (0.41)

In brackets are reported, for k and β , Newey-West standard errors, and for J and DWH asymptotic p-values. GMM estimation method: Newey West HAC weighting matrix, iteration to convergence.

Endogeneity tests are performed for $E_{t-1}(\pi_{t+1})$ (DWH₂)

* significant at 10%; ** significant at 5%; *** significant at 1%

- the estimates of the coefficients are almost unchanged
- standard errors are smaller relative to the previous case
- using the VAR₂ series for the extended sample, we get a statistically significant coefficient for output gap.

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Image: A math a math

Results for the NKPC (3)

Table: GMM estimates of the structural form NKPC

Output gap treated as exogenous

		estimation sample					
		2002Q4	-2009Q4	2	2005Q1-2009Q4		
		expectati	ons series	ex	pectations sei	ries	
		AR	VAR ₂	AR	VAR ₁	VAR ₂	
$\alpha = 0.1$	θ	0.92***	0.62***	1.00	0.64***	0.67***	
		(0.33)	(0.09)	(524.3)	(0.11)	(0.10)	
$\alpha = 0.4$	θ	0.95***	0.80***	1.00	0.82***	0.83***	
		(0.17)	(0.06)	68.3	(0.07)	(0.06)	
	β	1.01***	0.96***	0.99***	0.91***	0.91***	
		(0.01)	(0.03)	(0.02)	(0.06)	(0.05)	
	k	0.0006	0.025	0.000	0.0226	0.019	

In brackets are reported Newey-West standard errors.

GMM estimation method: Newey West HAC weighting matrix, iteration to convergence.

* significant at 10%; ** significant at 5%;*** significant at 1%

- the VAR-based expectations yield sensible results:
 - the estimates are statistical significant
 - conditional on α , the average time of price change ranges between 2.6 and 3 quarters in the case of $\alpha = 0.1$ and between 5 and 5.9 quarters in the case of alpha=0.4.
 - the estimates corresponding to a lower degree of real rigidity are closer to the ones reported in the literature
 - the values of k and β are identical with the ones of the reduced form.

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Results for the SIPC (4)

Table: GMM estimates of the SIPC. Output gap treated as endogenous

		estimation sample					
		2002Q4	-2009Q4	2	2005Q1-2009Q4		
		expectations series		ex	expectations series		
		AR	VAR ₂	AR	VAR ₁	VAR ₂	
	λ	0.79***	0.81***	0.73***	0.77***	0.77***	
		(0.02)	(0.02)	(0.04)	(0.04)	(0.04)	
j=8	α	0.32*	0.49***	0.12	0.21***	0.18***	
		(0.09)	(0.09)	(0.08)	(0.06)	(0.06)	
	S	0.84	0.81	0.92	0.87	0.88	
	Q	0.16	0.12	0.08	0.06	0.05	

In brackets are reported Newey-West standard errors. GMM estimation method: Newey West HAC weighting matrix, iteration to convergence. Instruments: $ygap_{t-1}, ygap_{t-2}, E_{t-1}(\pi_t), E_{t-1}(y_t)$ * significant at 10%; ** significant at 5%; *** significant at 1%

- the results are similar to the ones obtained using nonlinear least squares
- this confirms our previous findings according to which output gap should be treated as exogenous.

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Model comparison results (1)

Table: Estimates of the SIPC and NKPC including the intercept

		estimation s	ample: 2002Q4 - 2	009Q4	
	NKPC		SIPC	Nonr	nested model tests
с	0.013 (0.17)	С	0.387 (0.38)	δ_{SI}	0.32 (0.24)
k	0.025 (0.015)	λ	0.879*** (0.03)	δ_{SP}	0.65*** (0.17)
β	0.952*** (0.07)	α	0.541* (0.32)		
R^2	0.87	R^2	0.65		

Note: HAC standard errors are reported in brackets. All estimates are done

by updating the HAC weighting matrix to convergence.

List of instruments for augmented NKPC (eq. (5)): constant, ygap, $E_{t-1}(\pi_{t+1})$.

List of instruments for augmented SIPC (eq. (6)): constant, ygap, $E_{t-1}(\pi_t), E_{t-1}(y_t), E_{t-1}(\pi_{t+1})$.

- according to R^2 , the NKPC explains a larger proportion of inflation variability
- the null of the SIPC is rejected
- the null of the NKPC is not rejected
- the results are highly sensitive to the choice of instruments.

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

・ロト ・ 理 ト ・ 国 ト ・ 国

Model comparison results (2)

Figure: Comparing the fit of the two models

(a) NKPC

(b) SIPC

- the SIPC fails to adjust to surprise shocks in inflation and exhibits a substantial degree of inertia
- this comes from the fact that fitted inflation is constructed as a weighted average of past forecasts, causing recent information to be incorporated by all agents slowly
- the NKPC is able to account for a much larger amount of inflation variability
- the equation relies on current expectations of future inflation, which is, by means of construction, highly correlated with current inflation:

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Testing the critique of Coibion

Figure: Comparing the sensitivity to α

- \blacksquare both λ and θ react to different calibration values of the real rigidity coefficient
- only the fit of the SIPC is influenced by α
- the critique of Coibion (2010): a high α favours the estimation of a high λ , but causes R^2 to fall
- in our case, λ does not increase monotonically with α and a high α increases R^2

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

Conclusions

- the major drawbacks of the analysis:
 - the small data sample (28 observations)
 - the unavailability of a quarterly survey for inflation and output
 - the NKPC and the SIPC were designed to account for a closed economy
- the empirical results validate the SIPC, which contradicts the findings of Coibion (2010)
- however, the NKPC has a superior ability to capture inflation dynamics, as argued by Coibion (2010)
- it is unlikely that the price adjustment mechanism can be accounted only by informational rigidities
- it would be desirable to see the extent to which these relate to other rigidities documented in the recent literature

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

- Adam, K. and Padula, M. (2003). Inflation dynamics and subjective expectations in the United States. Working Paper Series 222, European Central Bank.
- Ball, L. and Romer, D. (1990). Real Rigidities and the Non-neutrality of Money. *Review of Economic Studies*, 57(2):183–203.
- Carroll, C. D. (2003). Macroeconomic Expectations Of Households And Professional Forecasters. The Quarterly Journal of Economics, 118(1):269–298.
- Coibion, O. (2006). Testing the Sticky Information Phillips Curve. Job market paper.
- Coibion, O. (2010). Testing the Sticky Information Phillips Curve. Journal of Money, Credit and Banking, 92(1):87–101.
- Cooper, R. and Andrew, J. (1988). Coordinating Coordination Failures in Keynesian Models. The Quarterly Review of Economics, 103(3):441–63.
- Davidson, R. and MacKinnon, J. G. (1981). Several Tests for Model Specification in the Presence of Alternative Hypotheses. *Econometrica*, 49(3):781–93.
- Davidson, R. and MacKinnon, J. G. (2002). Bootstrap J tests of nonnested linear regression models. Journal of Econometrics, 109(1):167–193.
- Dopke, J., Dovern, J., Fritsche, U., and Slacalek, J. (2008). Sticky information Phillips curves: European evidence. Working Paper Series 930, European Central Bank.
- Gali, J. and Gertler, M. (1999). Inflation dynamics: A structural econometric analysis. Journal of Monetary Economics, 44(2):195–222.
- Khan, H. and Zhu, Z. (2002). Estimates of the Sticky-Information Phillips Curve for the United States, Canada, and the United Kingdom. Working Papers 02-19, Bank of Canada.
- Khan, H. and Zhu, Z. (2006). Estimates of the Sticky-Information Phillips Curve for the United States. Journal of Money, Credit and Banking, 38(1):195–207.
- Mankiw, N. G. and Reis, R. (2001). Sticky Information: A Model of Monetary Nonneutrality and Structural Slumps. NBER Working Papers 8614, National Bureau of Economic Research, Inc.
- Mankiw, N. G. and Reis, R. (2002). Sticky Information Versus Sticky Prices: A Proposal To Replace The New Keynesian Phillips Curve. The Quarterly Journal of Economics, 117(4):1295–1328.

Author: Iulian Ciobîcă

DOFIN, Bucharest Academy of Economic Studies

Introduction	Theoretical issues	Methodology	Empirical application	Conclusions	References

- Mankiw, N. G. and Reis, R. (2010). Imperfect Information and Aggregate Supply. NBER Working Papers 15773, National Bureau of Economic Research, Inc.
- Mankiw, N. G., Reis, R., and Wolfers, J. (2003). Disagreement about Inflation Expectations. NBER Working Papers 9796, National Bureau of Economic Research, Inc.
- Murphy, K. M. and Topel, R. H. (1985). Estimation and Inference in Two-Step Econometric Models. Journal of Business & Economic Statistics, 3(4):370–79.
- Murray, M. P. (2006). Avoiding Invalid Instruments and Coping with Weak Instruments. Journal of Economic Perspectives, 20(4):111–132.
- Pagan, A. (1984). Econometric Issues in the Analysis of Regressions with Generated Regressors. International Economic Review, 25(1):221–47.
- Stock, J. H. and Watson, M. W. (2003). Forecasting Output and Inflation: The Role of Asset Prices. Journal of Economic Literature, 41(3):788–829.
- Stock, J. H., Wright, J. H., and Yogo, M. (2002). A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments. *Journal of Business & Economic Statistics*, 20(4):518–29.
- Stock, J. H. and Yogo, M. (2002). Testing for Weak Instruments in Linear IV Regression. NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
- Vasicek, B. (2009). Inflation dynamics and the New Keynesian Phillips curve in EU-4. Working Papers 912, Department of Applied Economics at Universitat Autonoma of Barcelona.

DOFIN, Bucharest Academy of Economic Studies

(日) (同) (三) (三)

Author: Iulian Ciobîcă